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ABSTRACT 

Tomato is a common vegetable crop extensively cultivated in the farming lands in India. The hot climate of 

India is perfect for its development, but particular weather conditions along with many other aspects affect 

the growing of tomato plants. Apart from these natural disasters and weather conditions, plant diseases 

consist a major issue in crop production. Precisely classifying leaf and fruit diseases in tomato plants is a 

vital step toward computerizing processes. Traditional disease detection models for tomato crops often fall 

short in predictability. To address this, Machine Learning (ML) and Deep Learning (DL) models have 

been developed, presenting advanced classification capabilities and the ability to manage the vast 

variability in agricultural data that conventional computer vision models struggle with. This work presents 

an Integration of DL with Fox Optimization Algorithm (FOA) for the Recognition and Classification of 

Tomato Leaf and Fruit Diseases (IDLFOA-DCTLFD). The major objective of the proposed IDLFOA-

DCTLFD model is to enhance the detection and classification outcomes of tomato leaf and fruit diseases. 

At the initial stage, the Median Filter (MF) model is used for pre-processing and the Efficient Channel 

Attention-SqueezeNet (ECA-SqueezeNet) model is employed for feature extraction. For the 

hyperparameter tuning process, the proposed IDLFOA-DCTLFD technique implements the FOA. Finally, 

a Wasserstein Generative Adversarial Network (WGAN) is utilized for the detection of tomato leaf and 

fruit diseases. The IDLFOA-DCTLFD method is experimentally examined in a tomato leaf and fruit 

dataset. The experimental validation of the IDLFOA-DCTLFD methodology portrayed a superior 

accuracy value of 98.02%, surpassing the existing techniques. 

Keywords-DL; FOA; tomato disease detection; feature extraction; image processing 

I. INTRODUCTION  

Tomato is a rich food plant, which is cultivated extensively 
[1]. It is the greatest nutrient-rich crop in the world, and its 
production and cultivation have a major influence on the 
farming economy [2], while its demand is rising [3]. Based on 
statistics, small farmers harvest more than 80% of the farming 
output due to pests and diseases, and nearly 50% of the initially 
planted cropt. In farming, plant diseases are a primary 
miscreant [4]. Various tomato diseases can be found on fruits, 
leaves, roots, and stems of the plant [5]. Frequent plant diseases 
are fungi, nematodes, bacteria, and viruses that are the causes 
of spots in stems or leaves, black or brown lesions, yellowing 

of lower leaves, black spots, and final death of low leaves. 
Each disease has various selected prevention measures [6]. 

The recognition and classification of tomato leaf and fruit 
diseases over open-eye observation with agricultural specialists 
is a challenging task and less precise, but it is commonly used 
in restricted regions [7]. It is vital to address the plant disease 
issues with technological solutions and several of those have 
been proposed [8]. The current development in computing 
technology gave birth to ML and AI models that help in the 
automated detection of tomato leaves and fruit disease utilizing 
computerized methods for observing tomato crops [9]. ML-
based methods have advanced disease recognition, leveraging 
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digital image processing for classifying leaf and fruit diseases. 
DL with Neural Networks (NN) improves accuracy through 
effectual feature extraction. Given the significant role of 
tomatoes, enhancing disease detection and classification is 
crucial for sustainable farming amidst the rising demand [10]. 

Authors in [11] used YOLOV8s as the fundamental 
structure. The Ultralytics Hub offers optimum settings for 
training YOLOV5 and YOLOV8 methods. Authors in [12] 
propose TomatoDet by integrating a Swin-DDETR’s self-
attention mechanism. Afterward, the dynamic activation 
function Meta-ACON in the backbone network intensifies the 
system’s capability to illustrate relevant disease features. 
Authors in [13] proposed a Convolutional Neural Network 
(CNN) model in different regions. The integration of image 
processing and computer vision with DL models caused 
prominent progressions in these regions. Authors in [14] 
present a technique based on the enhanced YOLOv7. In [15], a 
new technique by utilizing the Yolov8 structure in DL models 
is proposed. Authors in [16] studied the performances of 
InceptionResNetV2 and Xception. Authors in [17] propose a 
ResNet-50-based DL classification. Authors in [18] present 
seven Bayesian optimized hybrid models by integrating a 
customized CNN with conventional ML techniques. In [19], a 
DL approach by utilizing CNNs, incorporating multiple feature 
extraction methods and Grey Wolf Optimization (GWO) is 
introduced for the enhanced accuracy across various plant 
leaves. In [20], a multi-objective hybrid fruit fly optimization 
model that depends on simulated annealing optimized SVM is 
presented. Authors in [21] present an automated technique by 
using a two-stream DL approach with ML classifiers. Authors 
in [22] utilize a DL method by integrating a range of classifiers, 
including Random Forest (RF), Inception V3, DenseNet, 
ResNet50, Xception, and MobileNet. In [23], an optimized 
CNN methodology is introduced. 

