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ABSTRACT 

This paper introduces an enhanced Capon beamforming approach that is further integrated with the 

Multiple Signal Classification (MUSIC) method to achieve superior Direction of Arrival (DOA) estimation 

using coprime arrays. The proposed enhancement to the standard Capon beamformer focuses on 

improving its robustness against steering vector mismatches, which significantly boosts its performance in 

complex signal environments. By optimizing the beamformer's spatial filtering capability, the improved 

method mitigates signal distortion and enhances resolution. Building on this enhanced Capon beamformer, 

this study integrates it with the MUSIC method to leverage the strengths of both approaches. The coprime 

array configuration allows for an increased number of virtual sensors, enabling higher degrees of freedom 

and improving the resolution of both coherent and uncorrelated signals. This combined Capon-MUSIC 

framework provides an efficient solution for accurate DOA estimation, even in scenarios where traditional 

methods fail. The effectiveness of this hybrid approach is evaluated in disaster management applications, 

where precise signal localization is crucial for tasks such as emergency communication, search and rescue 

operations, and resource deployment. The simulation results demonstrate that the integrated method 

outperforms conventional techniques, delivering improved accuracy, robustness, and computational 

efficiency, making it ideal for real-world disaster response scenarios. 

Keywords-enhanced Capon beamforming; MUSIC method; coprime arrays; DOA estimation; disaster 

management 

I. INTRODUCTION  

DOA estimation in wireless communications has emerged 
as a key technique in many applications, such as radar, sensor 
networks, and wireless communications. Given the increasing 

complexity of the current sensor arrays and the variety of 
conditions in which they operate, the need for precise and 
effective DOA estimation algorithms is greater than ever. 
Recently, efforts have been made to improve the robustness, 
accuracy, and efficiency of DOA estimation approaches, 
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especially in complicated scenarios with coherent and 
uncorrelated sources. For 3D sparse array DOA estimation, the 
Unitary Root-MUSIC technique with Nyström approximation 
has been presented as a powerful tool that shows notable gains 
in estimation accuracy while maintaining computational 
efficiency [1]. This method is particularly effective in scenarios 
where traditional approaches struggle, such as dealing with 
high-dimensional data in sensor networks. Building on this 
foundation, the Modified Root-MUSIC algorithm was 
developed to further optimize target localization, allowing for 
enhanced performance in various applications [2]. In addition, 
the Adaptive Nyström Spectral Analysis (ANSA) approach has 
emerged as a viable method for advanced DOA estimation in 
coprime arrays [3]. This technique enhances the overall 
estimation quality while addressing the issues associated with 
constrained sensor combinations. With a focus on coprime 
sensor arrays, the ECA-MURE algorithm presents a new 
perspective on high-precision DOA estimation by employing 
Cramér-Rao Bound (CRB) analysis as a theoretical 
performance benchmark [4]. In addition, the Manifold 
Reconstruction Unitary ESPRIT (MR-UESPRIT) algorithm 
was introduced to optimize the sensor array DOA estimation by 
utilizing manifold learning approaches [5]. 

Recent studies have also emphasized the importance of 
processing speed in DOA estimation. Enhanced processing 
methods have been developed that allow rapid direction 
estimation in sensor arrays, thereby improving the system's 
overall responsiveness [6]. The usefulness of the DOA 
estimation methods has been further increased by the invention 
of effective direction estimation algorithms without prior 
information on the source count for both coherent and 
uncorrelated sources [7]. The planar-like sensor array design 
has demonstrated potential for achieving effective DOA 
estimation, underscoring the possibility of creative array 
combinations to improve performance [8]. 

Meanwhile, fast adaptive beamforming techniques have 
been proposed to optimize the DOA estimation processes, thus 
improving the overall efficiency of the sensor networks [9]. 
Moreover, recent advancements in spatially spread acoustic 
vector sensors have demonstrated improved localization 
capabilities for near-field sources, further contributing to the 
growing body of research in DOA estimation [10, 11]. Notably, 
the trade-off between computational complexity and estimation 
accuracy continues to be a critical research topic. Practical 
applications of these theoretical advances have been 
highlighted by studies focusing on coherent DOA estimation 
utilizing digital signal processors [12]. 

