
Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19045-19051 19045

www.etasr.com Mutabarura et al.: Comparative Evaluation of YOLO Models on an African Road Obstacles Dataset for …

Comparative Evaluation of YOLO Models on
an African Road Obstacles Dataset for Real-
Time Obstacle Detection

Pison Mutabarura

Department of Electrical & Electronics Engineering, Pan African University Institute for Basic Sciences,
Technology, and Innovation (PAUSTI) Juja, Kenya
mutapiso@gmail.com (corresponding author)

Nicasio Maguu Muchuka

Department of Electrical & Control Engineering, Egerton University, Nakuru, Kenya
nmuchuka@egerton.ac.ke

Davies Rene Segera

Department of Electrical and Information Engineering, University of Nairobi, Nairobi, Kenya
Davies.segera@uonbi.ac.ke

Received: 29 September 2024 | Revised: 19 October 2024 and 31 October 2024 | Accepted: 9 November 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.9135

ABSTRACT

Public datasets are used to train road obstacle detection models, but they lack diverse and rare object

classes found on African roads, negatively impacting the performance of models trained on them. Although

attempts have been made to create custom datasets to train road obstacle detection models, they lack the

unique challenges posed by African wildlife and livestock commonly encountered on African roads. This

leads to poor performance of road obstacle detection systems in the African context. This study presents a

custom dataset with rare African object classes and compares the performance of three YOLO models on

it using mean Average Precision (mAP). The images were collected from multiple sources to ensure a wide

range of scenarios. Offline data augmentation was applied to increase dataset diversity and simulate real-

world road scenarios. The models were trained and evaluated, with YOLOv5 demonstrating superiority

over the other two models, with an object detection accuracy of 94.68% mAP at an Intersection over Union

(IoU) threshold of 0.5 with data augmentation. Offline data augmentation significantly improved all

models' object detection accuracy, especially for YOLOv3. The results reveal the effectiveness of the

custom dataset and highlight the importance of data augmentation in improving object detection.

Keywords-African road obstacles; object detection; data augmentation; road obstacles; YOLOv3

I. INTRODUCTION

In computer vision and object detection, dataset preparation
is critical, as the performance of object detection models
depends on the quality and diversity of the dataset used to train
them. This fundamental step is crucial for all object detection
models, which are classified into one-stage and two-stage
object detectors. Two-stage detectors include Regional-based
Convolutional Neural Networks (R-CNN) [1], Fast R-CNN [2],
Faster R-CNN [3], and Deformable Part Model (DPM) [4].
Examples of one-stage detectors are You Only Look Once
(YOLO) [5] and Single Shot Multibox Detectors (SSDs) [6].
The YOLO series of object detectors has gained a lot of
attention due to its balanced accuracy and object detection
speed [7]. In [5], the original YOLO algorithm outperformed
two-stage object detectors, such as the Fast R-CNN algorithm

and R-CNN, in object detection speed and distinguishing
objects from background pixels. The YOLO algorithm has a
simple pipeline and uses a regression mechanism, making it a
real-time object detector. The YOLO algorithm surpasses two-
stage object detectors such as RCNN, Fast RCNN, DPM, and
Faster RCNN for applications requiring real-time object
detection [1, 5].

The original YOLO algorithm struggled in object
localization and recorded a lower recall than regional proposal-
based object detectors [5]. Thus, it was modified to improve
accuracy while maintaining its high object detection speed,
leading to other YOLO versions, such as YOLOv2 [8],
YOLOv3 [9], and YOLOv4 [10]. These versions modified the
original YOLO architecture, for example, including the Spatial
Pyramid Pooling (SPP) layer and PANet path aggregation in
the neck to enhance the extraction of important features from

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19045-19051 19046

www.etasr.com Mutabarura et al.: Comparative Evaluation of YOLO Models on an African Road Obstacles Dataset for …

the backbone [10, 11]. Since 2020, other versions of YOLO
with further advances have been proposed to improve object
detection accuracy. These include YOLOv5 [11] with
advanced features, such as automatic adaptation of anchors and
mosaic data enhancement [12, 13], YOLOv6, YOLOv7,
YOLOv8, YOLOv9, and YOLOv10.

