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ABSTRACT 

This study presents an improved Facial Expression Recognition (FER) model using Swin transformers for 

enhanced performance in detecting mental health through facial emotion analysis. In addition, some 

techniques involving better dropout and layer-wise unfreezing were implemented to reduce model 

overfitting. This study evaluates the proposed models on benchmark datasets such as FER2013 and CK+ 

and real-time Genius HR data. Model A has no dropout layer, Model B has focal loss, and Model C has 

enhanced dropout and layer-wise unfreezing. Model C was the best among all proposed models, achieving 

test accuracies of 71.23% on FER2013 and 78.65% on CK+. Weighted cross-entropy loss and image 

augmentation were used to handle class imbalance. Based on Model C emotion predictions, a scoring 

mechanism was designed to analyze employees' mental health for the next 30 days. The higher the score, 

the higher the risk of mental health. This study demonstrates a practical version of the Swin transformer 

in FER models for detecting and early mental health intervention. 

Keywords-swin transformer; facial expression recognition; mental health detection; overfitting mitigation 

I. INTRODUCTION  

Mental health appears to have joined the front ranks of 
contemporary workplace issues. Approximately 15% of 
personnel will be affected by mental illness once at any time, 
the most obvious of which include depression and anxiety. The 
economic losses through loss of productivity and absenteeism 
are enormous, reaching up to 12 billion lost workdays and 
almost 1 trillion USD lost economic output per year [1]. In this 
respect, various recent developments, such as the Facial 
Expression Recognition (FER) method, have been 
implemented for early identification and intervention regarding 
mental disorders [2]. Incorporating FER into mental health 
assessments can prevent burnout or depression. As early-stage 

intervention can prevent these issues, there is an ever-growing 
demand for novel ways to conduct mental health assessments.  

These systems play a vital role in understanding human 
feelings through machines that are operational in several 
sectors of daily life, including human-computer interaction, 
security, diagnosis of mental health, and social robotics. FER 
can help systems interpret emotional cues more precisely 
during human-computer interaction for personalized user 
experience offers [3]. During the assessment of mental health, 
FER helps clinicians estimate signs of emotional distress or 
disorders [4]. In security, FER can help monitor criminal 
behavior based on altered facial expressions. It also helps 
predict mental health disorders through emotion analysis, 
providing excellent early intervention [5]. 
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Despite such a growth in deep learning, FER still faces 
several problems due to subtlety and diversity in human facial 
expression and other influential factors such as lighting 
conditions, head pose, and identity bias [6]. These issues can 
lead to increased overfitting while training a deep neural 
network based on small or imbalanced datasets [4, 7, 8]. 
Overfitting causes models to perform well on training data but 
poorly on new, unseen data, reducing their effectiveness in 
real-world applications [9, 10]. Techniques such as data 
augmentation, class weighting, and regularization have been 
used to overcome these challenges and enhance model 
robustness and generalization [11, 12]. 

Traditional FER methods relied on handcrafted features and 
simple classifiers, which struggled with high variations within 
classes and were sensitive to environmental changes [13, 14]. 
Recent approaches use deep learning architectures such as 
Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs) to automatically learn discriminative 
features [15, 16]. CNNs excel at learning spatial features from 
images, while RNNs focus on the temporal dynamics of facial 
expressions [17]. Recently, transformer-based models such as 
Vision Transformers (ViT) [18] and Swin transformers have 
shown great promise in computer vision by capturing broader 
contexts and handling long-range dependencies [12, 19]. With 
their hierarchical structure and efficiency in modeling local and 
global features, Swin transformers play a decisive role in FER 
[19], but their usage is still exploratory [19-24]. 

In addition, transformer models are usually overfitted with 
many parameters in FER research due to the limited size of 
datasets [25]. Several methods have been proposed to reduce 
overfitting by leveraging data augmentation and class-weighted 
loss functions due to class imbalance issues [8, 11]. Data 
augmentation increases the diversity of training data, while 
class weighting acts directly on loss, considering 
underrepresented classes as more critical [26]. However, few 
works combined such approaches with transformer 
architectures in FER. This study extends current state-of-the-art 
FER models using the Swin transformer architecture and new 
overfitting avoidance strategies [27]. In addition, Swin 
transformers are used in a comprehensive data augmentation 
that includes class-weighted loss functions [24]. In the 
proposed framework, the hierarchical Swin transformer feature 
representation is used to model facial features, both local and 
global, which is crucial to recognizing subtle facial expressions 
[28, 29]. In addition, various data augmentation techniques are 
employed to increase data variation and prevent overfitting, 
such as random rotation, flipping, color jittering, and erasing. 