The growing interest in machine learning approaches, such 
as radar signal support vector clustering and feature extraction 
techniques, reflects the ongoing evolution of DOA estimation 
methods [13]. As communication technologies continue to 
advance, the performance analysis of OFDM and OFDM-
MIMO systems under fading channels further illustrates the 
challenges faced in dynamic environments [14]. The design 
and performance analysis of massive MIMO systems is also 
gaining traction as researchers aim to increase the capacity of 
the next-generation networks [15]. The field of DOA 
estimation is rapidly evolving, driven by the need for 

innovative algorithms and advanced sensor technologies. This 
ongoing research not only addresses the current challenges, but 
also lays the foundation for future developments in adaptive 
array signal processing and smart antenna design [16, 17]. 

II. SIGNAL MODEL USING COPRIME SENSOR 
ARRAYS FOR DOA ESTIMATION 

A. Array Observation Model 

Let us consider a coprime array consisting of two 
subarrays, each with M and N sensors (where M and N are 
coprime integers).  

 

 
Fig. 1.  Illustration of coprime sensor array structure. 

The array observation vector (k)x  at time k can be 

modeled as: 

(k) = ( ) (k) + (k) + (k)x A s i n    (1) 

where the steering matrix ( )A  corresponds to the intended 

signal entering the moving coprime array from direction θ, 

(k)s  is the desired signal component vector, i(k) is the 

interference component vector, and (k)n  is the noise 

component vector. The coprime array's steering matrix ( )A  

can be constructed in the manner described by [18]: 

M

N

( )
( )

( )

 
    

a
A

a
    (2) 

where M ( )a  and N ( )a  denote the M-element and N-element 

steering vectors, respectively. 

The array covariance matrix R can be written as: 

H
s i n = E{ (k) (k) } =  + R x x R R    (3) 

where E{} is the statistical expectation operator and H( )  

stands for the Hermitian transposition. The signal covariance 

matrix is H 2 H
s s=E{ (k) (k) } = ( ) ( )  R s s A A and i nR  is the 

representation of the interference-plus-noise covariance matrix. 
With respect to the array beamformer's weight vector: 

T
1 2 M N = [w , w , · · ·  , w ]w    (4) 
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where the transpose operator is denoted by T[ ] , the Signal-to-

Interference-Plus-Noise Ratio (SINR) of an output is defined 
by: 

22 H
s

H
i n

( )
SINR =  



 w A

w R w
   (5) 

In order to maximize the SINR, the focus is on solving an 
optimization problem. The desired signal power is a critical 
component in achieving an optimal beamformer. 

H H
i nmin s.t. ( ) = 1 

w
w R w w A   (6) 

with the solution provided by [18] as: 

1
i n

opt H 1
i n

( )
 =  

( ) ( )









 

R A
w

A R A
   (7) 

In ideal circumstances, it is known that R can be used 

instead of i nR  to simplify the optimization issue in (6) to: 

H Hmin s.t. ( ) = 1
w

w Rw w A   (8) 

Apparently, in real-world situations, one can only obtain an 
estimate of the array covariance matrix, which may be obtained 
from the example data using: 

K
H

k 1

1
(k) (k)

K 

 R x xɶ     (9) 

where the sample size is denoted by K. Consequently, the 
typical Capon beamformer is: 

1

Capon H 1

( )
 =  

( ) ( )







 

R A
w

A R A

ɶ

ɶ
   (10) 

For a given beamformer weight vector w, the array output 
power may be written as: 

H H H
output s i n

22 H H
s i n

P  =  =  + 

( )



   

w Rw w R w w R w

w A w R w
  (11) 

If (8) is used to derive the beamformer, we get: 

1

H 1

( )
 =

( ) ( )






 
R A

w
A R A

    (12) 

and thus: 

output H 1

H 1 1
2 i n
s 2H 1

1
P

( ) ( )

( ) ( )

( ) ( )



 



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A R A
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  (13) 

The steering vector can be modeled as follows: In real-
world scenarios, errors in the angle estimation of the target 
signal and errors in the array calibration can result in known 
steering vector uncertainties. Consequently, it can be used as an 

estimate of the power of the intended signal since the output 
power outputP is minimized, which also means that the second 

component on the right-hand side is minimized. 

