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ABSTRACT 

Emotion recognition from speech is crucial for advancing human-computer interactions, enabling more 

natural and empathetic communication. This study proposes a novel Speech Emotion Recognition (SER) 

framework that integrates Convolutional Neural Networks (CNNs) and transformer-based architectures to 

capture local and contextual speech features. The model demonstrates strong classification performance, 

particularly for prominent emotions such as anger, sadness, and happiness. However, challenges persist in 

detecting less frequent emotions, such as surprise and calm, highlighting areas for improvement. The 

limitations of current datasets, such as limited linguistic diversity, are discussed. The findings underscore 

the model's robustness and identify avenues for future enhancement, such as incorporating more diverse 

datasets and employing techniques such as transfer learning. Future work will explore multimodal 

approaches and real-time implementation on edge devices to improve the system's adaptability in real-

world scenarios. 

Keywords-CNN; deep learning; speech emotion recognition; multilingual; real time 

I. INTRODUCTION  

Emotions play a vital role in communicating between 
humans, which profoundly affects understanding and the 
dynamics of interpersonal interactions. Speech Emotion 
Recognition (SER) has attracted considerable attention in 
recent years due to its promising applications in diverse areas, 
including customer service automation, mental health 
monitoring, human-computer interaction, and multimedia 
content analysis [1]. The implementation of SER has the 
potential to significantly improve user experience and 
satisfaction by allowing deeper understanding and response to 
human emotions, thus fostering more authentic and sensitive 
interactions [2]. The development of accurate and efficient 
SER systems is fraught with various challenges despite their 
potential advantages. Traditional approaches often fail to 
capture the intricate and subtle nature of emotional expressions 
in speech, relying mainly on manually crafted features and 
fundamental machine-learning techniques. The domain has 
experienced a notable evolution due to deep learning, which 
provides powerful techniques to automatically identify and 
extract pertinent features from unprocessed speech data [3-4]. 
Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), especially Long Short-Term Memory 
(LSTM) networks, have shown a lot of promise in finding 
patterns in voice data that are related to space and time. Current 
SER systems require enhancements to operate effectively in 
multilingual contexts, as they are designed mainly for 
monolingual applications. The obstacles encountered by SER 
systems striving for worldwide relevance are considerable, as 
variations in language and culture can profoundly affect the 
articulation and understanding of emotions [5, 6].  

The proposed method incorporates sophisticated data 
augmentation strategies with a multilingual emotional lexicon 
to improve generalization and resilience across various 
languages and cultural settings. The objective is to enhance the 
model's ability to adjust to multiple languages and emotional 
subtleties by applying transfer learning and fine-tuning on 
various speech datasets. Extensive evaluations carried out on 
various benchmark datasets in multiple languages 
demonstrated the effectiveness of the proposed method, 
indicating enhancements in the accuracy of real-time 
information processing and emotion classification. This 
research introduces a method that combines sophisticated deep 
learning approaches with pragmatic aspects for multilingual 
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applications. This represents a significant advance in the 
development of SER. The results provide significant 
implications for subsequent investigations and advancements in 
emotion-aware computing systems. The key contributions of 
this article are as follows: 

 Proposes a deep learning framework for multilingual 
speech emotion recognition that can enhance human-
computer interactions. 

 Addresses linguistic and cultural challenges through 
multilingual data augmentation, making the model 
adaptable to diverse global environments. 

 Utilizes advanced neural architectures, such as transformers 
and CNNs, for improved emotion detection accuracy in 
multilingual settings. 

 It is designed for broad applications, including healthcare, 
virtual assistants, and customer service, promoting emotion-
aware interactions in real-world contexts. 

