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ABSTRACT 

Research on Vibroarthrographic (VAG) signals presents a promising means for the early diagnosis of knee 

joint disorders. However, the classification problem for these signals faces serious issues due to their 

complex and dynamic nature. This study proposes a novel method for decomposing and analyzing VAG 

signals based on a Tunable Q-factor Wavelet Transform (TQWT) and entropy-based measures. TQWT is 

used to preprocess and decompose VAG signals recorded during knee motion into subbands. Different 

entropy metrics, such as approximate entropy, sample entropy, fuzzy entropy, slope entropy, and so on, 

were computed over different subbands of the signal to capture significant signal features. Effective 

features were selected using Recursive Feature Elimination (RFE) and then classified using ensemble 

classifiers such as XGBoost, Ensemble Random Forest (ERF), and RF-logistic regression. The 

classification accuracy of the proposed sample entropy method was 87.64% and had 90% sensitivity, 

86.36% specificity, and 0.88 AUC-ROC. These results demonstrate the ability of the TQWT-based 

approach to discriminate knee joint abnormalities. Future work will explore performance scaling with 

larger datasets and apply it to other joint disorders. 
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I. INTRODUCTION  

The knee condition causes extreme discomfort that prevents 
walking or weight on the knee. Without prompt treatment, knee 
dysfunction causes Osteoarthritis (OA) [1, 2]. Almost 3% of 
people worldwide have knee disorders, leading to years lived 
with disability. In addition, knee disease ranks fourth among 
YLDs. Knee issues are common in early aging, especially in 
low-income countries [3], and rural hospitals lack medical 
imaging and technological innovation equipment. Modern 
medical technology uses computer methods to diagnose human 
skeletal models. OA and Chondromalacia patella are the main 
knee diseases from phase I to IV. Invasive and non-invasive 
procedures are used to estimate clinical and operational 
performance. However, diagnosing knee disorders with X-rays, 

MRI, ultrasonography, CT, and other imaging methods is 
expensive [4, 5]. Recent knee joint diagnosis uses non-invasive 
vibration signal detection technologies called 
Vibroarthrography (VAG) to detect problems. VAG is a 
promising screening method that analyzes knee vibrations 
extracted during movement. These signals can be recorded 
using tiny industrial accelerometers, piezoelectric microphones, 
or electronic stethoscopes [6]. The extracted signals help 
identify the knee joint as normal or degenerative. Healthcare 
professionals can assess knee joint injury by evaluating signal 
frequency and amplitude fluctuations. Signal frequency and 
amplitude depend on the condition of the knee. Figure 1 shows 
normal and aberrant VAG signals. As VAG signal 
characteristics are difficult to notice and analyze using simple 
amplitude and frequency notations, their internals must be 
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examined for knee joint features. In [7], abnormalities were 
detected and classified using time and spectral domain features. 
VAG signals were used to evaluate skewness, kurtosis, crest, 
margin, impulse, and shape factors. Signal decomposition and 
spectral properties, such as mean, peak, slope, flux, skewness, 
and kurtosis, were recovered using the Short-Time Fourier 
transform (STFT). In [8], complete ensemble empirical mode 
decomposition and HHT were used, obtaining 88.76% 
accuracy. This study extracted statistical information from 
subband temporal frequency images. Wavelet decomposition 
was used on VAG signals, features were calculated via 
recurrence quantification analysis, and approximate, sample, 
and wavelet-based subband entropies were determined. 

 

  

Fig. 1.  VAG signals: normal and abnormal. 

Artifacts consistently interfere with VAG signals during 
recording. Various signal decomposition methods, such as 
Empirical Mode Decomposition (EMD) and its enhanced 
variants, EEMD and CEEMDAN, have been employed to 
assess and remove subbands that induce random noise [9]. 
Signal reconstruction by EMD involves the identification of 
subbands, called Intrinsic Mode Functions (IMFs), employing 
Detrended Fluctuation Analysis (DFA) and selecting suitable 
IMFs within the interval of 0 < α < 1.5 [10]. In [11], TQWT 
was used to decompose VAG signals into various subbands. 
The Q factor ranged from 2 to 31 and the decomposition was 
50. Using synthetic minority oversampling with TQWT, an 
accuracy of 80.89% was achieved. In [12], Kroskov entropy 
and fractal dimension features were extracted from 
decomposed subbands using TQWT for VAG signal 
decomposition, achieving 86.91% accuracy using the least 
square support vector machine classifier. In [13], an effective 
actigraphy-based VAG data encoding and analysis system was 
proposed. This method measures cartilage deterioration and 
identifies limb movement cracking. Encoding the data into 
three bits per sample compresses it without sacrificing limb 
movement information, achieving 84.6% recognition accuracy. 
This efficient data compression simplifies the transmission and 
storage of VAG data. In [14], VAG signals were partitioned 
into subbands using DDDTCWT. The L2 norms and log 
energy entropy were retrieved from these subbands. 
Differentiating normal from aberrant VAG signals required 
these features. This study used Fuzzy Sugeno Classifier (FSC), 
Least Squares Support Vector Machine (LS-SVM), and 
sequential minimal optimization SVM to classify VAG signals 