2

( )- ( )   A Aɶ     (14) 

where
2

 denotes the 2 -normℓ ,   is a known user-defined 

parameter, and ( )Aɶ signifies the nominal steering vector. By 

resolving the following optimization problem, the steering 
vector can be estimated according to the principle of the robust 
Capon algorithm [18]: 

2
H 1

( )
min ( ) ( ) s.t. ( )- ( )


     

A
A R A A Aɶɶ  (15) 

This problem is obviously a Second-Order Cone 
Programming (SOCP) problem, and it can be addressed using 
the Newton iteration method as described in [7] or by utilizing 
the tools available in the CVX toolbox [5]. After deriving 

( )Aɶ  as the solution to (15), the power corresponding to the 

intended signal can be estimated as [18]: 

2
s H 1

1

( ) ( )
 

 A R A
ɶ

ɶ ɶɶ
    (16) 

As a result, the signal covariance matrix estimation can be 
written as: 

2 H
s ( ) ( )   sR A Aɶ ɶɶ ɶ     (17) 

As previously stated, performance may suffer if the desired 
signal is present in the training snapshots. In order to improve 
robustness, the following Improved Noise-Plus-Interference 
Covariance Matrix (INCM) estimate is used in this proposed 
method: 

2 H
i n s s ( )     R R R R A Aɶ ɶɶ ɶ ɶ ɶ ɶ    (18) 

It is important to understand that although the INCM can be 
calculated in the manner outlined, its effectiveness depends on 
how accurate this estimate is. In order to tackle this, let us 
designate Δ as the difference between the estimated and actual 
INCM. This brings us to: 

i n i n   R Rɶ     (19) 

Furthermore, it is presumed that the uncertainty is limited 
to a particular constraint, which can be stated as: 

F
        (20) 

The Frobenius norm, denoted as 
F

 , along with a user-

defined positive constant  , bounds the uncertainty as stated. 

This sets the stage for an upgraded iteration of the RCapon-
INCM beamformer via a worst-case performance optimization 
strategy as in [18]: 

 H
i n

H

F

min max

s.t. , ( ) 1




 

    

w
w R w

w A

ɶ

ɶ
  (21) 
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This method is similar to the resilient beamforming 
described in [2] using a general-rank model. Το solve this 
problem, the Δ maximization problem is first solved as [18]: 

 H
i n F

max s.t. 


   w R wɶ   (22) 

The solution to this maximization problem is provided in 
[2]. 

H

2
  

ww

w
     (23) 

By rearranging (23) into (21), the following new 
formulation for the min-max problem is obtained: 

 H H
i nmin s.t. ( ) 1    

w
w R I w w Aɶɶ  (24) 

Equation (24) is the reformulated problem with the same 
structure as (8), where I  is the identity matrix. By using the 
Lagrange multiplier technique, (24) can be solved as: 

 
 

1

i n

RCapon INCM 1
H

i n

( )

( ) ( )





 
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   
 
     

R I A
w

A R I A

ɶɶ

ɶ ɶɶ
 (25) 

Therefore, this method yields the RCapon beamformer with 
INCM estimation, which is now referred to as the RCapon-
INCM beamformer. It is also important to note that although 
the suggested approach considers only one desired signal, it is 
easily adaptable to situations where there are several desired 
signals. This extension entails estimating the steering vector 
and power for every desired signal separately. 