In this study, class weights are pre-calculated and added to 
the loss function to deal with class imbalance and enhance the 
model robustness [8]. Early stopping, learning rate scheduling, 
and clipping gradients are also used to improve the model and 
avoid overfitting issues [30]. Consequently, this results in a 
much better generalization compared to the direct utilization of 
baseline models. Furthermore, this study discusses how this 
model could find practical applications in assessing mental 
health. Predicting mental health status through emotion 
recognition is timely and noninvasive toward early workplace 
intervention.  

II. MATERIALS AND METHODS 

A. Dataset Collection 

The datasets used in this study include FER2013 [31], 
CK+, and the Genius HR dataset. FER2013 consists of 48×48 
grayscale images divided into seven emotion classes: Angry, 
Disgust, Fear, Happy, Sad, Surprise, and Neutral. CK+ 
contains 920 images across eight emotion classes: Anger, 
Disgust, Fear, Happiness, Sadness, Surprise, Neutral, and 
Contempt. This dataset is split into 736 training images, with 
92 images, each for validation and testing. Although FER2013 
provides a rather large sample, CK+ is relatively small, 
containing only 920 images. Therefore, generalization based on 
this dataset alone may be difficult [32]. In addition, although 
helpful and convenient for testing in real-world conditions, the 
Genius HR dataset contains 500 images taken in an office of 
just five employees with a small amount of diversity in critical 
demographics, which could introduce bias and limit its 
application to larger groups of people [33]. 

Data augmentation was used to make the datasets more 
diverse and balanced. As FER datasets are both limited and 
very difficult to obtain, data augmentation allows us to simulate 
various demographic representations within the Genius HR 
dataset [8, 11]. Data augmentation aims to enhance the model's 
generalization capabilities despite the constraints of the 
available datasets. Table I summarizes the distribution of each 
dataset. 

TABLE I.  OVERVIEW OF DATASETS 

Dataset Resolution Training Test Total 

FER2013 48×48 28,709 7,178 35,887 

CK+ 48×48 736 184 920 

Genius HR 48×48 400 100 500 

 

B. Preprocessing and Augmentation Techniques 

The preprocessing for both FER2013 and CK+ datasets 
included resizing all images to 48×48 pixels and then 
converting them to grayscale when needed. All CK+ images 
were first normalized to grayscale. These images were then 
individually normalized such that the pixel values have a zero 
mean and a unit variance - a common preprocessing feature to 
stabilize the training process. The normalization process can be 
expressed mathematically as follows: 

�� =
���

�
     (1) 

where �� is the normalized pixel value, � is the original pixel 
value, �  is the mean, and 	  is the standard deviation of the 
pixel values in the dataset. This step will maintain the pixel 
values within an appropriate scale and help to achieve faster 
model convergence during training by reducing the possible 
vanishing or exploding gradient problems [34]. The following 
data augmentation techniques were used on the datasets to 
increase robustness and avoid overfitting. 

 Random horizontal flip introduces variability by flipping 
images horizontally, simulating mirrored facial expressions. 

 Random rotation within a small degree range up to 15° 
introduces robustness against variations in head pose. 
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 Random erasing removes small sections of an image to 
simulate occlusions, improving generalization when 
handling masked or obscured faces. 

These methods give a more diverse dataset and improve 
model generalizability. 

 

 

Fig. 1.  Augmented images from FER2013. 

 

Fig. 2.  Architecture of the proposed FER model. 

C. Loss Functions and Optimization 

The weighted cross-entropy loss was applied to handle 
class imbalance in the FER2013 and CK+ datasets. Class 
weights were calculated using: 


� =
�

�
     (2) 

where 
�  is the weight for class � , �  is the total number of 
samples, and ��  is the number of samples in class � . This 
method helps the model not to be biased towards the majority 
classes, giving better performance in all emotion categories. 
AdamW was used to decouple weight decay, effectively 
reducing overfitting and improving generalization [24], 
offering also stability and efficiency in model convergence. 