These advances in the YOLO algorithm have significant
implications in various applications, including obstacle
detection. In road obstacle detection for collision avoidance
systems, publicly available datasets such as the PASCAL
Visual Object Classes Challenge (PASCAL VOC) [14],
Karlsruhe Institute of Technology and Toyota Technological
Institute (KITTI) [15], Common Objects in Context (COCO)
[16], and ImageNet [17] have been used to train models [18,
19]. This is because creating a large and diverse dataset is
costly and time-consuming [20]. Of these datasets, KITTI has
been widely used to train object detection models used in
autonomous driving research [21-23]. The images in the KITTI
dataset were captured using a camera and LiDAR for object
detection, tracking, odometry, and semantic segmentation
applications. This dataset comprises a large number of images
for benchmarking these applications. However, the data in the
KITTI dataset were captured in good weather, which limits its
effectiveness in adverse weather conditions. As a result, data
augmentation techniques such as rotation, flipping, the addition
of random noise, etc., have been proposed to artificially
transform data, simulate these weather conditions, and enhance
the robustness and generalizability of trained models [24].

Common transformation approaches for data augmentation
in object detection include flipping, cropping, rotation,
blurring, shifting, contrast, and brightness adjustments [25].
These data augmentation techniques can be applied to the
dataset, either in offline or online data augmentation, before or
during the model training. Although online data augmentation
techniques have been integrated into the training pipelines of
the most recent libraries, such as Ultralytics [26], OpenMMLab
[27], and OpenVINO [28], they slow the training process and
consume significant computational and extensive memory
resources for execution [29]. On the other hand, offline data
augmentation techniques increase data diversity with consistent
data transformations across the dataset before training. This
reduces the model's computational and memory burden on the
training hardware. Therefore, offline data augmentation is
valuable in increasing the volume of the data for training object
detection models, addressing the significant challenges of
overfitting and the limited amount of data due to the time
required to collect large amounts of data [30]. According to
[31], rotation and the Wasserstein Generative Adversarial
Network (WGAN) have yielded better results than other data
augmentation techniques. Adding noise to the images used to
train an object detection model in the form of salt and pepper
with white and black dots in an image helps prevent overfitting
[32]. With random noise added to the training data, the object
detection models can learn faster and more accurately.
Positional biases in the images can be eliminated by moving
the image along the x and y directions, left and right, up and
down, helping object detectors search the entire image [30].
Although data augmentation has proven valuable in improving
model performance and generalizability, researchers have

recognized the need for more comprehensive datasets that
sufficiently capture various environmental conditions.

Recently, large-scale datasets such as Waymo [33], ACDC
[34], Foggy Cityscape [35], and RADIATE [36] have been
proposed to address the need for adverse weather conditions.
These rely on the high resolution of advanced sensors,
particularly radar sensors, and extend data collection in a wide
range of challenging weather conditions for reliable
performance in diverse driving scenarios under all weather
conditions. In addition to these datasets, researchers have also
created custom datasets for specific road obstacle detection
applications. In [37], a custom dataset was presented for
autonomous driving environments. The images were collected
using a camera mounted on a vehicle. This dataset included
only ten object classes: vehicle, car, SUV, minibus, truck, bus,
motorcyclist, pedestrian, bicyclist, and tricyclist, with 150,208
annotations created. In [38], a custom dataset was presented
with images captured by a Raspberry Pi camera mounted on a
vehicle's dashboard to train YOLOv3 and YOLOv5 models for
road obstacle detection. Images were extracted from videos
captured at 24 fps with a Raspberry Pi camera at a sample rate
of 1 fps. The images were annotated using seven object classes:
pedestrians, stray animals, speed bumps, etc. These public and
custom datasets offer valuable contributions in training object
detection models for road obstacle detection. However, these
datasets do not account for different weather conditions, such
as rain, fog, or others, that could improve the robustness of
object detection models [38].

Although existing public datasets have contributed
significantly to object detection, custom datasets are needed to
overcome emerging challenges, especially in road safety and
driver assistant systems in sub-Saharan Africa. This is
specifically due to the lack of some object classes from these
countries in the public datasets. Moreover, custom datasets
proposed in the literature to train object detection models lack
African-specific road obstacles, such as wild animals and
livestock [37-38], which presents a gap in their usage in an
African context. The lack of animal classes, such as cows,
buffalos, zebras, goats, elephants, sheep, etc., makes obstacle
detection models trained on these datasets susceptible to
collisions in an autonomous environment when encountering
such objects. The absence of African-specific object classes in
both public and custom datasets presents a significant
shortcoming in training obstacle detection models for
applications in the African context. This is due to the reduced
generalizability of the object detection models trained on these
datasets, which leads to underperformance on absent objects.
This complicates the development of robust object detection
models for real-world applications such as road obstacle
detection, especially for African road scenarios.

The main contributions of this study are:

 Develops and validates a custom dataset explicitly tailored
for African road scenarios with rare African wildlife and
livestock road obstacles.

