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ABSTRACT 

This research presents the working mechanism of Cognitive Fish Swarm Optimization (CFSO) for multi-

objective routing and channel selection in Internet of Things (IoT)-based Wireless Sensor Networks 

(IWSNs). CFSO is inspired by the collective intelligence and cooperation observed in fish swarms. The 

model involves three main components: perception, cognition, and behavior. Each fish in the swarm 

perceives the network conditions by gathering information from its surrounding environment, including 

signal strength, channel availability, and network congestion. The fish then utilizes its cognitive abilities to 

evaluate different routing paths and channel options based on specific objectives, namely energy efficiency, 

packet delivery ratio, and delay. This evaluation process involves analyzing historical information and 

utilizing heuristics to create notified results. Each fish adapts its behavior by adjusting its movement 

pattern and selecting optimal routing paths and channels. This adaptive behavior is critical for achieving 

reliable and efficient data transmission in IWSNs. The fish swarm balances exploration and exploitation 

strategies to search for optimal solutions comprehensively. Exploration allows for discovering new paths 

and channels, while exploitation focuses on refining the best-known solutions. The efficiency of the CFSO 

method in enhancing data transmission efficiency in greenhouse agriculture applications was validated 

through extensive simulations in the NS-3 network simulation framework. The findings suggest that the 

CFSO method is a promising technique for addressing routing and channel selection challenges in IWSN 

by leveraging the collective intelligence of fish swarms. The CFSO model portrayed a superior throughput 

and Network Lifetime (NLT) values of 71.34% and 77.20%, respectively, significantly outpacing SSEER 

and CRP across overall node counts. 

Keywords-CFSO; multi-objective routing; IoT; WSNs; greenhouse agriculture; optimization algorithms 

I. INTRODUCTION  

Greenhouse agriculture is a method that allows for the 
cultivation of plants in controlled environments, providing 
optimal conditions for their growth and productivity [1]. Unlike 
traditional open-field farming, greenhouse agriculture offers a 
range of benefits, such as protection from adverse weather 
conditions, pests, and diseases, which often pose significant 
challenges to crop cultivation [2]. The controlled environment 
within greenhouses also enables farmers to optimize resource 
utilization, such as water and fertilizers, resulting in improved 
sustainability and efficiency [3, 4]. In the past few years, there 
has been an increasing interest in integrating Internet of Thing 
(IoT) technology with greenhouse agriculture to further 
enhance efficiency and productivity [5]. IoT represents a 
network of interrelated gadgets and objects, which may gather 
and interchange data across the Internet. It enables seamless 

communication and data sharing, resulting in improved 
physical system automation, monitoring, and control [6, 7]. 
Within the context of greenhouse agriculture, IoT technologies 
can transform the way greenhouses are managed. By deploying 
IoT-enabled devices and sensors throughout the greenhouse, 
farmers can obtain real time data on different environmental 
factors. These conditions may include light intensity, 
temperature, soil moisture, humidity, CO2 levels, and food 
concentrations. The data accumulated by this sensor are 
communicated through IoT connectivity to a cloud-based 
platform or central server for further investigation and 
decision-making [8]. Wireless Sensor Networks (WSNs) 
facilitate data collection within greenhouse environments. 
WSNs consist of smaller, lower-power devices named sensors 
distributed and deployed for monitoring and collecting data 
from the physical surroundings [9]. These sensors are 
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strategically placed throughout the greenhouse, allowing for 
comprehensive coverage and data collection from various 
locations. WSNs enable remote data collection, transmission, 
and processing, and are essential for efficient and accurate 
monitoring of greenhouse conditions [10]. 