D. Evaluation Metrics 

The difference between training and validation 
accuracy/loss was monitored throughout the training process to 
assess overfitting: 

��� =
��������� ����������  ���� 

�����  ����
   (3) 

A higher RER indicates that the model is overfitting by 
performing well on the training data but not generalizing 
effectively to the validation set. Key evaluation metrics include 
accuracy, precision, recall, and F1-score. Accuracy measures 
the proportion of correct predictions, while precision quantifies 
the true positives out of predicted positives. Recall focuses on 
retrieving all relevant instances, and F1-score balances 
precision and recall. 

E. Gradient-weighted Class Activation Mapping (Grad-CAM) 

Grad-CAM was employed to visualize the feature maps of 
the Swin transformer model, highlighting the regions in an 
image that contributed most to the model's predictions. The key 
expression used is: 

!Grad-CAM
� = �*!+,- ./

�  0/  
/

1    (4) 

This technique utilizes the gradients flowing into the final 
convolutional layer to produce a localization map that shows 
the areas of the input image that influenced the classification. 
In the context of facial expression recognition, Grad-CAM 
allowed us to verify whether the model was focusing on 
relevant facial features, such as eyes or mouth, when making 
predictions. 

F. Mental Health Scoring System 

This study introduces a conceptual framework integrating 
FER models, trained on FER2013 and CK+ datasets, with real-
world data from the Genius HR dataset. The primary goal of 
this system is to predict employee emotions and map them to a 
robust mental health scoring system, which allows for early 
detection of mental health risks. The model minimizes 
overfitting and optimizes generalization, ensuring that it can 
accurately predict emotions from facial images captured during 
daily attendance. 

The core of this system involves calculating a Mental health 
Score (MS) for each employee based on the probability 
distribution of predicted emotions over a 30-day period. The 
daily average emotion prediction is recorded for each 
employee, and the mental health score is derived based on 
these emotion probabilities. The mental health score, denoted 
as 2�  for an individual 3 , is calculated as a weighted sum of 
emotion probabilities: 

2� = - 
4 ⋅ 6�4


478
    (5) 

where 6�4 represents the probability prediction of emotion 9 for 

individual 3  and 
4  is the corresponding weight assigned to 

each emotion based on its impact on mental health. Negative 
emotions, such as anger and sadness, are assigned higher 

weights 
4 due to their significant influence on well-being. In 

contrast, positive emotions are assigned lower weights, as they 
are generally associated with minimal risks to mental health. 
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Drawing from [35], the correlation between mental health 
and facial emotions is used to derive weights for each emotion. 
Simcock's work specifically relates to chronic depression 
(SP12), and Table II displays the correlation values used to 
inform the mental health score. 

TABLE II.  EMOTION-MENTAL HEALTH CORRELATION 

Emotion Correlation (SP12 depression) 

Anger -0.16 

Fear -0.06 

Happy 0.15 

Neutral 0.40 

Sad -0.04 

Disgust -0.03 (derived) 

Surprise -0.06 (derived) 

 
The MS score is calculated using the following 

interpolation formula: 

:2 = 50 = 50 ⋅ >�    (7) 

where >� represents the correlation value for the detected 
emotion. This formula translates correlation values ranging 
from -1 to +1 into a mental health score between 0 and 100. A 
higher score indicates a greater mental health risk [5]. Table III 
outlines the mental health scores assigned to each emotion. In 
this scoring system, the Neutral emotion represents the lowest 
mental health risk, while Anger is associated with the highest 
risk. Over a 30-day period, the system aggregates daily 
emotional predictions for each individual to assess overall 
mental health trends. 

TABLE III.  MENTAL HEALTH SCORE DISTRIBUTION 

Emotion Mental Score (MS) 

Disgust 53 

Anger 58 

Fear 53 

Surprise 46 

Happy 43 

Sad 53 

Neutral 30 

 
The primary focus is to develop the most effective model 

that avoids overfitting by carefully selecting the optimal 
architecture and training strategies. Once the best model is 
identified, it will be used to predict emotional expressions from 
facial images in the Genius HR dataset on a routine basis 
during daily attendance.  

III. RESULTS AND DISCUSSION 

This section presents the experimental results comparing 
the three custom Swin transformer model architectures (Model 
A, Model B, and Model C) on the FER2013, CK+, and real-
world Genius HR datasets. The discussion covers model 
performance in accuracy, precision, recall, and F1-score, along 
with confusion matrices. 