III. PROPOSED IMPROVED MUSIC METHOD AND 
OPTIMIZED SOURCE LOCALIZATION IN DISASTER 

MANAGEMENT 

A popular technique for estimating DOA is the MUSIC 
algorithm, which takes advantage of the covariance matrix's 
eigenstructure when processing received signals. The goal in 
this section is to achieve higher resolution and accuracy in 
DOA estimation by presenting an improved version of the 
MUSIC algorithm specifically designed for coprime sensor 
arrays. Let K uncorrelated narrowband sources that arrive at a 
coprime sensor array in the directions T

1 2 K[ , , , ]    … . 

| S | 2M N 1    sensors form the array, where M and N are 

coprime integers. Every sensor spacing d is equal to λ/2, where 
λ is the signal wavelength. At time t over T snapshots, the 
received signal vector is: 

K

k K
K 1

(t) (t) (t)


 x a s n    (26) 

K
H H 2

S k k K n
K 1

E x(t)x (t) p


      R a a I   (27) 

A. Proposed Algorithm 

 Augmented array covariance matrix construction: Define an 
augmented array covariance matrix augR  by combining the 

covariance matrices from two coprime subarrays: 

sub1

aug

sub2

0

0

 
  
 

R
R

R
    (28) 

where sub1R  and sub2R  are the covariance matrices of the 

two coprime subarrays.  

 Eigenvalue decomposition: Perform eigenvalue 

decomposition on augR  to obtain its eigenvalues i  and 

corresponding eigenvectors ie . 

 Compute the MUSIC spectrum: Calculate the MUSIC 
spectrum MUSIC ( )P for direction θ: 

MUSIC H
i N i

1
( ) P

e V e
    (29) 

where NV  is the noise subspace spanned by the 

eigenvectors corresponding to the N smallest eigenvalues of 

augR . 

 DOA estimation: The peaks in MUSIC ( )P  for the estimation 

of the directions of arrival T
1 2 K

ˆ ˆ ˆ ˆ[ , , , ]    … . 

In the context of disaster management, this study proposes 
the integration of the enhanced Capon and improved MUSIC 
algorithms for DOA estimation utilizing coprime arrays. By 
utilizing these sophisticated algorithms, this method seeks to 
improve source localization accuracy and efficiency in 
emergency situations. The suggested approach performs well in 
challenging environments, enabling a rapid identification of the 
distress signals and efficient response times in emergency 
situations. 

IV. RESULTS AND DISCUSSION 

The parameters used to simulate the proposed method, 
which integrates the modified Capon beamformer with the 
MUSIC algorithm, are antenna sensors N=5, M=4, separated 
by d=0.45λ, and K=400 snapshots. Let us consider the scenario 
shown in Table I.  

TABLE I.  INPUT DATA OF INDUCED SIGNALS 

Signal no. DOA SNR (dB) K d 

1 -20° 20 400 0.45λ 
2 -10° 20 400 0.45λ 
3 10° 20 400 0.45λ 

4 20° 20 400 0.45λ 

 
Figure 2 displays the simulated spectrum from the proposed 

method, demonstrating the improved DOA estimation accuracy 
achieved by integrating the modified Capon beamformer with 
the MUSIC algorithm. In disaster management, an accurate 
localization of the signal sources is critical for effective rescue 
operations. The distinct spectrum peaks indicate four coherent 
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and uncorrelated sources, enabling Unmanned Aerial Vehicles 
(UAVs) to precisely identify signals from emergency beacons 
or trapped individuals. This precision enhances the ability to 
direct rescue teams and deliver aid, significantly improving 
disaster response capabilities and overall situational awareness 
in the affected areas. 

 

 
Fig. 2.  Pseudo spectrum of proposed algorithm. 

 
Fig. 3.  Spectrum of the Capon beamformer integrated with the modified 
MUSIC algorithm for effective signal localization in disaster management 
(N=5 and M=6, with d=0.3λ, 0.45λ, 0.7λ, 0.8λ, and λ). 

The performance of the proposed method was also 
evaluated with different inter-element spacings in a smart 
antenna system. Figure 3 depicts the simulated spectrum of the 
proposed approach. It shows the performance of DOA 
estimation under varying inter-element spacings (d=0.3λ, 
0.45λ, 0.7λ, 0.8λ, and λ) for two narrowband signals with 
DOAs 0° and 40°, SNR 20 dB, and antenna sensors N=5, M=4. 
The graph illustrates how inter-element spacing affects DOA 
clarity in the proposed approach, with excessive spacing 
resulting in unwanted lobes that can complicate signal 
localization in practical disaster management or other 
applications requiring precise direction finding. The key 
observations are: 

 Grating lobes: At larger spacings, specifically d=0.7λ, 0.8λ, 
and λ, multiple major peaks, known as grating lobes, appear 
in the spectrum. This phenomenon introduces ambiguity 
into the DOA estimation, as the algorithm may misinterpret 
these additional peaks as potential directions of arrival. 