This study focuses on advancing and evaluating effectual 
routing methods and channel selection strategies for the 
utilization of IoT-based WSN (IWSN) in greenhouse 
agriculture. The study aims to develop optimized routing 
algorithms that prioritize energy efficiency, data reliability, 
network scalability, and resource utilization, intelligently 
choosing optimal paths for data transmission while considering 
performance and resource constraints. Furthermore, the 
research will explore the application of CFSO in improving 
routing and channel selection within greenhouse environments. 
Comprehensive analysis is performed through modeling and 
real-world investigations to evaluate the performance of the 
proposed strategies. The key contributions of the current paper 
are: 

 The study comprises the development of optimized routing 
algorithms that prioritize energy efficiency and data 
reliability, improving the overall performance of IWSNs in 
greenhouse agriculture while effectually managing 
resources for enhanced crop productivity. 

 A thorough analysis is made through both modeling and 
real-world tests, ensuring the efficiency of the proposed 
model in practical applications and giving details into their 
performance in diverse greenhouse scenarios. 

 The study provides practical recommendations for 
deploying IWSNs that aim to improve crop productivity 
and optimize resource efficiency, presenting insights for 
practitioners in the field. 

 The application of CFSO to improve routing and channel 
selection in greenhouse environments is explored, 
introducing innovative methods that utilize unique 
environmental factors to optimize data transmission and 
resource management. 

II. LITERATURE REVIEW 

Authors in [11] utilized clustering techniques to segment 
WSNs, while incorporating fault tolerance mechanisms to 
manage node failures. Authors in [12] presented the SplitPath 
methodology by utilizing multipath routing and dual-radio 
capabilities. Authors in [13] proposed the hybrid Chimp 
Optimization and Hunger Games Search (ChOA-HGS) 
approach. Authors in [14] presented the Trust Aware 
Oppositional Sine Cosine-based Multihop Routing (TAOSC-
MHR) technique. Authors in [15] introduced the ybrid tree-
based and cluster-based routing protocol. Authors in [16] 
introduced a novel routing strategy in WSNs/IoT. Authors in 
[17] employed the Exponentially-Ant Lion Whale 
Optimization (E-ALWO) approach, which integrates E-ALWO 
for choosing Cluster Heads (CHs) based on energy and delay. 
Authors in [18] introduced two UAWSN routing protocols. 
Authors in [19] presented the Energy Efficient Hybrid 
Clustering and Hierarchical Routing (EEHCHR) methodology. 
Authors in [20] proposed the Seagull Optimization Algorithm 

based Energy Aware Cluster Routing Protocol (SOA-EACR) 
model. Authors in [21] introduced a segmented sector network 
by using heterogeneity among Sensor Nodes (SNs). Normal 
nodes use direct diffusion for data transmission. Authors in 
[22] proposed the C-EEUC protocol utilizing residual energy 
and communication cost. Authors in [23] proposed the 
Optimized Machine Learning (ML)-based Efficiency 
Algorithm (OMLEA). Authors in [24] presented a multi-
objective clustering approach by using the Election-based 
Aquila Optimizer (EAO) model. An Optimized CNN (O-CNN) 
method was also utilized. Authors in [25] utilized the Multi-
Objective Moth-Flame Optimization (MOMFO) approach. 
Authors in [26] proposed a Deep Reinforcement Learning 
(DRL)-based routing technique for IoT-enabled WSNs. 
Authors in [27] introduced an effectual data aggregation 
methodology by using Blockchain (BC) and the "CH sleep 
schedule". Authors in [28] presented the energy-aware load-
balancing methodology by using an artificial chemical reaction 
optimization model. Authors in [29] presented an IoT-based 
hydration system using the Cuckoo search-based Levy 
Adolescent Identity Search (CLAIS) algorithm with a CLAIS-
DQN classifier for optimal feature selection. Authors in [30] 
proposed the utilization of distributed multi-task learning. 

The existing approaches for WSNs and IoT enhance energy 
efficiency and fault tolerance but encounter issues like 
enhanced hardware complexity, trust measurement threats, and 
adaptability to dynamic conditions. Optimization techniques 
also struggle with convergence and scalability in real-world 
applications. Existing research often neglects adaptive 
mechanisms and comprehensive studies on the trade-offs 
between energy efficiency, routing complexity, and real-time 
performance in diverse environments. 