A. Model Performance 

Models A, B, and C were tested on FER2013 and CK+ 
datasets. Model C performed best among all the proposed 
models, with an overall accuracy of 72.5% for FER2013 and 
95.3% for CK+. In contrast, Model A achieved an accuracy of 

68.1% for FER2013 and 91.2% for CK+, and Model B 
achieved an accuracy of 69.7% for FER2013 and 93.5% for 
CK+, respectively. Table II shows all results. 

TABLE IV.  PERFORMANCE COMPARISON OF MODELS A, B, 
AND C ON FER2013 AND CK+ DATASETS 

Model Architecture Dataset Accuracy 

A No dropout 
FER2013 70.05% 

CK+ 95.51% 

B With Focal Loss 
FER2013 64.61% 

CK+ 83.15% 

C 
With enhanced dropout, 

layer-wise unfreezing 

FER2013 71.23% 

CK+ 78.65% 

 
Table III comprehensively evaluates Model C, detailing 

precision, recall, F1-score, and support for each emotion class 
on the FER2013 dataset. 

TABLE V.  CLASSIFICATION METRICS FOR MODEL C ON 
FER2013 DATASET 

Emotion Precision Recall F1-Score Support 

Angry 0.62 0.62 0.62 491 

Disgust 0.70 0.80 0.75 55 

Fear 0.59 0.50 0.54 528 

Happy 0.92 0.89 0.90 879 

Sad 0.66 0.76 0.70 626 

Surprise 0.59 0.58 0.59 594 

Neutral 0.78 0.81 0.79 416 

 
Model C performed much better, with an accuracy of 

71.23% on FER2013, and outperformed models A and B. This 
improvement is due to the improved dropout and layer-wise 
strategy in Model C. On the CK+ dataset, Model A shows the 
best performance with an accuracy of 95.51%, followed by 
Model C with 78.65% and Model B with 83.15%. Since Model 
A performed so well on CK+, it indicates that a dropout-free 
model architecture does not hinder its performance. On the 
contrary, it may even help small, more controlled datasets like 
CK+, where overfitting is not as much of a problem. 

B. Overfitting and Model Generalization 

Overfitting occurs when a model learns the training data too 
well, capturing noise and specific patterns that do not 
generalize to unseen data. To evaluate the extent of overfitting 
and generalizability of these models, the accuracy and loss 
curves were used, as shown in Figures 3-5 for Models A, B, 
and C, respectively. 

 

 

Fig. 3.  Loss curves for Model A on FER2013. 
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Fig. 4.  Loss curves for Model B on FER2013. 

 
Fig. 5.  Loss curves for Model C on FER2013. 

Model C achieved a lower training loss and maintained a 
consistently lower validation loss throughout the training 
process, highlighting its effectiveness in minimizing 
overfitting. Model A, while achieving a low training loss, 
shows a slight increase in validation loss after initial epochs, 
indicative of overfitting. Model B maintained a balanced loss 
curve with gradual reductions in training and validation losses, 
reflecting its enhanced generalization performance through 
focal loss. 

The architectural enhancements and training techniques 
employed in each model significantly influence their 
propensity to overfit and their ability to generalize: 

 Model A: Utilizes a basic architecture without dropout, 
which allows it to achieve high training accuracy quickly. 
However, the absence of dropout leads to overfitting, as 
evidenced by the divergence between training and 
validation accuracy/loss curves. 

 Model B: Incorporates focal loss, which helps address class 
imbalance by focusing more on hard-to-classify examples. 
This modification results in more stable validation 
performance and reduced overfitting compared to Model A, 
as reflected in its balanced accuracy and loss curves. 

 Model C: Implements enhanced dropout and layer-wise 
unfreezing strategies. Enhanced dropout provides robust 
regularization, preventing the model from becoming overly 
dependent on specific training features. Layer-wise 
unfreezing allows for gradual fine-tuning of deeper layers, 
enabling the model to adapt to the dataset's nuances without 
disrupting pre-trained representations. These techniques 
collectively contribute to its superior generalization 

performance, as demonstrated by its high and stable 
validation accuracy and consistently low validation loss. 

C. Model Performance 

Confusion matrices visually represent the model's 
performance across different classes, highlighting areas where 
the model excels or struggles. Figure 6 presents the confusion 
matrices for Model A. The confusion matrix for Model B, 
shown in Figure 7, illustrates a more varied performance across 
different emotion classes. 

