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ABSTRACT 

Public datasets are used to train road obstacle detection models, but they lack diverse and rare object 

classes found on African roads, negatively impacting the performance of models trained on them. Although 

attempts have been made to create custom datasets to train road obstacle detection models, they lack the 

unique challenges posed by African wildlife and livestock commonly encountered on African roads. This 

leads to poor performance of road obstacle detection systems in the African context. This study presents a 

custom dataset with rare African object classes and compares the performance of three YOLO models on 

it using mean Average Precision (mAP). The images were collected from multiple sources to ensure a wide 

range of scenarios. Offline data augmentation was applied to increase dataset diversity and simulate real-

world road scenarios. The models were trained and evaluated, with YOLOv5 demonstrating superiority 

over the other two models, with an object detection accuracy of 94.68% mAP at an Intersection over Union 

(IoU) threshold of 0.5 with data augmentation. Offline data augmentation significantly improved all 

models' object detection accuracy, especially for YOLOv3. The results reveal the effectiveness of the 

custom dataset and highlight the importance of data augmentation in improving object detection. 

Keywords-African road obstacles; object detection; data augmentation; road obstacles; YOLOv3   

I. INTRODUCTION  

In computer vision and object detection, dataset preparation 
is critical, as the performance of object detection models 
depends on the quality and diversity of the dataset used to train 
them. This fundamental step is crucial for all object detection 
models, which are classified into one-stage and two-stage 
object detectors. Two-stage detectors include Regional-based 
Convolutional Neural Networks (R-CNN) [1], Fast R-CNN [2], 
Faster R-CNN [3], and Deformable Part Model (DPM) [4]. 
Examples of one-stage detectors are You Only Look Once 
(YOLO) [5] and Single Shot Multibox Detectors (SSDs) [6]. 
The YOLO series of object detectors has gained a lot of 
attention due to its balanced accuracy and object detection 
speed [7]. In [5], the original YOLO algorithm outperformed 
two-stage object detectors, such as the Fast R-CNN algorithm 

and R-CNN, in object detection speed and distinguishing 
objects from background pixels. The YOLO algorithm has a 
simple pipeline and uses a regression mechanism, making it a 
real-time object detector. The YOLO algorithm surpasses two-
stage object detectors such as RCNN, Fast RCNN, DPM, and 
Faster RCNN for applications requiring real-time object 
detection [1, 5].  

The original YOLO algorithm struggled in object 
localization and recorded a lower recall than regional proposal-
based object detectors [5]. Thus, it was modified to improve 
accuracy while maintaining its high object detection speed, 
leading to other YOLO versions, such as YOLOv2 [8], 
YOLOv3 [9], and YOLOv4 [10]. These versions modified the 
original YOLO architecture, for example, including the Spatial 
Pyramid Pooling (SPP) layer and PANet path aggregation in 
the neck to enhance the extraction of important features from 
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the backbone [10, 11]. Since 2020, other versions of YOLO 
with further advances have been proposed to improve object 
detection accuracy. These include YOLOv5 [11] with 
advanced features, such as automatic adaptation of anchors and 
mosaic data enhancement [12, 13], YOLOv6, YOLOv7, 
YOLOv8, YOLOv9, and YOLOv10. 

These advances in the YOLO algorithm have significant 
implications in various applications, including obstacle 
detection. In road obstacle detection for collision avoidance 
systems, publicly available datasets such as the PASCAL 
Visual Object Classes Challenge (PASCAL VOC) [14], 
Karlsruhe Institute of Technology and Toyota Technological 
Institute (KITTI) [15], Common Objects in Context (COCO) 
[16], and ImageNet [17] have been used to train models [18, 
19]. This is because creating a large and diverse dataset is 
costly and time-consuming [20]. Of these datasets, KITTI has 
been widely used to train object detection models used in 
autonomous driving research [21-23]. The images in the KITTI 
dataset were captured using a camera and LiDAR for object 
detection, tracking, odometry, and semantic segmentation 
applications. This dataset comprises a large number of images 
for benchmarking these applications. However, the data in the 
KITTI dataset were captured in good weather, which limits its 
effectiveness in adverse weather conditions. As a result, data 
augmentation techniques such as rotation, flipping, the addition 
of random noise, etc., have been proposed to artificially 
transform data, simulate these weather conditions, and enhance 
the robustness and generalizability of trained models [24]. 