III. CFSO MODEL FOR IWSN 

A. Energy Consumption Model 

Information transmission within an IWSN primarily relies 
on the distance between components, which follows a non-
linear pattern. Signal propagation in free space and multi-
channel systems is non-linear and exponential, impacting signal 
strength in an IWSN as distance increases. The user end 
collects data from sensors, the data center analyzes it, and the 
Base Station (BS) optimizes communication between them. 
Energy Consumption (EC) during data transmission is 
expressed in (1): 

�����, �� = ���
����� + ���
�����, ��  
= ��∗����� + �∗��� ∗ ��,   � < ��

�∗����� + �∗��� ∗ ��,   � ≥ ��
  (1) 

The threshold distance �� is given by: 

�� = ����/���     (2) 

The energy consumed by the CH can be expressed as: 

ECH =  Computation Energy   
+ Transmission Energy   (3) 

with: 
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Computation Energy =  1
2 ∗  34546   (4) 

The CH's uplink Energy Consumption (EC) is represented 
by: 

�78 = ���9�� :1
2 − 1= + ��>? 1

2 + ���9�� (5) 

This underscores the CH's high energy needs for 
computation and transmission, while unallocated energy space 
improves data transfer efficiency in a cluster-based system. The 
EC of a node within a cluster is stated by: 

�@1 = ���9�� + ������   (6) 

where ���9��  represents the energy required for computation 

or processing tasks at the node, ���� denotes the EC per unit 

distance (���) for transmitting data within the cluster, and y 

represents the typical spacing between cluster members and the 
cluster center, as defined by: 

� = A1 2C ∗ �D
2     (7) 

where 6  depicts the number of sides of the area for SN 
deployment, while E  denotes the number of clusters in the 
region. The total EC of each cluster is considered using (8): 

��FGH = �78 + :1
2 − 1= �@1    (8) 

where �78  represents the EC of the CH for uplink ( �I ) 
transmission, t/a indicates the average number of SNs within 
each cluster, t/a - 1 denotes the energy used in the CH for 
computation and processing tasks of the other SNs within the 
cluster, and �@1 denotes the EC of a cluster node. 

B. Cluster Generation 

The clustering process generates clusters with the K-means 
technique to minimize the within-cluster variance. The initial 
cluster region is based on the BS's location and proximity to the 
cluster center, using A-means and K-means to finalize 
clustering. The K-means method iteratively updates cluster 
centers based on node distances, with convergence criteria such 
as reaching maximum iterations, minimal changes in cluster 
center variation, and stable Sum of Squared Errors (SSE) 
indicating that clustering is complete. These criteria assist in 
determining when the model has efficiently stabilized, 
confirming reliable clustering outcomes. The K-means model 
assigns nodes to the nearest cluster depending on their 
distances to the cluster centers. Nodes are reallocated to the 
nearest cluster based on distance metrics after each iteration, 
and clustering is complete when the membership function 
stabilizes. A minimum cluster size may also be required for 
effective data processing and communication. 

C. Cluster Formation 

The K-means clustering model is utilized for IWSN nodes 
to facilitate clustering. This research accentuates using distance 
to select CHs, utilizing scoring formulas to detect robust nodes 
and improve system effectiveness through residual energy and 
location intensity. Once a CH is selected, it relays data while 
unselected nodes continue to contribute data, maintaining 
stability until the next selection cycle. 