 Quantitatively assesses how offline data augmentation
techniques affect the object detection accuracy of YOLOv3,
YOLOv4, and YOLOv5 models.

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19045-19051 19047

www.etasr.com Mutabarura et al.: Comparative Evaluation of YOLO Models on an African Road Obstacles Dataset for …

 Compares the YOLOv3, YOLOv4, and YOLOv5 models
using a custom African road obstacle dataset.

II. TOOLS AND METHODS

A. Tools

TABLE I. TOOLS USED IN THE STUDY

Tool Table column subhead

Label-Studio Data annotation
CUDA and CUDNN GPU acceleration during training

Nvidia GeForce RTX 3050 laptop Training models
Samsung Galaxy A13 phone Image capture

B. Data Preparation

Images of commonly encountered African road obstacles
were obtained from multiple sources: 1,655 were collected
from online image repositories using Imageye [39], 1,000 were
extracted from the Open Image Dataset v4 (OIDv4) [40], and
396 were captured with a phone camera on an urban road in
Kenya. In searching the images from the online repositories,
the object names on the highways and rural and urban roads
were used for the objects. The object classes considered
included car, van, truck, person, motorcycle, bicycle,
motorcyclist, tricyclist, dog, cow, elephant, pig, signpost, goat,
sheep, zebra, buffalo, lion, horse, donkey, and minibus. Images
of interest from the online repositories were downloaded using
Imageye [39] in JPG and PNG formats. The PNG images were
converted to a JPG format for dataset consistency and renamed
with the corresponding object classes. Duplicates in the
formatted image were removed using a Python script, and
formatted images were then manually analyzed to remove
Artificial Intelligence (AI) generated and unnecessary images,
ensuring the inclusion of various lighting and weather
conditions. Images were extracted from the OIDv4 dataset
using the OIDv4_Toolkit and specific commands to specify
object classes.

The dataset was further refined by subdividing the vehicle
classes to reflect the real-world scenarios on road networks. A
vehicle is encountered in various positions, and the collision
avoidance decision depends on the actual position in which it is
encountered. Hence, for each vehicle class, three subdivisions
of the body of the vehicle represent the sides of the vehicles
that may be encountered as stationary vehicles parked on the
road: the rear of the vehicle represents the vehicles being
approached from behind, and the front of the vehicle represents
vehicles being approached in the opposite direction. These
subdivisions ensure elaborate and detailed class definitions,
reflecting the different orientations of the vehicles encountered
in the actual road environment. A total of 3,051 images were
collected for all object classes of commonly encountered road
obstacles, with each considered class having at least 100
representative images. The images were then loaded into Label
Studio, an open-source tool that exports annotations in YOLO
format. Rectangular boxes were created around the objects of
interest for the 33 object classes considered in the dataset. A
comprehensive set of annotation guidelines with a clear
definition of each object class and instructions for bounding
box placement was used to ensure consistency of the bounding

boxes created. This was used along with a two-stage quality
annotation process involving initial annotation and review and
validation with the help of Label Studio's quality control
feature of show overlap. Figure 1 shows examples of annotated
images.

Fig. 1. Images from the dataset: (a) bus and car, (b) persons in rain, (c)
car, (d) elephants, (e) cow, (f) sheep.

Using the Label Studio annotation tool, 8,133 labels were
created for all the images. Figure 2 shows a histogram with a
breakdown of annotations for each object class considered.

Fig. 2. Histogram showing the number of labels per class.

After labeling, the dataset was exported in a YOLO format
to train the YOLO models. A single line in YOLO format
represents each object class and its bounding box details in a
given image as: <������ ��	

> <��
���
> <��
���
> <����ℎ>
<ℎ���ℎ�>. Here, <������ ��	

> is a whole number denoting

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19045-19051 19048

www.etasr.com Mutabarura et al.: Comparative Evaluation of YOLO Models on an African Road Obstacles Dataset for …

the class of the object assigned using an auto-increment integer
starting from 0, <��
���
> and <��
���
> are the normalized
coordinates of the center of the bounding box ranging from 0 to
1, while <ℎ���ℎ�> and <����ℎ> represent the normalized
height and width of the image, respectively, ranging from 0 to
1. These values were obtained using:

��
���
 � �
�� (1)

��
���
 � �
�� (2)

����ℎ � �
�� (3)

����ℎ� � ℎ
�� (4)

where �, �, �, and ℎ are the bounding box's x-coordinate, y-
coordinate, width, and height, while � and � are the
respective width and height of the whole image [41]. The
encoded labels were stored in a separate .txt file within a
"labels" subfolder. Each text file corresponds to a respective
image file in the "images" subfolder.