A. Speech Emotion Recognition (SER) 

Automatic Speech Recognition (ASR) is a fundamental 
emotion indicator for fine-grained SER. In [7], the alignment 
lattice was proposed to enhance the ability to differentiate 
between emotional and indifferent frames. The blank sign was 
used within a transducer inference framework to develop the 
factorized Emotion Neural Transducer (ENT). Using the 
IEMOCAP dataset for utterance-level SER, the ENT models 
showed fewer word errors than the best methods in the field. 
Moreover, investigations on IEMOCAP and ZED, the latest 
speech emotion diarization dataset, have shown the 
effectiveness of fine-grained emotion modeling. In [8], five 
distinct categories of emotions, namely neutrality, happiness, 
anger, sadness, and excitement, were identified. After 
preprocessing the input voice data, the Dialogue Emotion 
Decoder (DED) was used to extract features and a CNN 
classifier was used to determine how the speakers felt about 
what they were saying. In [9], several studies on SER models 
utilizing CNNs were reviewed to identify and recommend the 
most effective methods for extracting emotions from speech 
data. 

Most systems comprise three fundamental components, 
Data, Feature extraction, and Classification (DFC), to identify 
emotions conveyed through speech signals. This enhancement 
is expected to bolster the resilience of CNNs. In [10], the ASR 
output was integrated into the pipeline to facilitate joint 
training in SER. The integration of different ASR outputs and 
fusion methods was tested, particularly a hierarchical co-
attention fusion approach, which significantly improved SER 
performance. This method achieved a weighted accuracy of 
63.4% when analyzing the IEMOCAP corpus. In [11], a 
Speaker Recognition (SR) model was used, which had already 
been trained to perform Frontend Attribute Disentanglement 
(AD). The AD module comprised two stages, Attribution 
Reconstruction (AR) and Normalization (AN), which are 
critical for robust emotion discrimination. A dual space loss 
was proposed to enhance the separation of emotion-relevant 
and emotion-irrelevant spaces, improving the disentanglement 
process. In [12], the effectiveness of various combination 

methods using Multi-Task Learning (MTL) was examined, 
focusing on the significance of the style attribute. A selective 
multi-task learning approach was proposed and applied across 
all emotion categories except the neutral, demonstrating its 
effectiveness on the IEMOCAP database and a call center 
dataset. In [13], a method was presented to eliminate traditional 
feature extraction by directly processing the speech signal. This 
approach combined a spiking neural network (LSM) with the 
source-filter model of speech production. After processing, the 
neural reservoirs compressed the output, which was then 
classified for emotion recognition. 

In [14], an innovative disentanglement network was 
introduced to separate the acoustic and emotional components. 
This method captured more nuanced and distinctive emotional 
signals, enhancing emotion detection accuracy by integrating 
identity-aware and disentanglement modules. In [15], a voice 
and speech emotion recognition system was proposed for 
emergency parking instructions, employing a Support Vector 
Machine (SVM) to classify emotions after extracting the 
feature vector from the voice signal. 

B. Deep Learning Techniques 

In [16], a study on classification tasks for ILSVRC 2015 
was presented. Models with 100 and 1000 layers were 
examined using the CIFAR-10 dataset. This study 
demonstrated a performance enhancement of 28% on the 
COCO object identification dataset through the application of 
exceptionally deep networks. This approach resulted in first-
place achievements in multiple categories of ILSVRC and 
COCO 2015, grounded in deep residual networks. In [17], the 
use of the Structural Similarity Index (SSIM) was proposed, 
showing how accurate it was by comparing it to other popular 
methods using subjective evaluations on a set of JPEG and 
JPEG2000-compressed images. 