 

 

Fig. 6.  Confusion matrix for Model A on FER2013. 

 

Fig. 7.  Confusion matrix for Model B on FER2013. 
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The confusion matrix for Model C demonstrates a balanced 
performance across most emotion classes. The model achieves 
high precision and recall for the Happy and Neutral emotions, 
similar to Model A. Notably, Model C shows improved 
accuracy in recognizing Sad emotions compared to Models A 
and B. However, Fear and Surprise still present challenges, 
albeit to a lesser extent than Model B. Figure 8 displays the 
confusion matrix for Model C on the FER2013 dataset. 

 

 

Fig. 8.  Confusion matrix for Model C on FER2013. 

D. Grad-CAM Visualizations 

Figure 9 below presents Grad-CAM visualizations for 
Model C on selected FER2013 images, displaying both the 
original image and the corresponding Grad-CAM heatmap. The 
left image shows the original facial expression, while the right 
panel overlays the Grad-CAM heatmap on the original image.  

 

 
Fig. 9.  Confusion matrix for Model C on FER2013. 

The heatmap highlights the regions most influential in the 
model's prediction of each emotion: 

 Happy: Intense focus on the mouth and eyes, capturing 
smiles and expressive eyes.  

 Angry: Emphasis on the eyebrows and mouth area, 
indicating furrowed brows and tightened lips. 

 Sad: Focus on the eyes and the downward turn of the 
mouth, reflecting subtle emotional cues. 

 Neutral: Evenly distributed activation throughout the face, 
indicating a balanced assessment. 

E. Mental Health Scoring 

The mental health scoring system was developed by 
applying Model C to employee facial data collected over 30 
days using the Genius HR system. The model predicted daily 
emotions from attendance images, and these predictions were 
averaged over 30 days to calculate MS for each employee. MS 
was derived using the interpolation formula, where higher 
scores indicate more significant mental health risks. The 
process included three key steps: 

 Emotion prediction: Model C generated probability 
distributions for each emotion across all images, with daily 
emotion averages calculated over 30 days. 

 Confidence scoring: The model's confidence levels for each 
prediction were tracked, and an average confidence score 
was calculated for each employee across the 30 days. 

 Mental health score calculation: The MS was derived using 
the formula. 

Table VI summarizes the mental health scores for the 
employees, calculated based on the average predicted emotions 
and the confidence scores. For example, Employee 39 had a 
mental health score of 53.00, reflecting elevated risks due to 
consistently negative emotions. In contrast, Employee 15 had a 
lower score of 50.93, indicating a more stable emotional state. 

TABLE VI.  MENTAL HEALTH SCORING SUMMARY  

ID Avg confidence scores Number of images MS score 

31 0.7747 30 52.03 

39 0.9230 30 53.00 

16 0.8943 30 53.00 

15 0.6484 30 50.93 

17 0.7503 30 51.07 

 

 

Fig. 10.  Heatmap for average confidence scores. 
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Figure 10 shows the average confidence scores per 
Employee for 30 days, allowing the identification of those 
instances where the model was most confident in its emotional 
predictions. Confidence scores ranged from 0.6484 to 0.9230, 
with Employee 39 having the highest average of 0.9230, while 
Employee 15 had the lowest with 0.6484. These scores are 
related to the regularity of emotion forecasting that the model 
performed. Although the higher the confidence, as it was for 
Employee 1, the more regularly the model classified emotions, 
clear patterns of emotions were present. In turn, a small 
confidence value for Employee 15 should imply more 
uncertainty or ambiguity in how emotions were detected. 

IV. CONCLUSION 

This study presented a facial expression recognition model 
based on the Swin transformer-based FER model optimized for 
mental health detection. A layer-by-layer unfreezing strategy 
was used to maximize dropout and reduce overfitting. Model C 
surpassed the other proposed models, with accuracies of 
71.23% on FER2013 and 78.65% on CK+. The weighted cross-
entropy loss was used to balance the classes, which was 
enhanced by the proposed augmentation data approach to 
ensure the robustness of the result. This model was tested with 
Genius HR data for 30 days. Mental health ratings generated 
using Model C were between 50.93 and 53.00, reflecting that 
the model could help determine at-risk workers. The results 
demonstrate Swin transformers for efficient FER performance 
in diagnosing mental health disorders. Future research should 
improve the model's sensitivity to subtle emotions in diverse 
scenarios. 