The existing studies have limited adaptability to diverse 
datasets, and complicate computations, while existing models 
struggle with small object detection and generalization, 
underscoring the requirement for more robust models to 
enhance classification accuracy. 

This work presents the Integration of DL with Fox 
Optimization Algorithm for Recognition and Classification of 
Tomato Leaf and Fruit Diseases (IDLFOA-DCTLFD) model. 
The major objective of the IDLFOA-DCTLFD method is to 
enhance the detection and classification outcomes of tomato 
leaf and fruit diseases. The major contributions of the 
IDLFOA-DCTLFD method are: 

 The MF model is used for efficient noise reduction in input 
images, resulting in enhanced data quality that improves the 
accuracy of subsequent analyses and enhances the 
reliability of the overall diagnostic process. 

 The ECA-SqueezeNet method is utilized for extracting 
features from images, improving the sensitivity of the 
model to crucial patterns. 

 The FOA is implemented for fine-tuning model parameters, 
contributing to optimal performance and significantly 
enhancing classification accuracy. 

 The WGAN is used for the precise detection of tomato leaf 
and fruit diseases, contributing to a reliable diagnostic tool 
that enhances the accuracy and efficiency of disease 
detection. 

 The IDLFOA-DCTLFD model integrates state-of-the-art 
techniques in a cohesive framework, incorporating 
preprocessing, feature extraction, optimization, and 
classification, which improves the overall effectualness in 
detecting diseases. 

II. THE PROPOSED METHODOLOGY 

In this article, the IDLFOA-DCTLFD methodology is 
proposed. The main objective of the IDLFOA-DCTLFD 
methodology is to enhance the detection outcomes of tomato 
leaf and fruit diseases. To accomplish this, the IDLFOA-
DCTLFD model involves image preprocessing, feature 
extraction, FOA-based parameter tuning, and the WGAN-
based classification process. Figure 1 represents the workflow 
of the IDLFOA-DCTLFD method.  

 

 

Fig. 1.  Workflow of the IDLFOA-DCTLFD technique. 

A. MF-based Preprocessing 

At first, the proposed IDLFOA-DCTLFD model utilizes 
MF for pre-processing [24, 25]. This model is chosen due to its 
efficiency in removing noise while conserving edges, making it 
superior to methods like mean filtering, which can blur 
significant details in images. The MF substitutes every pixel’s 
rate within the image through the median grayscale rate from 
the adjacent pixels. F��ℎ, �� = 	
�����∈���{���, ��}    (1) 

Let ��,� signify a coordinating set controlled by rectangular 

sub‐image positioned at a particular point �ℎ, ��. The median 
of images is calculated by using a new rate of pixels. MFs are 
exceptional at eliminating particular kinds of noise, mainly 
random noise while presenting low blurring combined into 
linear filters of related dimensions. They are important and 
valued for their noise-reducing abilities. 
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B. ECA-SqueezeNet based Feature Extraction  

At this stage, the ECA-SqueezeNet model extracts the 
features [26]. This method is chosen for its lightweight design 
and effectual channel attention, optimizing feature extraction 
with minimal computational load. The SqueezeNet network 
can detect images with high precision, but its classification 
accuracy is low. This network processes insulator defect 
detection in two phases: detection and localization, ensuring 
accurate identification while reducing classification issues. The 
ECA attention mechanism enhances accuracy by redistributing 
attention on significant features without altering 
dimensionality, enhancing localization while keeping low 
complexity. The ECA attention mechanism is a lightweight, 
plug-and-play module that compresses input feature maps into 
channel descriptors using global average pooling. It uses 1D 
convolution to assess channel correlation, utilizing the sigmoid 
function to recalibrate important channels while addressing 
dimensionality reduction drawbacks. The ECA attention 
mechanism utilizes the band matrix. ��  for learning channel 
attention: �� =  

���,� … ��,� 0 0 … … 00 �!,! … �!,�"� 0 … … 0⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮0 … 0 0 … �%,%&�"� … �%,%' (2)  

The parameter count concerned in the band matrix ��  is ( ∗ *.  It is significant for avoiding complete individuality 
between several groups. In (2), the weight �, of -,  is calculated 
only by considering the interaction between (  neighboring 
objects, �, = ./∑ �,1�12� y,45, y,4  ∈ 6,�     (3)  

where . signifies the sigmoid function. 6,� characterizes the set 

of ( neighboring channels of y,4. To compute the weight �, , it 
is more efficient to allow every channel to share similar 
learning parameters. Hence, the optimization of (3) is: �, = ./∑ �1�12� y,45 , y,4  ∈ 6,�        (4) 