In [18], methods for handwriting character recognition were 
investigated, particularly highlighting the superiority of CNNs. 
This study examined the most important parts of document 
recognition systems and developed Graph Transformer 
Networks (GTNs) to improve multimodule systems by training 
them worldwide. In [19], the advantages of the proposed 
architecture in efficiently utilizing computational resources 
were highlighted. Multiscale processing and the Hebbian 
principle affected them, as they increased the network's width 
and depth while maintaining a constant computational cost. In 
[20], end-to-end integration within a single network 
architecture enhanced detection performance, particularly with 
YOLO. This efficiency was demonstrated by processing 
images in real-time at an impressive rate, showcasing its 
superior mean Average Precision (mAP) compared to other 
real-time detectors. In [21] the Region Proposal Network 
(RPN) was introduced to facilitate region proposals at minimal 
costs. In [22], fully convolutional networks were used to learn 
from inputs of different sizes, especially for predictions that are 
dense in space. Classification networks such as AlexNet and 
GoogLeNet were fine-tuned for segmentation tasks, enhancing 
segmentation precision through a skip architecture. In [23], the 
impact of computational steps on pedestrian detection 
performance was demonstrated by a method that outperformed 
other techniques on the MIT pedestrian database. 
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In [24], the Swin transformer was presented, a hierarchical 
vision transformer designed for visual tasks. A shifted 
windowing strategy was introduced, which improved efficiency 
by confining self-attention calculations to local windows while 
maintaining global connections. In [25], NSGA-II was 
introduced, which is a Multi-Objective Evolutionary Algorithm 
(MOEA) that addresses challenges in previous methods. A fast, 
non-dominated sorting algorithm was developed and a 
population diversity and fitness selection operator was 
introduced. 

Several previous investigations have sought to address the 
challenges, with some employing transformer-based models to 
enhance contextual comprehension. However, the majority of 
current research emphasizes monolingual datasets or fails to 
incorporate a cohesive integration of local and global speech 
features, restricting their applicability in practical multilingual 
contexts. Furthermore, a significant number of SER models 
lack optimization for real-time applications, an essential 
requirement for interactive systems. 

The proposed method effectively addresses existing gaps by 
integrating CNNs for local feature extraction alongside a 
transformer-based encoder, which is adept at capturing global 
contextual information. This hybrid architecture facilitates 
enhanced emotion classification, particularly in multilingual 
and real-time contexts. The implementation of multilingual 
data augmentation significantly improves model generalization 
across various languages, a characteristic that is frequently 
absent in current methods. Furthermore, this study examines 
the practical challenges associated with real-time deployment, 
highlighting the importance of optimizing the model for edge 
devices and real-world applications. 

II. METHODOLOGY 

This methodology outlines a systematic approach to 
employing deep learning techniques tailored for multilingual 
contexts in real-time SER. Figure 1 shows the process involved 
in the real-time SER analysis using a deep learning framework. 

 

Fig. 1.  Process of real-time multilingual SER. 

A. Data Collection and Preprocessing 

Utilizing diverse speech datasets that encompass various 
languages, emotional states, and speaker demographics is 
crucial to developing an effective SER system. This diversity 
ensures robust model generalization across various situations 
and user demographics. This research utilizes several 
significant datasets. The Ryerson Audio-Visual Database of 
Emotional Speech and Song (RAVDESS) [26, 27], comprises a 
collection of recordings that encapsulate eight distinct emotions 
in English, including anger, disgust, fear, happiness, neutrality, 
sadness, surprise, and calmness, represented through both 
speech and musical formats. The CREMA-D dataset [27] 
contains vocal emotional expressions under six labels: happy, 
sad, anger, fear, disgust, and neutral. 

The Surrey Audio-Visual Expressed Emotion (SAVEE) 
dataset [28] consists of a significant compilation of expressive 
speech and facial expressions, meticulously curated to support 
SER research. This dataset consists of audio recordings 
featuring actors conveying seven unique emotions: anger, 
disgust, fear, happiness, sorrow, surprise, and neutral, and 
enables a thorough examination of emotion analysis through 
the integration of audio and video recordings. The variety of 
expressions used to communicate different emotions offers 
significant data that can be used for the training and evaluation 
of emotion detection systems. The SAVEE dataset serves as a 
significant resource for the advancement of emotion detection 
models, characterized by its balanced representation of various 
emotions and speaker demographics. The Toronto Emotional 
Speech Set (TESS) [29] represents a comprehensive dataset 
that holds significant potential for advancing research in the 
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SER domain. The compilation consists of audio recordings of 
female performers delivering emotionally impactful speeches 
in English. The dataset encompasses a range of emotional 
states, including anger, disgust, fear, happiness, sadness, 
surprise, and neutrality. 