The primary novelty of this study lies in integrating 
enhanced dropout and layer-wise unfreezing strategies within 
the Swin transformer architecture for FER tasks, explicitly 
tailored for mental health detection. Although previous studies 
have employed Swin transformers for FER [19, 20, 24], none 
have combined these overfitting mitigation techniques in this 
context. Finally, this approach addresses overfitting, which is 
evident by comparing Model C's superior generalization 
performance to Models A and B. Furthermore, this study 
provides a practical use case for integrating the FER model 
with a mental health scoring system, which has not been 
performed or taken deep in most related works. 

Compared to similar studies, such as [19], that utilized 
Swin transformers for FER without focusing on overfitting 
reduction, this model achieved superior performance through 
the proposed enhancements. Furthermore, in [24], fine-tuned 
Swin transformers were used for FER but did not incorporate a 
layer-wise unfreezing strategy or apply the model to mental 
health detection. This work bridges this gap by improving FER 
accuracy and demonstrating the model's utility in real-world 
mental health assessment scenarios. In conclusion, this study 
contributes to the field by presenting an innovative FER model 
that combines advanced overfitting mitigation techniques with 
the Swin transformer architecture and applies it to mental 
health detection, offering a novel framework for early 
workplace mental health intervention. 

 

REFERENCES 

[1] A. Malik et al., "Mental health at work: WHO guidelines," World 
Psychiatry, vol. 22, no. 2, pp. 331–332, 2023, https://doi.org/10.1002/ 
wps.21094. 

[2] J. Aina, O. Akinniyi, Md. M. Rahman, V. Odero-Marah, and F. Khalifa, 
"A Hybrid Learning-Architecture for Mental Disorder Detection Using 
Emotion Recognition," IEEE Access, vol. 12, pp. 91410–91425, 2024, 
https://doi.org/10.1109/ACCESS.2024.3421376. 

[3] S. Minaee, M. Minaei, and A. Abdolrashidi, "Deep-Emotion: Facial 
Expression Recognition Using Attentional Convolutional Network," 
Sensors, vol. 21, no. 9, Apr. 2021, Art. no. 3046, https://doi.org/10.3390/ 
s21093046. 

[4] S. Li and W. Deng, "Deep Facial Expression Recognition: A Survey," 
IEEE Transactions on Affective Computing, vol. 13, no. 3, pp. 1195–
1215, Jul. 2022, https://doi.org/10.1109/TAFFC.2020.2981446. 

[5] A. A. A. Al-zanam, O. J. A. E. H. Alhomery, and C. P. Tan, "Mental 
Health State Classification Using Facial Emotion Recognition and 
Detection," International Journal on Advanced Science Engineering 
Information Technology, vol. 13, no. 6, pp. 2274–2281, 2023. 

[6] S. M. Hassan, A. Alghamdi, A. Hafeez, M. Hamdi, I. Hussain, and M. 
Alrizq, "An Effective Combination of Textures and Wavelet Features for 
Facial Expression Recognition," Engineering, Technology & Applied 
Science Research, vol. 11, no. 3, pp. 7172–7176, Jun. 2021, 
https://doi.org/10.48084/etasr.4080. 

[7] M. Mujiyanto, A. Setyanto, E. Utami, and K. Kusrini, "Facial 
Expression Recognition with Deep Learning and Attention Mechanisms: 
A Systematic Review," in 2024 7th International Conference on 
Informatics and Computational Sciences (ICICoS), Semarang, 
Indonesia, Jul. 2024, pp. 12–17, https://doi.org/10.1109/ICICoS62600. 
2024.10636857. 

[8] P. Jiang, G. Liu, Q. Wang, and J. Wu, "Accurate and Reliable Facial 
Expression Recognition Using Advanced Softmax Loss With Fixed 
Weights," IEEE Signal Processing Letters, vol. 27, pp. 725–729, 2020, 
https://doi.org/10.1109/LSP.2020.2989670. 

[9] R. Vedantham, "Adaptive increasing-margin adversarial neural iterative 
system based on facial expression recognition feature models," 
Multimedia Tools and Applications, vol. 81, no. 3, pp. 3793–3830, Jan. 
2022, https://doi.org/10.1007/s11042-021-11320-1. 