Such an approach is easily and conveniently applied over 
1D convolution using a kernel dimension of (: � = ./*18��-�5    (5) 

C. FOA-based Hyperparameter Tuning  

FOA is employed for the hyperparameter tuning process 
[27]. This model is chosen due to its effective exploration of 
the search space and capability to converge quickly, 
outperforming traditional models in optimization efficiency. 
This approach replicates the hunting strategies of foxes in 
snowy conditions, integrating stages like aimless wandering, 
prey detection through ultrasonic waves, and precise navigation 
based on sound wave time differences to effectually reach the 
optimal position. In the FOX optimizer, the population matrix 9  computes the fitness of optimal positions, with a random 
variable balancing exploration and exploitation. If a random 
number exceeds 0.18, the fox seeks a new position based on 
prey distance and jump height. 

8�:;<=>?@ = AB&< ⋅ D�	
E=>?@     (6) 

where 8�:;<=>?@  denotes the sound propagation distance, while �;  depicts the current iteration, AB&<  represents sound speed, 

and D�	
E=>?@ comprises of random values in [0, 1]  showing 

the propagation time. The AB&< value is determined based on 
these parameters as shown in (7): AB&< = HIEJKLE,J,LM?@>,NIO=P?@      (7) 

where Q
:;RS:�;�S�,J  characterizes the current finest fox 

location. D�	
E=>?@  denotes the sound propagation time 

amongst prey and foxes. The distance 8�:;&KLT=KUIV?@  among 

the fox and its victim is half the sound propagation distance. 8�:;&KLT=KUIV?@ = 0.58�:;&<=>?@    (8) 

The fox will inspect for an original location to pounce and 
jump to catch its prey afterwards measuring the distance 
concerning it and the prey. The subsequent equation defines the 
jumping procedure, which is a parabolic motion: XY	B,J = �! Z;!    (9) 

In the equation, XY	B,J  symbolizes the leaping height of 
the fox. This parameter ; refers to the average time needed for 
the propagation of sound. The following equations are utilized 
to upgrade the fox’s location: 9�,J"�� = 8�:;&[LT=KUIV?@ ⋅ XY	B,J ⋅ \�     (10) 9�,J"�� = 8�:;&[LT=KUIV?@ ⋅ XY	B,J ⋅ \!   (11) 

where \� and \! are the updated position parameters based on 
the success of the fox's leaps, with \� ∈ [0, 0.18],  and \! ∈[0.18, 1] . A random variable B  in [0, 1]  dictates position 
updates: if B > 0.18, the fox's position is updated using (10), 
else it is computed with (11). During the random walking 
phase, the fox is guided toward previously discovered optimal 
positions through a short-time controlled walk: 

;; = E_N�>,NI=O=P?@�,,;��a , b��D = min�;;�   (12) 

 = 2 g ,J&�hij?@k     (13) 

where ;; depicts the time-averaged value for every row, MinT 
is the shortest average time, and 8 indicates the problem size. 
The dynamic variable relates to iterations, with Max,J 
portraying the maximum iterations. To enhance the FOX 
model's global search capability, both b��D and this variable 
are used to update the optimal fox location. 9�,J"�� = Q
:;9,J ⋅ o���1, 8� ⋅ b��D ⋅     (14) 

The fitness selection is a major feature manipulating the 
performance of the FOA. This hyperparameter process of 
selection includes the solution encoder method to estimate the 
effectiveness of the candidate performances. During this 
section, the FOA considers precision as the key principle for 
designing the fitness function that is expressed below: p�;�
:: =  max �R�  
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R = >K>K"[K   
where TP and FP signify the true and false positive values. 

D. WGAN-based Classification  

The WGAN method is utilized for the detection of tomato 
plant diseases [28]. WGAN is chosen for its stability and 
ability to generate high-quality outputs, improving 
classification accuracy in complex image datasets. WGAN uses 
KL or JS divergence for optimizer networks, but KL can cause 
imbalanced training due to infinite divergence, while JS 
divergence provides consistent results. q�B� − q�B, s� =− t B �u�logB�u��u − �− t B �u�log s�u��u�  (15) 

where s  and  B  represent the predicted and real label 
distributions, with q�B�  being the entropy and q�B, s�  the 
cross-entropy. JS divergence measures the variance between 
the two distributions, addressing the asymmetrical issues of KL 
divergence. The JS divergence description is calculated by: yA8�B||s� =  �! 8�B||	� + �! 8�s||	�, 	 = �! �B + s�   (16) 