using ten-fold cross-validation, achieving 85.39% classification 
accuracy. The study in [15] examined how sensor placement 
affected data collection and accuracy due to movement changes 
and knee joint load effect, helping to analyze knee movements 
and disorder severity during daily activities. 

II. METHOD 

Due to knee movement during signal capture, VAGs are 
always contaminated by Baseline Wandering (BLW). A VAG 
signal Cascaded Moving Average (CMA) filter reduces this 
low-frequency quasiperiodic BLW [16]. This VAG signal 
collection approach is painless and non-invasive in diagnosing 
knee joint problems. Fixing the accelerometer sensor to the 
mid-patella yields VAG signals. These signals are captured 
during leg extension and flexion movements from 135° to 0° 
and 0° to 135°. The signal was prefiltered and amplified with a 
10 Hz - 1 kHz bandpass filter. A 2 kHz sampling rate and 12-
bit digitization were used. ���� =   ��	 ∑ ��� − �	���   

+ ��� ∑ ��� − � + � − ������    (1) 

where P denotes the order of the first-stage filter, Q signifies 
the order of the second filter, and O indicates the number of 
overlapping samples taken into account. This study examined a 
two-stage filter with parameters P = Q = 20 and an overlap of 
O = 5 samples. Figure 2 illustrates the process of VAG signal 
classification for knee joint diseases. The processes involved 
are (i) Preprocessing, (ii) Signal decomposition utilizing 
TQWT, (iii) Entropy-based feature extraction, (iv) feature 
selection, and (v) classification. 

A. Tunable Q-factorWavelet Transform (TQWT) 

The TQWT technique is a multiresolution analysis method 
where the Q factor can be specified by the user. The flexibility 
of adjusting the Q value leads to the design of various filters for 
specific spectral decomposition [17]. The filter designs depend 

on low- and high-pass filter bands viz., ������ and ������. The 

filter parameters, � for low pass scaling and �  for high pass 
scaling, are in turn estimated from the Q value, redundancy (r), 
and total decomposition level (J) [19]. 

������ = �∏ �� �  !"#�$�%�� ,           |�| ≤  ��)  0,                        � �) ≤ |�| ≤ )      (2) 

������ =  

+ �� �  !,-.# ∏ �� �  !"#�$�%��  ,         �1 − ����$�) ≤  |�| ≤  ��)   0, for other 6 [−), )]                  (3) 

����� =  9 � :�;$��<!:;$� #    (4) 

����� =  9 � !<$ !:;$�#    (5) 

where 9��� is the Daubechies filter's frequency response: 9��� = 0.5�1 + >?@ ��� �A2 − >?@ ��� (6) 
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Fig. 2.  VAG signal classification for knee joint disorders. 

The interrelation among the low- and high-pass scaling 
parameters, and redundancy, � , � , C , D  and E  are given as 
follows: C = ;!$�     (7) 

D = �$;;                   (8) 

E =  FGH �IJK #FGH ��.L#      (9) 

The pre-processed VAG signals are segmented into 
subbands using TQWT. Figure 3 shows some of the subbands 
decomposed for abnormal VAG signals. 

 

 

Fig. 3.  TQWT generated subbands (1 to 10) of abnormal VAG signal. 

This study focuses on examining VAG signals with respect 
to variation in Q value in TQWT and also the decomposition 
level J variation. This study considered the Q values from 2 to 
6, J as 8, 16, 24, 26, and the maximum possible decomposition 

level with respect to Q, i.e., if Q = 2 leads to the maximum 
decomposition level J = 26, Q = 3 leads to J = 33, Q = 4 leads 
to J = 41, Q = 5 leads to J = 49, and Q = 6 leads to J = 56.  