[10] Y.-J. Xiong, Q. Wang, Y. Du, and Y. Lu, "Adaptive graph-based feature 
normalization for facial expression recognition," Engineering 
Applications of Artificial Intelligence, vol. 129, Mar. 2024, Art. no. 
107623, https://doi.org/10.1016/j.engappai.2023.107623. 

[11] Z. Sun, C. Fu, M. Luo, and R. He, "Self-Augmented Heterogeneous 
Face Recognition," in 2021 IEEE International Joint Conference on 
Biometrics (IJCB), Shenzhen, China, Aug. 2021, pp. 1–8, 
https://doi.org/10.1109/IJCB52358.2021.9484335. 

[12] L. Wang, X. Kang, F. Ding, S. Nakagawa, and F. Ren, "A joint local 
spatial and global temporal CNN-Transformer for dynamic facial 
expression recognition," Applied Soft Computing, vol. 161, Aug. 2024, 
Art. no. 111680, https://doi.org/10.1016/j.asoc.2024.111680. 

[13] Y. Liu, "Deep Learning-Driven Real-Time Facial Expression Tracking 
and Analysis in Virtual Reality," Applied Mathematics and Nonlinear 
Sciences, vol. 9, no. 1, Jan. 2024, Art. no. 20242283, https://doi.org/ 
10.2478/amns-2024-2283. 

[14] A. Barman and P. Dutta, "Facial expression recognition using Reversible 
Neural Network," Applied Soft Computing, vol. 162, Sep. 2024, Art. no. 
111815, https://doi.org/10.1016/j.asoc.2024.111815. 

[15] H. V. Manalu and A. P. Rifai, "Detection of human emotions through 
facial expressions using hybrid convolutional neural network-recurrent 
neural network algorithm," Intelligent Systems with Applications, vol. 
21, Mar. 2024, Art. no. 200339, https://doi.org/10.1016/j.iswa.2024. 
200339. 

[16] J. Zhang, W. Wang, X. Li, and Y. Han, "Recognizing facial expressions 
based on pyramid multi-head grid and spatial attention network," 
Computer Vision and Image Understanding, vol. 244, Jul. 2024, Art. no. 
104010, https://doi.org/10.1016/j.cviu.2024.104010. 

[17] E. S. Agung, A. P. Rifai, and T. Wijayanto, "Image-based facial emotion 
recognition using convolutional neural network on emognition dataset," 



Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 19016-19023 19023  
 

www.etasr.com Mujiyanto et al.: Swin Transformer with Enhanced Dropout and Layer-wise Unfreezing for Facial … 

 

Scientific Reports, vol. 14, no. 1, Jun. 2024, Art. no. 14429, 
https://doi.org/10.1038/s41598-024-65276-x. 

[18] X. Chen, X. Zheng, K. Sun, W. Liu, and Y. Zhang, "Self-supervised 
vision transformer-based few-shot learning for facial expression 
recognition," Information Sciences, vol. 634, pp. 206–226, Jul. 2023, 
https://doi.org/10.1016/j.ins.2023.03.105. 

[19] M. Bie, H. Xu, Y. Gao, K. Song, and X. Che, "Swin-FER: Swin 
Transformer for Facial Expression Recognition," Applied Sciences, vol. 
14, no. 14, Jul. 2024, Art. no. 6125, https://doi.org/10.3390/ 
app14146125. 

[20] A. Vats and A. Chadha, "Facial Expression Recognition using Squeeze 
and Excitation-powered Swin Transformers." arXiv, Apr. 29, 2023, 
https://doi.org/10.48550/arXiv.2301.10906. 

[21] A. Lin, B. Chen, J. Xu, Z. Zhang, G. Lu, and D. Zhang, "DS-TransUNet: 
Dual Swin Transformer U-Net for Medical Image Segmentation," IEEE 
Transactions on Instrumentation and Measurement, vol. 71, pp. 1–15, 
2022, https://doi.org/10.1109/TIM.2022.3178991. 

[22] L. Qin et al., "SwinFace: A Multi-Task Transformer for Face 
Recognition, Expression Recognition, Age Estimation and Attribute 
Estimation," IEEE Transactions on Circuits and Systems for Video 
Technology, vol. 34, no. 4, pp. 2223–2234, Apr. 2024, https://doi.org/ 
10.1109/TCSVT.2023.3304724. 