Every emotion is defined by a range of utterances, ensuring 
a thorough array of emotional expressions and speech patterns. 
TESS is a valuable asset for training and evaluating SER 
systems, due to its superior quality recordings and well-defined 
emotional labels. Advancing models to accurately detect and 
interpret emotions conveyed through speech is paramount. It is 
essential to implement specific preprocessing procedures to 
ensure that the input data are pristine, reliable, and appropriate 
for model training. Noise reduction algorithms were employed 
to improve the clarity of speech signals and reduce the impact 
of background noise. Segmentation entails partitioning speech 
recordings into smaller, more manageable units, guided by 
natural boundaries such as utterances or emotive words, 
enabling a more focused analysis. Normalization is used to 
standardize audio signals, achieve consistency in loudness and 
pitch levels, and reduce the variability introduced by recording 
conditions. Feature extraction involves obtaining pertinent 
acoustic characteristics, such as pitch, energy, and Mel-
Frequency Cepstral Coefficients (MFCCs). The features 
function as inputs for the deep learning models and play a 
crucial role in capturing the fundamental characteristics of the 
spoken signal. These preprocessing procedures aimed at 
enhancing the development of a high-performing SER system 
by optimizing data for efficient training and evaluation. 

B. Model Architecture and Data Augmentation 

The proposed approach integrates a transformer-based 
architecture with CNNs to effectively capture both local and 
contextual features inherent in voice signals, seeking to 
improve the strength and precision of SER. To enhance the 
reliability and utility of the model, a variety of data 
augmentation techniques were used, which simulate diverse 
recording environments and speaker variations. Among these 
methods, noise injection stands out as a key approach, where 
various background noise levels are integrated into speech 
recordings to simulate various environmental conditions, from 
bustling streets to tranquil chambers. This method allows the 
model to withstand real-world conditions where background 
noise may hinder speech clarity and recognition precision. 
Pitch shifting represents a distinctive modification 
implemented to address variations in speaker characteristics, 
including age, gender, and vocal tone, by altering the pitch 
within speech recordings. The implementation of pitch shifting 
enhances the model's ability to adapt to various voice profiles, 
improving its accuracy in emotion recognition across a wide 
range of speakers. 

Speed variation involves modifying the speed of speech 
recordings, facilitating the simulation of various speaking rates 
and, consequently, producing a more diverse training dataset. 
This approach improves the model's ability to identify 
emotions in speech delivered at different tempos, enhancing its 
applicability across various speech patterns and speeds. 
Incorporating these techniques into a dataset results in an 
expanded training set, enhancing the model's applicability 

across a broader spectrum of real-world scenarios and speaker 
variations. A CNN-based model examines the raw voice signal 
during the feature extraction phase. This module integrates 
several convolutional layers to extract prosody and spectral 
patterns, which are essential local auditory variables to evaluate 
emotional states. CNNs exhibit a significant capacity to 
recognize intricate patterns in the speech stream, encompassing 
pitch, tone, and intensity variations. These characteristics offer 
a detailed depiction of the speech signal, establishing a basis 
for further examination in the following phases. 

The system employs a transformer-based encoder to collect 
global contextual information and interpret the emotional 
subtleties present in the speech. The transformer encoder holds 
the features derived from the CNN to examine the relationships 
between various speed training, employing an attention 
mechanism to enhance contextual understanding. This method 
enables the model to discern the relationships between different 
speech signal components, thus enhancing comprehension of 
the emotional context. Implementing a transformer-based 
encoder significantly improves the model's capacity to 
articulate and distinguish between diverse linguistic and 
emotional contexts by emphasizing these contextual 
dependencies. 