III. RESULTS 

The dataset used comprised 89 VAG signals, including 51 
from normal knees and 38 from aberrant knees [18]. VAG 
signals are consistently compromised by BLW and random 
noise, as shown in Figure 4. VAG signals require preprocessing 
to remove artifacts and improve classification. BLW from the 
VAG signal was diminished using a CMA filter of order 20 at 
each stage, utilizing five overlapping samples. Figures 6 and 7 
display VAG signals before and after CMA filtering with 
parameters P = 20, Q = 20, and O = 5. After this, TQWT 
decomposes BLW artifact-free signals into subbands. Only ten 
information subbands are shown in Figure 5. The 
approximation, sample, fuzzy, slope, and average entropies 
were computed [19-24] for all subbands and all signals in the 
dataset, for different Q (Q: 2, 3, 4, 5, 6) and J values (J: 8, 16, 
24, 26, maximum decomposition obtained for specific Q) 
subbands. Classification accuracy depends on feature quality. 

 

 
Fig. 4.  VAG signal with BLW. 
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Fig. 5.  Preprocessed VAG signal after applying CMA filter for BLW. 

Recursive Feature Elimination (RFE) was used to find 
prominent traits that distinguish normal from abnormal 
situations. Using RFE, the three most influential subbands were 

found for each entropy. Table I shows the RFE-selected 
subbands for all entropies. These features was validated using 
XGBoost (XGB), Ensemble Ensemble RF-Logistic (ERFL), 
and Random Forest (RF), trained on 80% and tested on 20% of 
the dataset. Table II shows the highest accuracy for each 
entropy and other classifier evaluation criteria. The proposed 
VAG signal classification approach was evaluated utilizing 
performance metrics such as accuracy (Acc), Sensitivity (Sen), 
Specificity (Spe), Precision, F1 score, Area Under the Curve 
(AUC), Matthews Correlation Coefficient (MCC), Positive 
Predictive Value (PPV), and Negative Predictive Value (NPV). 
Table II presents the classification results. The proposed 
entropy-based TQWT technique yielded the best results in 
detecting abnormalities using XGBoost, Ensemble RF-Logistic 
(ERFL), and Random Forest (RF). Among the eleven 
entropies, approximate, sample, fuzzy, slope, and average 
entropies yielded the most favorable results. Table III compares 
these results with previous works. 