JK78 = 0.2NO + 0.8NF    (9) 

D. CFSO-based Routing 

Inspired by the coordinated behavior of fish schools, FSO 
employs an initial population of artificial fish to explore 
potential solutions, iteratively updating their positions based on 
attraction to good solutions and collective communication. The 
optimization process continues until a termination condition is 
met, assessing each fish's fitness. An object-oriented model 
depicts each fish in an f-dimensional space, iterating with 
parameters like step size to find the optimal solution. The 
artificial fish food concentration is calculated with: 

Q = R�S�     (10) 

and the distance among fish is assessed using (11): 

�@,T = ‖S@ − ST‖    (11) 

Each fish's state represents a potential solution evaluated 
for efficiency, simulating fish school foraging behavior in 
IWSN to mimic their collective food-locating abilities through 
spatial cues. The school of fish, depicted by V@, moves toward 
areas with higher food concentrations, adapting to 
environmental changes by evaluating resource availability. If 
advantageous locations are found, the school repositions to 
maximize resource access. The movement process is ruled by 
various equations. For instance, (12) directs movement toward 
higher concentrations. If no suitable state is found, the fish 
takes a random step to explore new possibilities, represented by 
(13) and (14): 

VT = V@ + WXYZE5∗Rand � �     (12) 

V@]^_ = V@] + àb c̀d
e àb c̀de ∗f1�g∗hijk � �    (13) 

V@]^_ = V@] + WXYZE5∗Rand � �     (14) 

This model encourages exploration and avoids local 
optima. Fish schools form for protection and mutual learning, 
allowing them to gather resources and share knowledge 
collectively. The artificial fish swarm model simulates this 
interaction, preventing isolation. If an artificial fish is in state V@, and perceives others within its visual range l�, it evaluates 

the distance �@,T . If this distance is less than the visual 

threshold and the condition QF/l� > nQ@  is satisfied, 

indicating a high food concentration, the fish moves toward the 
central position VF . If not, it continues foraging locally. This 
movement is represented by: 

V@]^_ = V@] + òb`]c
‖ òb`]‖ ∗f1�g∗hijk � �     (15) 

This equation updates the fish's position, balancing directed 
movement toward VF  with randomness for exploration. Rear-
end behavior in fish schools arises when multiple fish detect 
food, leading others to follow, akin to vehicles tailing, as they 
seek optimal paths to high food concentration V�2p. The fish 
engages in foraging only if conditions V�2p > Q@  and  Q�2p/l� > nQ@  are satisfied. Movement towards V�2p  is 

governed by: 
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V@]^_ = V@] + ql4S∗Rand ��∗ `��rb c̀
‖`��rb c̀‖   (16) 

This equation updates the fish position based on the highest 
food concentration, optimizing its foraging behavior and 
enhancing navigation within the school. 

E. Chaotic Behavior 

Fish exhibit a certain degree of unpredictability in their 
movements within the water, which aids the collective search 
for food. Similarly, artificial fish also incorporate an element of 
randomness in their behavior. They arbitrarily choose a 
condition within their perception range and then take a single 
stride in that chosen direction. This behavior is reminiscent of 
foraging strategies observed in nature, characterized by small-
scale operations. By presenting this randomness, artificial fish 
emulate the natural exploration patterns of their biological 
counterparts, improving their capability to search for resources 
effectually. A bulletin board serves as a crucial component 
within the system, capturing and documenting the historical 
records of the optimal conditions seen by the artificial fish. The 
bulletin board centralizes resource concentrations found by the 
fish school, updating its records with higher values. It 
consolidates the collective knowledge and optimal conditions 
identified during the model’s execution, guiding future 
decision-making processes. 

IV. RESULTS AND DISCUSSION 

This study utilizes NS-3 simulator, which is an open-source 
C++ network simulation tool widely used in research and 
education, giving features for protocol assessment, network 
topology maintenance, and analysis tools, alongside a Python 
interface for efficient simulation design. Its flexibility makes it 
valuable for evaluating technologies like Wi-Fi, 5G, and IoT. 
The suggested technique is simulated by employing Python 
3.6.5 on a PC i5-8600k, 250 GB SSD, GeForce 1050Ti 4 GB, 
16 GB RAM, with 1 TB HDD. The parameter settings are: 
learning rate: 0.01, activation: ReLU, epoch count: 50, dropout: 
0.5, and batch size: 5. 