C. Training, Evaluation, and Performance Metrics 

The model training phase utilizes a systematic method to 
ensure generalization and optimize performance. The method 
for emotion classification employs cross-entropy loss as the 
main objective function. This approach accurately quantifies 
the difference between the observed and anticipated emotional 
classifications. Additional regularization strategies, including 
dropout and weight decay, are integrated during the training 
phase to improve model robustness and reduce the likelihood 
of overfitting. In the dataset allocation process, 80% is 
allocated for the training phase, while the remaining 20% is 
reserved for validation. This division facilitates practical 
hyperparameter tuning and model assessment during the 
training phase. Random and grid search techniques were 
employed to identify the optimal set of hyperparameters, 
ensuring that the model performs effectively across various 
conditions. 

D. Dataset Limitations  

The datasets utilized, RAVDESS, CREMA-D, SAVEE, 
and TESS, are well-established resources within the SER 
domain. However, each of them exhibits specific limitations 
that influence the generalizability of models developed using 
them. The RAVDESS dataset exhibits a variety of emotional 
expressions but is predominantly composed of English-
language recordings, which constrains the model's capacity to 
generalize to other languages. In a similar vein, the CREMA-D 
dataset presents a diverse array of emotions and speakers but, 
again, it is limited to English, which constrains the model's 
utility in multilingual scenarios. The SAVEE dataset offers 
significant resources for the study of emotion detection, 
integrating both audio and visual elements. However, similar to 
the earlier datasets, it exhibits a deficiency in linguistic 
diversity, as all recordings are exclusively in English. 
Furthermore, the restricted number of speakers in certain 
datasets may lead to bias during both the training and testing 
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phases, ultimately diminishing the robustness of the models 
when applied to more varied real-world populations. The TESS 
dataset provides high-quality emotional speech recordings, but 
its exclusive use of female speakers presents limitations that 
may hinder the model's capacity to generalize across various 
genders. The focus of the dataset on a limited spectrum of 
speakers could potentially constrain the model's efficacy when 
it encounters a broader array of voices in practical scenarios. 

III. RESULTS AND DISCUSSION 

Figure 2 illustrates the dataset's distribution of emotions, 
providing a comprehensive understanding of the model's 
performance. The figure displays the frequency of each 
emotional category that the proposed SER model predicted, 
presenting a clear and concise representation of the frequency 
of various emotions identified by the model, including anger, 
happiness, sorrow, fear, surprise, disgust, and neutrality. 

 

 
Fig. 2.  Quantification of affective states. 

 

Fig. 3.  Waveform representation for audio exhibiting the emotion of fear. 

 
Fig. 4.  Spectrogram analysis of audio exhibiting the fear emotion. 

Figure 3 shows a visual representation of the amplitude of a 
signal communicated over time corresponding to audio samples 
associated with fear emotion. This graph depicts the variations 
in the audio waveform associated with fearful events, 
highlighting the unique rhythm, pitch, and intensity 
fluctuations related to this emotional state. To make the model 
better at classifying emotions, it is important to look at the 
unique sound features of terrified speech, such as increased 
pitch variation and dynamic amplitude fluctuations, using wave 
plot analysis. This visual assistance enhances pattern 
recognition and assesses the effectiveness of the proposed SER 
model in capturing and distinguishing emotional cues related to 
fear. Figure 4 shows the frequency spectrum of the signal 
emitted over time for audio samples that convey fear emotion. 
This graphic analyzes the audio's frequency content alterations, 
emphasizing trends such as increased frequency modulation 
sharpness and heightened energy within particular frequency 
ranges. The spectrogram illustrates the auditory features of 
terrified speech, characterized by increased intensity variations 
and more pronounced and erratic spectral shifts. Examining 
these patterns can reveal more about how fear changes the way 
people talk, which will help the model better recognize and 
label fear-related emotions in a wide range of audio samples. 

The wave plot in Figure 5 illustrates the temporal variations 
in the speech signal amplitude for audio samples classified as 
melancholy. Compared to other emotional expressions, the 
observed amplitude patterns typically exhibit a smoother and 
less varied profile, indicative of the diminished intensity and 
subdued characteristics associated with sad speech. The bars 
illustrate the model's capacity to recognize and differentiate 
among various emotional states, each representing the total 
number of instances categorized into the specific emotion.  