TABLE I.  RFE-SELECTED SUB-BANDS FOR ALL ENTROPIES 

Entropy J Q = 2 Q = 3 Q = 4 Q = 5 Q = 6 

Appr EN 

8 SB1, SB7, SB8 SB1, SB6, SB7 SB1, SB2, SB8 SB1, SB5, SB8 SB2, SB3, SB8 

16 SB1, SB13, SB16 SB2, SB11, SB15 SB1, SB3, SB15 SB1, SB5, SB16 SB1, SB3, SB16 

24 SB1, SB10, SB15 SB2, SB11, SB15 SB1, SB14, SB17 SB1, SB18, SB23 SB1, SB3, SB24 

26 SB5, SB10, SB15 SB2, SB11, SB15 SB2, SB15, SB23 SB18, SB23, SB25 SB12,SB17, SB24 

MAX - SB1, SB11, SB15 SB3, SB19, SB28 SB1, SB20, SB23 SB2, SB27, SB41 

SAMPEN 

8 SB1, SB7, SB8 SB1, SB2, SB8 SB1, SB2, SB7 SB1, SB3, SB4 SB1, SB2, SB5 

16 SB7, SB10, SB15 SB1, SB11, SB14 SB1, SB15, SB16 SB1, SB2, SB16 SB1, SB15, SB24 

24 SB7, SB10, SB15 SB1, SB12, SB21 SB1, SB19, SB24 SB2, SB18, SB23 SB1, SB2, SB14 

26 SB1, SB8, SB16 SB1, SB11, SB15 SB1, SB15, SB25 SB1, SB20, SB23 SB2, SB5, SB21 

MAX - SB1, SB11, SB14 SB1, SB15, SB26 SB3, SB18, SB34 SB2, SB27, SB40 

FUZZY EN 

8 SB1, SB5, SB8 SB1, SB6, SB7 SB1, SB3, SB8 SB1, SB2, SB4 SB1, SB2, SB4 

16 SB1, SB13, SB15 SB1, SB6, SB12 SB1, SB5, SB16 SB1, SB2, SB11 SB1, SB2, SB11 

24 SB1, SB15, SB22 SB2, SB12, SB23 SB1, SB19, SB24 SB1, SB4, SB24 SB1, SB4, SB24 

26 SB1, SB13, SB15 SB1, SB11, SB25 SB1, SB15, SB19 SB1, SB23, SB18 SB1, SB23, SB24 

MAx - SB1, SB26, SB27 SB2, SB24, SB39 SB23, SB34, SB42 SB22,SB27, SB52 

SLOPE EN 

8 SB1, SB6, SB8 SB1, SB3, SB8 SB1, SB3, SB7 SB1, SB2, SB8 SB1, SB5, SB6 

16 SB1, SB14, SB16 SB1, SB3, SB13 SB1, SB8, SB15 SB1, SB2, SB8 SB1, SB10, SB15 

24 SB1, SB16, SB21 SB1, SB11, SB20 SB1, SB2, SB15 SB7, SB14, SB18 SB1, SB10, SB24 

26 SB1, SB16, SB23 SB1, SB11, SB20 SB1, SB3, SB15 SB1, SB4, SB18 SB1, SB10, SB24 

MAX - SB2, SB11, SB28 SB1, SB3, SB15 SB14, SB18, SB38 SB1, SB27, SB31 

AVEN 

8 SB1, SB4, SB7 SB1, SB7, SB8 SB1, SB3, SB8 SB1, SB2, SB8 SB1, SB6, SB8 

16 SB1, SB4, SB14 SB2, SB11, SB14 SB2, SB14, SB16 SB1, SB2, SB16 SB1, SB2, SB15 

24 SB1, SB4, SB12 SB1, SB11, SB24 SB1, SB14, SB22 SB1, SB16, SB17 SB1, SB15, SB21 

26 SB1, SB8, SB12 SB1, SB11, SB24 SB14, SB17, SB22 SB2, SB16, SB25 SB1, SB15, SB26 

MAX - SB1, SB11, SB24 SB1, SB14, SB32 SB1, SB16, SB29 SB1, SB21, SB41 

TABLE II.  CLASSIFIERS' PERFORMANCE FOR THE HIGHEST ACCURACIES RECORDED IN EACH ENTROPY 

Feature Classifier Acc Sen Spec Pre F1 score AUC MCC PPV NPV 

APEN 

Q=2,J=24 

XG Boost 0.85359 0.81786 0.88 0.84167 0.82885 0.8489 0.7015 0.8417 0.8636 

En RF-logistic 0.80784 0.8 0.82182 0.8 0.77717 0.8109 0.6433 0.8 0.8672 

Random Forest 0.81961 0.825 0.82182 0.80069 0.79411 0.8234 0.6614 0.8007 0.8771 

SAMPEN 

Q=6, J=24 

XG Boost 0.87647 0.9 0.86364 0.83333 0.85756 0.8818 0.7622 0.8333 0.9278 

En RF-logistic 0.8098 0.71786 0.88364 0.83143 0.75835 0.8008 0.6214 0.8314 0.8123 

Random Forest 0.82092 0.8 0.84364 0.77778 0.7639 0.8218 0.6468 0.7778 0.8756 

FUZZY EN 

Q=6 J=24 

XG Boost 0.87582 0.84643 0.9 0.88286 0.85599 0.8732 0.7607 0.8829 0.8924 

En RF-logistic 0.87516 0.79286 0.94 0.93333 0.84656 0.8664 0.7623 0.9333 0.8607 

Random Forest 0.84183 0.78929 0.88182 0.85556 0.80906 0.8356 0.69 0.8556 0.8551 

SLOPE EN 

Q=4 J=24 

XG Boost 0.86471 0.87143 0.86182 0.85688 0.84507 0.8666 0.753 0.8569 0.9175 

En RF-logistic 0.83203 0.79286 0.86182 0.82768 0.79177 0.8273 0.6763 0.8277 0.8718 

Random Forest 0.85425 0.84286 0.86182 0.83434 0.82679 0.8523 0.7185 0.8343 0.8543 