C. Dataset Splitting and Data Augmentation

For each class in the dataset, the images were divided into
an 80% training set, a 10% validation set, and a 10% testing
set. Training sets for all object classes were combined to form
the final training set, and the individual class testing sets were
combined to form the test set. Similarly, individual class
validation sets were combined to form the dataset validation set
to ensure equal representation of all object classes.

The training set was subjected to various data augmentation
techniques, such as flipping, rotation, brightness adjustment,
and random noise, in Robflow [42] to increase the model's
generalization and robustness in detecting objects under
various conditions and illuminations. Random noise simulated
the rainy weather conditions to enhance the model's detection
even in rainy conditions. The brightness adjustment facilitated
object detection for dark conditions at night by introducing
poorly visible images. Horizontal flipping and
counterclockwise 90° rotation were also applied to simulate
real-world scenarios of obstacles in varying orientations and
ensure reduced overfitting [25]. This resulted in 8,769 training
images with their respective labels generated to train the
YOLO models. Figure 3 shows some of the augmented images.

Fig. 3. Examples of augmented images in the dataset.

D. Data Records

The augmented African road obstacles dataset was
uploaded to the Figshare platform [43] as a zip file, containing
an image folder with the 9,378 images, an annotations folder
with the corresponding labels, and a classes.txt file with all the
33 object classes considered. The adopted naming convention
for the images was c.jpg, where c is the class name. The label
files in the annotations folder adopt the same naming
convention but instead use a .txt extension. All images had a
resolution of 608×608 pixels.

E. Model Training

To allow a meaningful comparison across the YOLO
generations while maintaining the practical constraints of this
research related to available hardware resources, the YOLOv3,
YOLOv4, and YOLOv5 models were trained on the custom
dataset. The three chosen YOLO models are the most widely
used YOLO versions in obstacle detection because of their
balance between performance and accessibility. Τhe YOLOv3
model was trained first in the darknet framework using the
dataset in its original and augmented forms using a laptop with
a Nvidia GeForce RTX 3050 with 6 GB RAM GPU. The
choice of the darknet framework to train the YOLOv3 model
was inspired by the fact that the model was originally
developed in this framework [44]. The training
hyperparameters were carefully selected, following the
developer's guide to balance the model's performance and
computational efficiency given the available training hardware
resources.

TABLE II. TRAINING HYPERPARAMETERS

Hyperparameter Value

Batch size 16
Learning rate 0.001

Image size 608 x 608
Weight decay 0.0005

A batch size of 16 was selected to maintain a balance

between the memory constraints of training hardware and
training stability, as a relatively smaller batch size reduces
memory usage and allows for more frequent weight updates.
The chosen moderate learning rate allowed the model to learn
progressively while avoiding excessive oscillations. An image
size of 608×608 pixels was chosen to ensure the detection of
small objects while maintaining the computational constraints
of the training hardware. A weight decay of 0.0005 was
introduced to avoid overfitting by introducing L2 regularization
to the loss function. The number of filters was calculated using
[45]:

������
 � ��� ��� �� ��	

�
 ! 5# $ 3

The YOLOv3 model was trained on the original and
augmented datasets for 66,000 iterations, calculated from
 	�&'��(
) � 2000 $ �� ��� �� ��	

�
 [45], and the
weights were saved after every 10,000 iterations for model
evaluation on the validation dataset. To train the model, the
pre-trained YOLOv3 convolutional weights file
darknet53.conv.74 from the official YOLOv3 website, was
used [44].

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19045-19051 19049

www.etasr.com Mutabarura et al.: Comparative Evaluation of YOLO Models on an African Road Obstacles Dataset for …

The training procedure was repeated with the YOLOv4 in a
darknet framework using the same training hardware and
hyperparameter values on both the original and augmented
datasets. The yolov4.conv.137 pre-trained weights file was
used. In contrast, the YOLOv5 model was initially developed
and trained in the PyTorch framework due to its key
advantages in terms of superior flexibility, user-friendliness,
and enhanced performance capabilities. In addition, the
computation graph obtained in a PyTorch framework is
dynamic, allowing for easier debugging and experimentation.
This is key when implementing new features or modifying the
model, which is crucial for adapting various datasets and tasks.
Thus, YOLOv5 was trained in a PyTorch framework using the
same hyperparameters and hardware resources.