 Performance with smaller spacings: At smaller spacings 
(e.g., d=0.3λ and 0.45λ), the spectrum exhibits clear peaks 
at the actual DOAs (0° and 40°) without significant grating 
lobes, ensuring more accurate DOA estimation. 

 Optimal DOA estimation: A good DOA estimation is 
obtained when the inter-element spacing is between 
d=0.45λ and 0.55λ. This range improves signal localization 
accuracy and reduces grating lobes.  

 Effect of large inter-element spacing: The system generates 
more lobes than necessary when the inter-element spacing 
exceeds 0.6λ, which can result in inaccurate signal 
localization. 

These results suggest that with careful selection of inter-
element spacing, the proposed method can achieve accurate 
and reliable DOA estimation for disaster management 
applications. Even in complex environments, UAVs with 
sophisticated antenna systems can find signals from emergency 
beacons or trapped people by optimizing the spacing. The 
integration of the Capon beamformer with the updated MUSIC 
algorithm ensures accuracy and robustness, making it a useful 
tool for disaster response and management. Accurate signal 
localization facilitates quick and efficient rescue efforts, 
increasing the likelihood of saving lives in dire circumstances. 

The Root Mean Square Error (RMSE) versus the Signal-to-
Noise Ratio (SNR) analysis is an essential tool for assessing the 
effectiveness of different DOA estimation techniques in the 
context of disaster management. In this study, the proposed 
approach is compared with well-known methods, such as 
ESPRIT, UR-MUSIC, ECS-MUSIC, and MUSIC. Four 
uncorrelated narrowband sources and two coherent signals with 
a 0.5λ spacing were considered. The signals arrived from 
angles of 10°, 15°, 20°, 25°, and -5°. During the simulations, 
100 snapshots were taken at 10 dB SNR. The results, portrayed 
in Figure 4, demonstrate how well the proposed strategy 
minimizes RMSE compared to the alternative approaches. 
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Fig. 4.  RMSE versus SNR for various methods. 

The order of accuracy found was MUSIC, ESPRIT, UR-
MUSIC [2], ECA-MUSIC [4], and finally the proposed 
method. This suggests that the current sudy’s combination of 
the modified Capon beamformer with the MUSIC algorithm 
results in better localization performance in noisy 
environments. This improved accuracy is important for disaster 
management scenarios, where accurate localization of signals, 
such as emergency beacons or communications from trapped 
individuals, is necessary for prompt and successful rescue 
operations. Accurately determining the direction of multiple 
signal sources improves situational awareness and enables 
more effective resource deployment in disaster areas. As a 
result, the proposed method contributes significantly to 
improving the reliability and effectiveness of disaster response 
operations. 

V. CONCLUSION 

This study presented a method integrating the modified 
Capon beamformer with the Multiple Signal Classification 
(MUSIC) algorithm to improve Direction of Arrival (DOA) 
estimation for disaster management applications. The 
simulations revealed that the optimal inter-element spacing, 
specifically between 0.45λ and 0.55λ, significantly improves 
localization accuracy by minimizing the grating lobes. The 
proposed method demonstrated superior performance in 
reducing the Root Mean Square Error (RMSE) when compared 
to established techniques, such as MUSIC, ESPRIT, UR-
MUSIC, and ECA-MUSIC. The results highlight the critical 
importance of accurate signal detection in disaster scenarios, as 
a precise localization of emergency signals is essential for 
efficient rescue operations. Overall, this integration provides a 
robust solution that enhances situational awareness and 
improves the effectiveness of disaster response efforts, 
ultimately contributing to better outcomes in life-saving 
situations.  
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