AVEN 

Q=6 J=56 

XG Boost 0.83137 0.77143 0.88182 0.84643 0.78806 0.8266 0.6757 0.8464 0.8541 

En RF-logistic 0.83072 0.71429 0.92 0.90833 0.77219 0.8171 0.6785 0.9083 0.8242 

Random Forest 0.86405 0.81786 0.9 0.88889 0.84218 0.8589 0.7375 0.8889 0.8694 
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TABLE III.  ENHANCED KNEE JOINT DISORDER CLASSIFICATION USING TQWT-BASED ENTROPY MEASURES AND ENSEMBLE 
CLASSIFIERS 

Source Method Features 
Classification 

model  
Evaluation Metric (%) 

[8] CEEMDAN Entropy measures – ApEn, SampEn, PeEn, TsEn, ReEn, ShEn LS-SVM Acc: 86.61 

[9] - 

Symbolic Entropy (SyEn), Approximate Entropy (ApEn), Fuzzy 

Entropy (FuzzyEn), and the mean, standard deviation, and Root-Mean-

Squared (RMS) values of the envelope amplitude 

SVM Acc: 83.56 

[13] - Statistical time and frequency features, band power, spiky index SVM, LDA Acc: 84.60 

[14] DDDTCWT L2 norms and Log Energy Entropy (LEE) 
Fuzzy Sugeno 

Classifier (FSC) 
Acc: 85.39 

[26] EMD & CWT 
Frequency domain features: CWT coefficients Spatiotemporal features: 

skewness and kurtosis of the autocorrelation function 
LS-SVM Acc: 86.67 

[25] EWT Statistical Measures SVM 
Acc:83.33, Sen: 84.6, 

Spe: 80.0, Auc: 84.4 

[27] - Normalized frequency features SVM 
Acc: not specified,  

Sen: 80.0 

Proposed 

work 
TQWT 

Approximate Entropy, Sample Entropy, Fuzzy Entropy, Slope Entropy, 

Average Shannon Entropy 

XGB, RF, Ensemble 

RF-logistic classifier 

Acc: 87.64, Sen:0.9, 

Spe:0.8636, Auc:0.8818 

 
The proposed TQWT-based method achieved 87.64% 

accuracy, 90.00% sensitivity, and 86.36% specificity. Further 
support for the performance of the method comes from a high 
MCC of 76.21, indicating that the model is capable of properly 
distinguishing between normal and abnormal knee joints. 
Additionally, the Area Under the Curve (AUC) value of 88.18 
shows that the proposed approach is also capable of correctly 
classifying knee joint disorders, indicating its prediagnostic 
ability in clinical contexts. 

This study focused on classifying knee joint disorders using 
VAG signals analyzed using the TQWT method. By using 
advanced entropy-based features along with XGBoost, ERF, 
and RF-logistic classifier, the overall accuracy was 87.64%. 
The results of this method had high sensitivity (90%) and 
specificity (86.36%) for the classification of knee joint 
disorders in the late stage of the disease using asymptomatic 
changes in the early stage. The integration of the RFE 
procedure to select the most expressive features for 
classification results in a gain in overall performance. 

IV. CONCLUSION 

This study presented a novel approach to process and 
categorize VAG signals acquired from knee joints to diagnose 
knee joint diseases at an early stage. The designed method 
focuses on the shift of VAG signals utilizing TQWT with 
entropy-based measures for the decomposition of signals. 
Comparing and contrasting various entropy measures including 
approximate entropy, sample entropy, fuzzy entropy, slope, and 
average entropies can determine some of the most efficient 
parameters for signal illustrations at various scientific measures 
of decomposition (J) and Q-factor levels. Based on RFE, the 
most important features that can distinguish between normal 
and abnormal knee conditions were chosen and then classified 
using ensemble RF, XGBoost, and LR classifiers. The 
proposed method attained an accuracy of 87.64%, a sensitivity 
of 90%, a specificity of 86.36%, and an AUC-ROC of 0.88 
using sample entropy. 

 

 

ACKNOWLEDGEMENT 

This research work is supported by the Science and 
Engineering Research Board (SERB) Govt. of India under 
Grant no. CRG/2021/004501. 

REFERENCES 

[1] A. Cui, H. Li, D. Wang, J. Zhong, Y. Chen, and H. Lu, "Global, regional 
prevalence, incidence and risk factors of knee osteoarthritis in 
population-based studies," eClinicalMedicine, vol. 29, Dec. 2020, 
https://doi.org/10.1016/j.eclinm.2020.100587. 

[2] V. P. Leifer, J. N. Katz, and E. Losina, "The burden of OA-health 
services and economics," Osteoarthritis and Cartilage, vol. 30, no. 1, 
pp. 10–16, Jan. 2022, https://doi.org/10.1016/j.joca.2021.05.007. 