F. Testing the Trained YOLO Models on the Dataset

For each model, the best weights were used to make an
inference on the testing dataset. Bounding Boxes (BBs) marked
the detected objects with the corresponding class labels and
their confidence scores. The confidence score, ranging from 0
to 1, indicates the probability that the model detects an image
accurately in a given BB. BBs with an IoU lower than the IoU
threshold of 0.5 were filtered out, removing bounding boxes
with minimal overlap with actual objects. Non-Maximum
Suppression (NMS) was applied for all the BBs predicting the
same object so that only one BB with the highest confidence
score was responsible for predicting it. The detected images
were saved locally to analyze the correct labels.

G. Testing the Models with Webcam and Live Videos

Using OpenCV's video capture function, a Python script
was written to capture separate frames from either a webcam or
live road traffic videos. The captured frame was passed through
the trained models independently for real-time object detection.
The trained models identified objects within the captured
frame, drew the BBs around the predicted objects, and assigned
a confidence score to each detection, indicating the predicted
object's certainty. The predicted images with the corresponding
bounding boxes, class labels, and confidence scores were saved
locally on the laptop for further analysis of the predictions.

H. Evaluation Metrics

The trained models were evaluated for their performance on
the validation dataset using the mean Average Precision (mAP)
metric at IoU thresholds of 0.5 and 0.75. The mAP is the mean
of the dataset's average precisions of all object classes,
calculated by integrating the recall-precision curve using [46]:

 ,- � . /��#��
0

1
 (5)

where /��# is the precision-recall curve.

TABLE III. PERFORMANCE OF THE TRAINED MODELS

Model

Inference

time (ms)

Without

augmentation
With augmentation

 mAP0.5 mAP0.75 mAP0.5 mAP0.75

YOLOv3 26.3 71.44 52.09 89.74 81.62
YOLOv4 25.6 77.95 72.15 90.42 84.58
YOLOv5 24.2 84.66 76.55 94.68 88.80

III. RESULTS AND DISCUSSION

Table III shows the models' performance regarding the
best-achieved mAP values at different IoU threshold values
and the inference times. The results demonstrate that the three
YOLO models significantly benefited from data augmentation,
reflected in the increases in the mAP scores. This is because
data augmentation artificially generates variations of the
original data in the custom dataset, enriching it and broadening
the spectrum of object representation that the model encounters
[24]. Therefore, the models learn invariant features from the
different variations generated, leading to increased
generalization and robustness in detecting objects under
various conditions.

YOLOv5 outperformed YOLOv3 and YOLOv4, as
demonstrated by the best mAP scores with and without data
augmentation on the dataset. This superior object detection
accuracy performance of YOLOv5 over YOLOv4 and
YOLOv3 agrees with what has been recorded in recent studies
comparing the three YOLO models [12, 47, 48]. The
superiority of YOLOv5 on the custom dataset can be attributed
to its ability to auto-learn the BB anchors [49], a specific
feature that allows better adaptability to specific datasets. The
auto-learning results in best-matched anchors, leading to better
initial guesses and allowing faster convergence. While
YOLOv3 exhibited the least mAP, it demonstrated a
remarkable improvement when trained with augmented data on
the custom dataset. Its mAP at an IoU threshold of 0.5
increased to 89.74% and 81.62% at an IoU threshold of 0.75,
surpassing YOLOv4's performance without data augmentation.
YOLOv4's performance at IoU thresholds of 0.5 and 0.75 was
better than that of YOLOv3 but lagged behind YOLOv5.
Compared to YOLOv3, which uses a darknet53 backbone that
struggles to detect small objects, YOLOv4 and YOLOv5 use
CSPdarknet53 with freebies and a bag of specials, significantly
increasing object detection accuracy [12]. Interestingly,
YOLOv3 achieved an inference time close to that of the other
two models. Thus, YOLOv3 with offline data augmentation
can achieve a high object detection accuracy with an inference
speed closer to those of YOLOv4 and YOLOv5.

Figure 4 shows examples of the predicted objects using the
trained model through a webcam, live videos, and images from
the dataset's test set. It can be observed that the trained models
correctly detected objects in images, webcam, and live road
traffic videos with correct BBs, class labels, and higher
confidence scores at an IoU threshold of 0.5. This shows that
the models trained on the custom dataset can be effectively
deployed in real-world applications for real-time road obstacle
detection. Higher confidence scores in the detected objects
indicate the models' confidence in reliably detecting the
objects. The results of this study reveal the relevance of the
developed dataset for object detection in African road
scenarios, as demonstrated by the high mAP values obtained,
particularly with the application of data augmentation. Table
IV shows how the trained models compare with other studies
using custom datasets.