[23] S. Han, H. Chang, Z. Shi, and S. Hu, "Facial Expression Recognition 
Algorithm Based on Swin Transformer," in 2023 9th International 
Conference on Systems and Informatics (ICSAI), Changsha, China, Dec. 
2023, pp. 1–6, https://doi.org/10.1109/ICSAI61474.2023.10423327. 

[24] H. Feng, W. Huang, D. Zhang, and B. Zhang, "Fine-Tuning Swin 
Transformer and Multiple Weights Optimality-Seeking for Facial 
Expression Recognition," IEEE Access, vol. 11, pp. 9995–10003, 2023, 
https://doi.org/10.1109/ACCESS.2023.3237817. 

[25] Y. Wu, A. Xiong, J. Lai, J. Liang, and J. Chen, "DFF: Deformable 
Attention Transformer-Based with Facial Feature Fusion Network for 
Facial Express Recognition," in 2023 IEEE International Conference on 
Unmanned Systems (ICUS), Hefei, China, Oct. 2023, pp. 984–989, 
https://doi.org/10.1109/ICUS58632.2023.10318324. 

[26] T. Chen, T. Pu, H. Wu, Y. Xie, L. Liu, and L. Lin, "Cross-Domain 
Facial Expression Recognition: A Unified Evaluation Benchmark and 
Adversarial Graph Learning," IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 44, no. 12, pp. 9887–9903, Dec. 2022, 
https://doi.org/10.1109/TPAMI.2021.3131222. 

[27] Z. Liu et al., "Swin Transformer: Hierarchical Vision Transformer using 
Shifted Windows," in 2021 IEEE/CVF International Conference on 
Computer Vision (ICCV), Montreal, QC, Canada, Oct. 2021, pp. 9992–
10002, https://doi.org/10.1109/ICCV48922.2021.00986. 

[28] N. Li, Y. Huang, Z. Wang, Z. Fan, X. Li, and Z. Xiao, "Enhanced 
Hybrid Vision Transformer with Multi-Scale Feature Integration and 
Patch Dropping for Facial Expression Recognition," Sensors, vol. 24, no. 
13, Jan. 2024, Art. no. 4153, https://doi.org/10.3390/s24134153. 

[29] K. Wu, H. Peng, M. Chen, J. Fu, and H. Chao, "Rethinking and 
Improving Relative Position Encoding for Vision Transformer," in 2021 
IEEE/CVF International Conference on Computer Vision (ICCV), 
Montreal, QC, Canada, Oct. 2021, pp. 10013–10021, 
https://doi.org/10.1109/ICCV48922.2021.00988. 

[30] F. Scala, A. Ceschini, M. Panella, and D. Gerace, "A General Approach 
to Dropout in Quantum Neural Networks," Advanced Quantum 
Technologies, Art. no. 2300220, https://doi.org/10.1002/qute. 
202300220. 

[31] I. J. Goodfellow et al., "Challenges in Representation Learning: A 
Report on Three Machine Learning Contests," in Neural Information 
Processing, pp. 117–124, https://doi.org/10.1007/978-3-642-42051-
1_16. 

[32] J. Yang, Z. Lv, K. Kuang, S. Yang, L. Xiao, and Q. Tang, "RASN: 
Using Attention and Sharing Affinity Features to Address Sample 
Imbalance in Facial Expression Recognition," IEEE Access, vol. 10, pp. 
103264–103274, 2022, https://doi.org/10.1109/ACCESS.2022.3210109. 

[33] F. Xue, Q. Wang, Z. Tan, Z. Ma, and G. Guo, "Vision Transformer With 
Attentive Pooling for Robust Facial Expression Recognition," IEEE 

Transactions on Affective Computing, vol. 14, no. 4, pp. 3244–3256, Jul. 
2023, https://doi.org/10.1109/TAFFC.2022.3226473. 

[34] O. S. Ekundayo and S. Viriri, "Facial Expression Recognition: A Review 
of Trends and Techniques," IEEE Access, vol. 9, pp. 136944–136973, 
2021, https://doi.org/10.1109/ACCESS.2021.3113464. 

[35] G. Simcock et al., "Associations between Facial Emotion Recognition 
and Mental Health in Early Adolescence," International Journal of 
Environmental Research and Public Health, vol. 17, no. 1, Jan. 2020, 
Art. no. 330, https://doi.org/10.3390/ijerph17010330. 

 