[3] B. Antony, G. Jones, X. Jin, and C. Ding, "Do early life factors affect the 
development of knee osteoarthritis in later life: a narrative review," 
Arthritis Research & Therapy, vol. 18, no. 1, Sep. 2016, Art. no. 202, 
https://doi.org/10.1186/s13075-016-1104-0. 

[4] D. T. Felson, "Arthroscopy as a treatment for knee osteoarthritis," Best 
Practice & Research Clinical Rheumatology, vol. 24, no. 1, pp. 47–50, 
Feb. 2010, https://doi.org/10.1016/j.berh.2009.08.002. 

[5] P. M. M. Cashman, R. I. Kitney, M. A. Gariba, and M. E. Carter, 
"Automated techniques for visualization and mapping of articular 
cartilage in MR images of the osteoarthritic knee: a base technique for 
the assessment of microdamage and submicro damage," IEEE 
Transactions on NanoBioscience, vol. 1, no. 1, pp. 42–51, Mar. 2002, 
https://doi.org/10.1109/TNB.2002.806916. 

[6] R. M. Rangayyan, S. Krishnan, G. D. Bell, C. B. Frank, and K. O. Ladly, 
"Parametric representation and screening of knee joint 
vibroarthrographic signals," IEEE Transactions on Biomedical 
Engineering, vol. 44, no. 11, pp. 1068–1074, Aug. 1997, 
https://doi.org/10.1109/10.641334. 

[7] M. M. Shidore, S. S. Athreya, S. Deshpande, and R. Jalnekar, 
"Screening of knee-joint vibroarthrographic signals using time and 
spectral domain features," Biomedical Signal Processing and Control, 
vol. 68, Jul. 2021, Art. no. 102808, https://doi.org/10.1016/j.bspc.2021. 
102808. 

[8] S. Nalband, A. Prince, and A. Agrawal, "Entropy-based feature 
extraction and classification of vibroarthographic signal using complete 
ensemble empirical mode decomposition with adaptive noise," IET 
Science, Measurement & Technology, vol. 12, no. 3, pp. 350–359, 2018, 
https://doi.org/10.1049/iet-smt.2017.0284. 

[9] Y. Wu et al., "Quantification of knee vibroarthrographic signal 
irregularity associated with patellofemoral joint cartilage pathology 
based on entropy and envelope amplitude measures," Computer Methods 
and Programs in Biomedicine, vol. 130, pp. 1–12, Jul. 2016, 
https://doi.org/10.1016/j.cmpb.2016.03.021. 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19953-19958 19958  
 

www.etasr.com Basavaraju et al.: Vibroarthrographic Signal Classification for Knee Joint Disorder Detection using … 

 

[10] Y. Wu, Knee Joint Vibroarthrographic Signal Processing and Analysis. 
Springer, 2015. 

[11] E. Mascarenhas, S. Nalband, A. R. J. Fredo, and A. A. Prince, "Analysis 
and Classification of Vibroarthrographic Signals using Tuneable ‘Q’ 
Wavelet Transform," in 2020 7th International Conference on Signal 
Processing and Integrated Networks (SPIN), Noida, India, Feb. 2020, 
pp. 65–70, https://doi.org/10.1109/SPIN48934.2020.9071335. 

[12] J. Zala, M. Sharma, and R. Bhalerao, "Tunable Q - wavelet transform 
based features for automated screening of knee-joint vibroarthrographic 
signals," in 2018 5th International Conference on Signal Processing and 
Integrated Networks (SPIN), Noida, India, Feb. 2018, pp. 348–352, 
https://doi.org/10.1109/SPIN.2018.8474117. 

[13] Y. Athavale and S. Krishnan, "A telehealth system framework for 
assessing knee-joint conditions using vibroarthrographic signals," 
Biomedical Signal Processing and Control, vol. 55, Jan. 2020, Art. no. 
101580, https://doi.org/10.1016/j.bspc.2019.101580. 

[14] M. Sharma, P. Sharma, R. B. Pachori, and V. M. Gadre, "Double 
Density Dual-Tree Complex Wavelet Transform-Based Features for 
Automated Screening of Knee-Joint Vibroarthrographic Signals," in 
Machine Intelligence and Signal Analysis, 2019, pp. 279–290, 
https://doi.org/10.1007/978-981-13-0923-6_24. 