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19045-19051 19050

www.etasr.com Mutabarura et al.: Comparative Evaluation of YOLO Models on an African Road Obstacles Dataset for …

Fig. 4. Testing results: (a) and (b) from the webcam, (c) and (d) from live
videos, and (e) and (f) from the testing set.

TABLE IV. COMPARISON WITH PREVIOUS STUDIES

Study Model used mAP (%)

[50] YOLOv5 81.02

[38]
YOLOv3 76.26
YOLOv5 73.78

[37] YOLOv3 79.40

This study
YOLOv5 94.68
YOLOv4 90.42
YOLOv3 89.74

IV. CONCLUSION

This study compared the performance of three YOLO
models on a custom dataset tailored for African road scenarios
and evaluated the effectiveness of the dataset with rare object
classes on African roads for road obstacle detection. The
dataset comprised 33 object classes of commonly encountered
road obstacles with rare animal species, addressing a critical
gap in existing datasets. Offline data augmentation was applied
to enhance the models' ability to generalize and detect objects
reliably and accurately in real-world scenarios. The findings
showed that YOLOv5 outperformed the object detection
accuracy of the two other YOLO models, both with and
without data augmentation, indicated by the highest achieved
mAP. Data augmentation drastically improved the object
detection accuracy of the YOLOv3 model, bringing it closer to
the detection accuracy of YOLOv4 and YOLOv5. In particular,
these results demonstrate that the trained models on the custom
dataset achieve object detection accuracies higher than those
recorded in the literature. Future work should focus on
expanding the dataset to include additional object classes with

additional images captured using advanced sensors, such as
LiDAR and radar sensors, to enhance object detection
accuracy. Furthermore, deploying the trained models for real-
world obstacle detection could reveal more about the
effectiveness of the dataset in road obstacle detection.

REFERENCES

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation,"
in 2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, Jun. 2014, pp. 580–587, https://doi.org/
10.1109/CVPR.2014.81.

[2] R. Girshick, "Fast R-CNN." arXiv, Sep. 27, 2015, [Online]. Available:
https://doi.org/10.48550/arXiv.1504.08083.

[3] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.
6, pp. 1137–1149, Jun. 2017, https://doi.org/10.1109/TPAMI.2016.
2577031.

[4] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
"Object Detection with Discriminatively Trained Part-Based Models,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
32, no. 9, pp. 1627–1645, Sep. 2010, https://doi.org/10.1109/TPAMI.
2009.167.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, Jun. 2016, pp. 779–788, https://doi.org/10.1109/CVPR.2016.91.

[6] W. Liu et al., "SSD: Single Shot MultiBox Detector," in Computer
Vision – ECCV 2016, Amsterdam, The Netherlands, 2016, pp. 21–37,
https://doi.org/10.1007/978-3-319-46448-0_2.

[7] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, "YOLOX: Exceeding YOLO
Series in 2021." arXiv, Aug. 06, 2021, https://doi.org/10.48550/arXiv.
2107.08430.

[8] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," in
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, Jul. 2017, pp. 6517–6525, https://doi.org/
10.1109/CVPR.2017.690.

[9] K. Li, Y. Zhuang, J. Lai, and Y. Zeng, "PFYOLOv4: An Improved
Small Object Pedestrian Detection Algorithm," IEEE Access, vol. 11, pp.
17197–17206, 2023, https://doi.org/10.1109/ACCESS.2023.3244981.

[10] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, "YOLOv4: Optimal
Speed and Accuracy of Object Detection." arXiv, Apr. 23, 2020,
https://doi.org/10.48550/arXiv.2004.10934.

[11] U. Nepal and H. Eslamiat, "Comparing YOLOv3, YOLOv4 and
YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs,"
Sensors, vol. 22, no. 2, Jan. 2022, Art. no. 464, https://doi.org/
10.3390/s22020464.

[12] Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, "Real-Time
Vehicle Detection Based on Improved YOLO v5," Sustainability, vol.
14, no. 19, Jan. 2022, Art. no. 12274, https://doi.org/10.3390/
su141912274.

[13] R. Rajamohanan and B. C. Latha, "An Optimized YOLO v5 Model for
Tomato Leaf Disease Classification with Field Dataset," Engineering,
Technology & Applied Science Research, vol. 13, no. 6, pp. 12033–
12038, Dec. 2023, https://doi.org/10.48084/etasr.6377.

[14] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J.
Winn, and A. Zisserman, "The Pascal Visual Object Classes Challenge:
A Retrospective," International Journal of Computer Vision, vol. 111,
no. 1, pp. 98–136, Jan. 2015, https://doi.org/10.1007/s11263-014-0733-
5.