KL and JS divergences inadequately compare real and 
synthetic data in GANs. Wasserstein distance enhances training 
stability by accurately measuring distribution distances, even 
when they don't overlap: ��R�, R!� = | ∼ ∏ �B��B!����,��∼�[‖T&V||]�  (17) 

where | ∼ �,M��B�, B!�  represents a collection of the joint 
probability | of each potential edge distribution joined with the 
distributions of R�  and R!  and ��R�, R!�  stands for the low 

limits of the predictable value of the sample ��T,V�∼�[‖u − -||]. 
The loss functions of the generator and discriminator are: y��� = ��∼K����/����5� − �T∼K�[���u�]   (18) y�8� = −��∼K����/����5�   (19) 

To guarantee that the data made in the generator are 
dispersed in the discriminator gradient direction, the 1‐
Lipschitz state is presented to stop the gradient from vanishing 
throughout training: �|��uJ� − ��-J�|� ≤ ��|uJ − -J|�      (20) 

where uJ  and -J  are dual points in the function field, and � 
represents constant and refers to 1‐Lipschitz limitation if � =
1.  

��R�, R!���� = ||8||�E_� ≤ 1/�T∼��T�[8�u�] −��∼�����8/��u�5�5     (21) 

where ||8||�E_� ≤ 1 signifies the limitation condition and limits 

the discriminator loss function. In order to enhance the 
discriminator, a regularization term is added to the loss value of 
the discriminator to gain the gradient fine computation: 6�� = 1 − ����∼�����‖�T8�9��||!   (22) 

where �  is the regularization coefficient, ||�||  denotes the 
norm, and �  characterizes the randomly generated data 
between dual points. 

III. EXPERIMENTAL ANALYSIS  

The data were collected from various resources from 
Google Images and manually collected in formers gardens [29]. 
The tomato leaf and fruit dataset contains 10125 images under 
nine class labels as shown in Table I. The experimental test was 
performed in Python 3.6.5 tool on a PC i5-8600k, with 250GB 
SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. The 
parameter settings are: learning rate: 0.01, activation: ReLU, 
epoch count: 50, dropout: 0.5, and batch size: 5. 

TABLE I.  DATASET DESCRIPTION 

Diseases Type Class Labels No. of Images 

Bacterial cancer C1 1125 

Fusarium wilt C2 1125 

Septoria leaf spot C3 1125 

Early blight C4 1125 

Late blight C5 1125 

Powdery mildew C6 1125 

Scab C7 1125 

Anthracnose C8 1125 

Viral diseases C9 1125 

Total No. of Images 10125 

 

Table II and Figure 2 show the performance comparison of 
tomato leaf disease classification of IDLFOA-DCTLFD with 
existing techniques [30-33]. The outcomes state that IDLFOA-
DCTLFD outperforms Resnet50, Vgg16, Mobilenet, 
Googlenet, Xception, ResNet-101, and VGG-19. 

TABLE II.  COMPARATIVE RESULT ANALYSIS  

Method ����  ¡¢�£¤¥ ¦¥�§¨ ©¤¥�ª «¬¬ 

Resnet50 89.65 81.00 79.00 80.00 79.99 

Vgg16 81.75 80.00 79.00 77.00 82.80 

Mobilenet 79.20 77.00 79.00 80.00 83.35 

Googlenet 82.81 82.00 83.00 82.00 80.34 

Xception 88.16 83.19 82.14 83.25 76.64 

ResNet-101 90.13 80.04 80.13 81.95 77.98 

VGG-19 90.42 82.43 80.47 80.39 82.28 

IDLFOA-DCTLFD 98.02 90.98 91.16 90.96 89.92 

 

 

Fig. 2.  Tomato fruit diseases classification result comparison. 
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IV. CONCLUSION 

The IDLFOA-DCTLFD method is proposed in this paper. 
The main objective of the IDLFOA-DCTLFD method is to 
enhance the tomato leaf and fruit diseases detection and 
classification outcome. At the initial stage, an MF is used for 
image preprocessing to enhance the image quality and reduce 
noise. Further, the ECA-SqueezeNet method is employed for 
the feature extraction process to capture intricate patterns from 
the pre-processed images. FOA is applied to the 
hyperparameter tuning method. Eventually, the detection of 
tomato leaf and fruit diseases takes place using the WGAN 
model. The experimental outcome of the IDLFOA-DCTLFD 
method is examined under a constructed tomato leaf and fruit 
dataset. The experimental validation of the IDLFOA-DCTLFD 
methodology portrayed a superior accuracy value of 98.02%, 
outperforming the existing techniques. 

Limitations of the current study comprise potential 
overfitting on specific datasets and issues in real-time 
implementation under varying lighting and background 
conditions. Future work may concentrate on improving model 
robustness and adaptability to diverse environmental conditions 
for improved disease detection. 
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