[15] R. E. Andersen, L. Arendt-Nielsen, and P. Madeleine, "Knee joint 
vibroarthrography of asymptomatic subjects during loaded flexion-
extension movements," Medical & Biological Engineering & 
Computing, vol. 56, no. 12, pp. 2301–2312, Dec. 2018, https://doi.org/ 
10.1007/s11517-018-1856-6. 

[16] S. Cai et al., "Detrending knee joint vibration signals with a cascade 
moving average filter," in 2012 Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society, San Diego, CA, 
USA,  Aug. 2012, pp. 4357–4360, https://doi.org/10.1109/EMBC. 
2012.6346931. 

[17] I. W. Selesnick, "Wavelet Transform With Tunable Q-Factor," IEEE 
Transactions on Signal Processing, vol. 59, no. 8, pp. 3560–3575, Dec. 
2011, https://doi.org/10.1109/TSP.2011.2143711. 

[18] S. Krishnan, R. M. Rangayyan, G. D. Bell, C. B. Frank, and K. O. Ladly, 
"Adaptive filtering, modelling and classification of knee joint 
vibroarthrographic signals for non-invasive diagnosis of articular 
cartilage pathology," Medical and Biological Engineering and 
Computing, vol. 35, no. 6, pp. 677–684, Nov. 1997, 
https://doi.org/10.1007/BF02510977. 

[19] S. M. Pincus, "Approximate entropy as a measure of system 
complexity.," Proceedings of the National Academy of Sciences, vol. 88, 
no. 6, pp. 2297–2301, Mar. 1991, https://doi.org/10.1073/pnas.88.6. 
2297. 

[20] M. W. Flood and B. Grimm, "EntropyHub: An open-source toolkit for 
entropic time series analysis," PLOS ONE, vol. 16, no. 11, 2021, Art. no. 
e0259448, https://doi.org/10.1371/journal.pone.0259448. 

[21] W. Chen, Z. Wang, H. Xie, and W. Yu, "Characterization of Surface 
EMG Signal Based on Fuzzy Entropy," IEEE Transactions on Neural 
Systems and Rehabilitation Engineering, vol. 15, no. 2, pp. 266–272, 
Jun. 2007, https://doi.org/10.1109/TNSRE.2007.897025. 

[22] D. Cuesta-Frau, "Slope Entropy: A New Time Series Complexity 
Estimator Based on Both Symbolic Patterns and Amplitude 
Information," Entropy, vol. 21, no. 12, Dec. 2019, Art. no. 1167, 
https://doi.org/10.3390/e21121167. 

[23] C. F. Hsu, S. Y. Wei, H. P. Huang, L. Hsu, S. Chi, and C. K. Peng, 
"Entropy of Entropy: Measurement of Dynamical Complexity for 
Biological Systems," Entropy, vol. 19, no. 10, Oct. 2017, Art. no. 550, 
https://doi.org/10.3390/e19100550. 

[24] A. Amraoui and S. Saadi, "A Novel Approach on Speaker Gender 
Identification and Verification Using DWT First Level Energy and Zero 
Crossing," Engineering, Technology & Applied Science Research, vol. 
12, no. 6, pp. 9570–9578, Dec. 2022, https://doi.org/10.48084/ 
etasr.5269. 

[25] K. S. Basavaraju, T. K. Kumar, K. A. Reddy, and K. R. K. Reddy, 
"Analysis of Vibroarthrographic signals for classification of knee 
disorders using Empirical Wavelet Transform based on Statistical 
measures," in 2023 IEEE International Instrumentation and 
Measurement Technology Conference (I2MTC), Kuala Lumpur, 

Malaysia, May 2023, pp. 1–6, https://doi.org/10.1109/I2MTC53148. 
2023.10175958. 

[26] R. Gong, K. Hase, H. Goto, K. Yoshioka, and S. Ota, "Knee 
osteoarthritis detection based on the combination of empirical mode 
decomposition and wavelet analysis," Journal of Biomechanical Science 
and Engineering, vol. 15, no. 3, 2020, https://doi.org/10.1299/jbse.20-
00017. 

[27] N. Befrui et al., "Vibroarthrography for early detection of knee 
osteoarthritis using normalized frequency features," Medical & 
Biological Engineering & Computing, vol. 56, no. 8, pp. 1499–1514, 
Aug. 2018, https://doi.org/10.1007/s11517-018-1785-4. 

 