 

 
Fig. 5.  Wave plot corresponding to audio characterized by a sad emotional 

expression. 

This investigation highlights the identification of both the 
advantages and disadvantages associated with the model. For 
instance, a higher frequency of occurrence of any particular 
emotion within the model's output might imply an improved 
capacity to recognize particular emotional states. Reduced 
frequencies for alternative emotions can suggest specific 
domains where the model requires additional training or data 
enhancement. The distribution of emotions allows evaluation 
of the model's equity and balanced predictions across different 
emotional categories. These data are essential for evaluating 
the model's performance in real-world scenarios where accurate 
and unbiased emotion recognition is necessary. Gradual 
alterations in the waveform and the reduction in intensity 
indicate a somber emotional tone. To ensure the precise 
recognition and classification of sad speech within the SER 
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system, it is essential to define its acoustic characteristics. This 
can be accomplished by a detailed analysis of the wave plot.  

The spectrogram of audio recordings in Figure 6 illustrating 
depression reveals the frequency content and its temporal 
progression. Compared to other emotional states, this 
representation typically exhibits a more subdued and stable 
frequency spectrum characterized by reduced frequency 
modulation. The subdued and more uniform characteristics of 
melancholy speech are evident in the reduced intensity and 
nuanced spectral variations. Studying these spectral patterns 
provides details on how depression changes the way people 
sound when they speak. This makes it easier to find and label 
people who are depressed in a variety of audio samples. 

 

 
Fig. 6.  Spectrogram corresponding to audio characterized by a sad 

emotional expression. 

The audio samples associated with happiness exhibit 
distinct waveform characteristics and notable dynamic 
amplitude fluctuations within their wave plots, as shown in 
Figure 7. The energy and enthusiasm in speech indicate 
happiness, often observable in the associated plot through 
notable fluctuations and increased peaks.  

 

 
Fig. 7.  Waveform representation for audio exhibiting a happy emotional 

state. 

Distinct amplitude and rhythmic patterns are associated 
with happiness's animated and expressive qualities. Examining 
these amplitude shifts, valuable insights can be derived 
concerning the impact of positive emotional states on speech 
signals, which can improve the SER system's capacity to 
accurately identify emotions. The frequency patterns identified 
in the spectrogram for the audio samples indicative of 
happiness demonstrate a vibrant and dynamic quality, as shown 
in Figure 8. 

 

 
Fig. 8.  Analysis of spectrogram representations for audio exhibiting happy 

emotional states. 

The features of joyful speech generally encompass notable 
frequency modulation and vibrant vocal expressions. Joyful 
emotions display unique intonation patterns and rhythmic 
variations in frequency bands, frequently displaying brighter 
and more diverse spectral characteristics. By examining these 
patterns, a more profound understanding of the connection 
between happiness and vocal expressiveness can be achieved, 
thus improving the ability of speech analysis to identify 
emotional states. Figure 9 presents the accuracy and loss curves 
for training and testing the proposed model throughout the 
epochs. The training process is illustrated through a visual 
representation of the model's performance. Accuracy curves 
offer valuable insights into the model's predictive performance 
about correct labels. The accuracy observed during testing 
reflects the model's capacity to generalize to data it has not 
encountered before, while training accuracy generally 
demonstrates enhancement as the model gains experience. The 
loss curves depict the error rates recorded throughout the 
training and testing phases, where a decrease in loss signifies 
an enhancement in model performance. Evaluating these 
curves is crucial for comprehending the model's convergence, 
identifying possible overfitting, and assessing the overall 
efficacy of the learning process. 