[15] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous
driving? The KITTI vision benchmark suite," in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, Providence, RI, USA, Jun.
2012, pp. 3354–3361, https://doi.org/10.1109/CVPR.2012.6248074.

Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19045-19051 19051

www.etasr.com Mutabarura et al.: Comparative Evaluation of YOLO Models on an African Road Obstacles Dataset for …

[16] T. Y. Lin et al., "Microsoft COCO: Common Objects in Context," in
Computer Vision – ECCV 2014, Zurich, Switzerland, 2014, pp. 740–
755, https://doi.org/10.1007/978-3-319-10602-1_48.

[17] O. Russakovsky et al., "ImageNet Large Scale Visual Recognition
Challenge," International Journal of Computer Vision, vol. 115, no. 3,
pp. 211–252, Dec. 2015, https://doi.org/10.1007/s11263-015-0816-y.

[18] O. Zendel, M. Schorghuber, B. Rainer, M. Murschitz, and C. Beleznai,
"Unifying Panoptic Segmentation for Autonomous Driving," in 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), New Orleans, LA, USA, Jun. 2022, pp. 21319–21328,
https://doi.org/10.1109/CVPR52688.2022.02066.

[19] D. Wu et al., "YOLOP: You Only Look Once for Panoptic Driving
Perception," Machine Intelligence Research, vol. 19, no. 6, pp. 550–562,
Dec. 2022, https://doi.org/10.1007/s11633-022-1339-y.

[20] H. L. Nguyen, D. T. Le, and H. H. Hoang, "Application of Synthetic
Data on Object Detection Tasks," Engineering, Technology & Applied
Science Research, vol. 14, no. 4, pp. 15695–15699, Aug. 2024,
https://doi.org/10.48084/etasr.7929.

[21] W. Jiang, C. Song, H. Wang, M. Yu, and Y. Yan, "Obstacle Detection
by Autonomous Vehicles: An Adaptive Neighborhood Search Radius
Clustering Approach," Machines, vol. 11, no. 1, Jan. 2023, Art. no. 54,
https://doi.org/10.3390/machines11010054.

[22] F. Gao, C. Li, and B. Zhang, "A Dynamic Clustering Algorithm for
Lidar Obstacle Detection of Autonomous Driving System," IEEE
Sensors Journal, vol. 21, no. 22, Aug. 2021, Art. no. 25922–25930,
https://doi.org/10.1109/JSEN.2021.3118365.

[23] G. Al-Ρefai and M. Al-Ρefai, "Road object detection using Yolov3 and
Kitti dataset," International Journal of Advanced Computer Science and
Applications, vol. 11, no. 8, 2020.

[24] A. Mumuni and F. Mumuni, "Data augmentation: A comprehensive
survey of modern approaches," Array, vol. 16, Dec. 2022, Art. no.
100258, https://doi.org/10.1016/j.array.2022.100258.

[25] P. Siripatthiti, "Data Augmentations for Improving Vision-Based
Damage Detection : in Land Transport Infrastructure," M.S. Thesis,
Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden, 2023.

[26] "Ultralytics | Revolutionizing the World of Vision AI."
https://www.ultralytics.com/.

[27] "OpenMMLab," GitHub. https://github.com/open-mmlab.

[28] "openvinotoolkit/openvino." OpenVINOTM Toolkit, Nov. 15, 2024,
[Online]. Available: https://github.com/openvinotoolkit/openvino.

[29] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, "RandAugment: Practical
automated data augmentation with a reduced search space." arXiv, Nov.
14, 2019, https://doi.org/10.48550/arXiv.1909.13719.

[30] M. Patil, M. M. Patil, and S. Agrawal, "WGAN for Data Augmentation,"
in GANs for Data Augmentation in Healthcare, A. Solanki and M.
Naved, Eds. Cham, Switzerland: Springer International Publishing,
2023, pp. 223–241.

[31] G. B. Rajendran, U. M. Kumarasamy, C. Zarro, P. B. Divakarachari, and
S. L. Ullo, "Land-Use and Land-Cover Classification Using a Human
Group-Based Particle Swarm Optimization Algorithm with an LSTM
Classifier on Hybrid Pre-Processing Remote-Sensing Images," Remote
Sensing, vol. 12, no. 24, Jan. 2020, Art. no. 4135, https://doi.org/
10.3390/rs12244135.