Figure 1 provides the throughput outcome of CFSOR 
method with distinct nodes. The outcomes established that the 
CFSOR method has better performance. With 500 nodes, the 
CFSOR method attained greater throughput of 69.23%, 
whereas the SSEER and CRP techniques obtained lesser 
throughput of 30.59% and 43.81%, respectively. Likewise, 
with 1000 nodes, the CFSOR model attained higher throughput 
of 70.36%, while the SSEER and CRP techniques obtained 
lesser throughput of 31.03% and 44.35%, respectively. With 
1500 nodes, the CFSOR model obtained advanced throughput 
of 71.34%, however the SSEER and CRP techniques acquired 
lesser throughput of 31.77% and 45.90%, correspondingly.  
The EC outcome of CFSOR method with varying number of 
nodes is indicated in Table I. The outcomes inferred that the 
CFSOR method attained enhanced performance. It can be seen 
that the CFSOR technique obtained lesser EC in every 
considered case. Table II provides the NLT comparison 
analysis of CFSOR method. NLT is the period a network 
operates before resource depletion or failure. The acquired 
values show that the CFSOR technique has improved 
performance and higher NLT in every considered case.  

 
Fig. 1.  Throughput outcome of CFSOR with varying number of nodes. 

TABLE I.  EC RESULT COMPARISON  

EC (%) 

No. of Nodes SSEER CRP CFSOR 

500 77.47 59.35 29.64 

1000 78.58 60.90 30.86 

1500 80.86 63.32 34.45 

2000 84.18 63.94 34.52 

2500 85.24 64.48 34.56 

3000 87.43 71.86 36.62 

3500 89.60 72.47 37.76 

4000 90.77 74.70 41.22 

4500 91.72 76.92 41.93 

5000 93.59 79.12 45.86 

TABLE I.  NLT RESULT COMPARISON  

NLT (%) 

No. of Nodes SSEER CRP CFSOR 

500 22.36 48.08 77.20 

1000 21.51 47.23 76.91 

1500 18.68 43.79 71.88 

2000 16.26 42.11 71.31 

2500 15.18 35.04 70.79 

3000 14.28 28.69 68.02 

3500 10.98 27.27 67.09 

4000 10.32 26.69 64.54 

4500 9.77 25.41 64.28 

5000 8.06 25.34 64.24 

 

V. CONCLUSION 

This research focused on multi-objective routing and 
channel selection in the IWSN using CFSO. The study aimed 
to address the challenges in routing within IWSN, particularly 
in the context of greenhouse agriculture. Through extensive 
literature review and analysis, it was identified that efficient 
routing algorithms are crucial for ensuring the reliable and 
energy-efficient transmission of data among WSNs deployed in 
greenhouses. The proposed approach of utilizing CFSO 
showed promising results in optimizing routing and channel 
selection in IWSN. The research objectives were successfully 
achieved by designing and implementing a simulation model 
using the NS-3 network framework. Various performance 
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metrics, including throughput, EC, and NLT, were evaluated to 
assess the effectiveness of the proposed approach. The results 
demonstrated the CFSO’s effectiveness in improving the 
routing and channel selection performance in IWSN. The 
CFSO model portrayed a superior throughput and NLT values, 
significantly outpacing SSEER and CRP across overall node 
counts. This research contributes to IWSN and greenhouse 
agriculture by offering insights for developing efficient routing 
mechanisms, aiding in advanced protocol design for better data 
transmission and greenhouse management. However, it is 
limited by potential scalability issues and the need for real-
world testing. The study emphasizes the importance of multi-
objective routing and channel selection in IWSN for 
greenhouse agriculture and introduces a promising approach 
using CFSO. Future research can enhance the proposed 
approach by incorporating additional factors to improve 
efficiency and sustainability in greenhouse agriculture while 
refining the CFSO method for practical applicability and 
scalability in real-world deployments. 
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