 

 
Fig. 9.  Evaluation Metrics: Training and testing accuracy and loss. 
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The model's performance across different emotional 
categories was evaluated through a comprehensive analysis 
utilizing the confusion matrix illustrated in Figure 10. The 
matrix presents a detailed distribution of emotions, 
documenting 999 occurrences of Sadness, 999 instances of 
Calm, 122 instances of Anger, 701 instances of Disgust, 738 
instances of Fear, 898 instances of Happy, 724 instances of 
Neutral, 999 instances of Sadness, and 392 instances of 
Surprise. The matrix comprises cells denoting the predicted 
instances corresponding to each emotion label. The model 
successfully predicted 967 instances of rage, whereas it only 
achieved 122 predictions of calm feelings. The analysis of the 
999 and 898 cases shows the model's notable effectiveness in 
distinguishing between happiness and melancholy. The 
confusion matrix offers essential insights regarding the model's 
accuracy and potential biases within emotional categories, 
highlighting its strengths and areas that require enhancement in 
its capacity to distinguish between different emotions. 

 

 

Fig. 10.  Confusion matrix for analysis of various emotional states. 

A. Challenges and Limitations  

Due to dataset imbalance, the proposed model encountered 
challenges in identifying less prevalent emotions, such as 
surprise and calm. This imbalance skews the model's 
performance toward more frequently represented emotions, 
including anger and happiness. This constrains its ability to 
generalize across less common emotional expressions. 
Furthermore, the dependence on primarily English-language 
datasets limits the model's performance in multilingual 
environments, where it faces challenges in generalizing across 
various languages, accents, and dialects, even with attempts to 
improve diversity through data augmentation methods. 

The deployment of models in real-time on-edge devices 
introduces significant challenges, necessitating additional 
optimization to address resource limitations such as 
computational power and latency encountered in practical 
applications. Furthermore, focusing solely on audio data 

constrains the model's efficacy, as incorporating multimodal 
input, such as visual or textual information, can significantly 
improve emotion recognition. Mitigating these limitations in 
subsequent research will enhance the system's adaptability and 
overall efficacy across various practical applications. 

B. Future Works 

Critical areas for enhancement involve integrating few-shot 
learning and transfer learning to improve the model's ability to 
identify rare emotions with limited data. Few-shot learning can 
enhance generalization from a limited number of examples of 
rare emotions. In contrast, transfer learning could utilize pre-
trained models from various domains, boosting performance in 
multilingual and low-resource environments. Investigating 
multimodal approaches, including integrating visual or textual 
information with audio, can enhance emotion detection by 
effectively capturing intricate emotional cues that may not be 
easily discernible through audio alone. Implementing real-time 
systems on edge devices presents significant challenges, 
primarily due to inherent resource limitations. It is essential to 
implement optimization techniques, such as model 
compression, pruning, and quantization, to address this issue, 
as these methods aim to decrease latency and improve 
computational efficiency while maintaining accuracy. 

IV. CONCLUSION 

The proposed SER system incorporates transformer-based 
architecture with a CNN. The findings suggest that the model 
exhibits significant effectiveness in emotion classification, 
successfully combining both the local and contextual aspects of 
speech. The confusion matrix indicated a high proficiency in 
emotion recognition, particularly for anger, sadness, and 
happiness. However, the model exhibited difficulties in 
recognizing less common emotions, such as surprise and 
calmness, highlighting particular areas that require additional 
improvement. The model's convergence and generalization 
capacity were evaluated by analyzing the training and testing 
accuracy and loss curves. Wave plots and spectrograms yielded 
significant insight into the auditory characteristics associated 
with various emotions. To improve the model's resilience in 
various contexts, future studies should expand the dataset to 
include a wider array of languages and emotional expressions. 

Implementing sophisticated methods such as few-shot 
learning or transfer learning can significantly improve the 
model's capacity to identify rare emotional states with limited 
data input. Investigating multimodal approaches that combine 
auditory and textual signals can improve emotion recognition 
accuracy and offer a more profound insight into emotional 
states. Implementing real-time solutions and optimization for 
diverse edge devices can ensure that applications function 
effectively within interactive systems and real-world 
environments. 
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