[32] P. Sun et al., "Scalability in Perception for Autonomous Driving:
Waymo Open Dataset," in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, WA, USA, Jun. 2020,
pp. 2443–2451, https://doi.org/10.1109/CVPR42600.2020.00252.

[33] P. Sun et al., "Scalability in Perception for Autonomous Driving:
Waymo Open Dataset." arXiv, May 12, 2020, https://doi.org/
10.48550/arXiv.1912.04838.

[34] C. Sakaridis et al., "ACDC: The Adverse Conditions Dataset with
Correspondences for Robust Semantic Driving Scene Perception."
arXiv, Jun. 07, 2024, https://doi.org/10.48550/arXiv.2104.13395.

[35] M. Meyer and G. Kuschk, "Automotive Radar Dataset for Deep
Learning Based 3D Object Detection," in 2019 16th European Radar
Conference (EuRAD), Paris, France, Jul. 2019, pp. 129–132.

[36] M. Sheeny, E. De Pellegrin, S. Mukherjee, A. Ahrabian, S. Wang, and
A. Wallace, "RADIATE: A Radar Dataset for Automotive Perception in
Bad Weather," in 2021 IEEE International Conference on Robotics and
Automation (ICRA), Xi’an, China, May 2021, pp. 1–7,
https://doi.org/10.1109/ICRA48506.2021.9562089.

[37] J. Li, Y. Zhao, L. Gao, and F. Cui, "Compression of YOLOv3 via Block-
Wise and Channel-Wise Pruning for Real-Time and Complicated
Autonomous Driving Environment Sensing Applications," in 2020 25th
International Conference on Pattern Recognition (ICPR), Milan, Italy,
Jan. 2021, pp. 5107–5114, https://doi.org/10.1109/ICPR48806.2021.
9412687.

[38] C. N. Jaikishore et al., "Implementation of Deep Learning Algorithm on
a Custom Dataset for Advanced Driver Assistance Systems
Applications," Applied Sciences, vol. 12, no. 18, Jan. 2022, Art. no.
8927, https://doi.org/10.3390/app12188927.

[39] "Imageye - Image Downloader." https://www.imageye.net/.

[40] "Open Images V7." https://storage.googleapis.com/openimages/web/
index.html.

[41] A. Menon, B. Omman, and A. S, "Pedestrian Counting Using Yolo V3,"
in 2021 International Conference on Innovative Trends in Information
Technology (ICITIIT), Kottayam, India, Feb. 2021, pp. 1–9,
https://doi.org/10.1109/ICITIIT51526.2021.9399607.

[42] "Roboflow: Computer vision tools for developers and enterprises."
https://roboflow.com/.

[43] "figshare - credit for all your research." https://figshare.com/.

[44] "YOLO: Real-Time Object Detection," Twitch. https://pjreddie.com/
darknet/yolo/.

[45] A. Bochkovskii, "AlexeyAB/darknet." Nov. 15, 2024, [Online].
Available: https://github.com/AlexeyAB/darknet.

[46] J. S. Walia and K. Seemakurthy, "Optimized Custom Dataset
for Efficient Detection of Underwater Trash," in Towards Autonomous
Robotic Systems, Cambridge, UK, 2023, pp. 292–303, https://doi.org/
10.1007/978-3-031-43360-3_24.

[47] A. Kuznetsova, T. Maleva, and V. Soloviev, "YOLOv5 versus YOLOv3
for Apple Detection," in Cyber-Physical Systems: Modelling and
Intelligent Control, A. G. Kravets, A. A. Bolshakov, and M.
Shcherbakov, Eds. Cham, Switzerland: Springer International
Publishing, 2021, pp. 349–358.

[48] O. Kıvrak and M. Z. Gürbüz, "Performance Comparison of
YOLOv3,YOLOv4 and YOLOv5 algorithms : A Case Study for Poultry
Recognition," Avrupa Bilim ve Teknoloji Dergisi, no. 38, pp. 392–397,
Aug. 2022, https://doi.org/10.31590/ejosat.1111288.

[49] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B.
Lee, "A survey of modern deep learning based object detection models,"
Digital Signal Processing, vol. 126, Jun. 2022, Art. no. 103514,
https://doi.org/10.1016/j.dsp.2022.103514.

[50] A. Ben Atitallah, Y. Said, M. A. Ben Atitallah, M. Albekairi, K.
Kaaniche, and S. Boubaker, "An effective obstacle detection system
using deep learning advantages to aid blind and visually impaired
navigation," Ain Shams Engineering Journal, vol. 15, no. 2, Feb. 2024,
Art. no. 102387, https://doi.org/10.1016/j.asej.2023.102387.