Common transformation approaches for data augmentation 
in object detection include flipping, cropping, rotation, 
blurring, shifting, contrast, and brightness adjustments [25]. 
These data augmentation techniques can be applied to the 
dataset, either in offline or online data augmentation, before or 
during the model training. Although online data augmentation 
techniques have been integrated into the training pipelines of 
the most recent libraries, such as Ultralytics [26], OpenMMLab 
[27], and OpenVINO [28], they slow the training process and 
consume significant computational and extensive memory 
resources for execution [29]. On the other hand, offline data 
augmentation techniques increase data diversity with consistent 
data transformations across the dataset before training. This 
reduces the model's computational and memory burden on the 
training hardware. Therefore, offline data augmentation is 
valuable in increasing the volume of the data for training object 
detection models, addressing the significant challenges of 
overfitting and the limited amount of data due to the time 
required to collect large amounts of data [30]. According to 
[31], rotation and the Wasserstein Generative Adversarial 
Network (WGAN) have yielded better results than other data 
augmentation techniques. Adding noise to the images used to 
train an object detection model in the form of salt and pepper 
with white and black dots in an image helps prevent overfitting 
[32]. With random noise added to the training data, the object 
detection models can learn faster and more accurately. 
Positional biases in the images can be eliminated by moving 
the image along the x and y directions, left and right, up and 
down, helping object detectors search the entire image [30]. 
Although data augmentation has proven valuable in improving 
model performance and generalizability, researchers have 

recognized the need for more comprehensive datasets that 
sufficiently capture various environmental conditions.  

Recently, large-scale datasets such as Waymo [33], ACDC 
[34], Foggy Cityscape [35], and RADIATE [36] have been 
proposed to address the need for adverse weather conditions. 
These rely on the high resolution of advanced sensors, 
particularly radar sensors, and extend data collection in a wide 
range of challenging weather conditions for reliable 
performance in diverse driving scenarios under all weather 
conditions. In addition to these datasets, researchers have also 
created custom datasets for specific road obstacle detection 
applications. In [37], a custom dataset was presented for 
autonomous driving environments. The images were collected 
using a camera mounted on a vehicle. This dataset included 
only ten object classes: vehicle, car, SUV, minibus, truck, bus, 
motorcyclist, pedestrian, bicyclist, and tricyclist, with 150,208 
annotations created. In [38], a custom dataset was presented 
with images captured by a Raspberry Pi camera mounted on a 
vehicle's dashboard to train YOLOv3 and YOLOv5 models for 
road obstacle detection. Images were extracted from videos 
captured at 24 fps with a Raspberry Pi camera at a sample rate 
of 1 fps. The images were annotated using seven object classes: 
pedestrians, stray animals, speed bumps, etc. These public and 
custom datasets offer valuable contributions in training object 
detection models for road obstacle detection. However, these 
datasets do not account for different weather conditions, such 
as rain, fog, or others, that could improve the robustness of 
object detection models [38]. 

Although existing public datasets have contributed 
significantly to object detection, custom datasets are needed to 
overcome emerging challenges, especially in road safety and 
driver assistant systems in sub-Saharan Africa. This is 
specifically due to the lack of some object classes from these 
countries in the public datasets. Moreover, custom datasets 
proposed in the literature to train object detection models lack 
African-specific road obstacles, such as wild animals and 
livestock [37-38], which presents a gap in their usage in an 
African context. The lack of animal classes, such as cows, 
buffalos, zebras, goats, elephants, sheep, etc., makes obstacle 
detection models trained on these datasets susceptible to 
collisions in an autonomous environment when encountering 
such objects. The absence of African-specific object classes in 
both public and custom datasets presents a significant 
shortcoming in training obstacle detection models for 
applications in the African context. This is due to the reduced 
generalizability of the object detection models trained on these 
datasets, which leads to underperformance on absent objects. 
This complicates the development of robust object detection 
models for real-world applications such as road obstacle 
detection, especially for African road scenarios.  

The main contributions of this study are: 

 Develops and validates a custom dataset explicitly tailored 
for African road scenarios with rare African wildlife and 
livestock road obstacles. 

 Quantitatively assesses how offline data augmentation 
techniques affect the object detection accuracy of YOLOv3, 
YOLOv4, and YOLOv5 models. 
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 Compares the YOLOv3, YOLOv4, and YOLOv5 models 
using a custom African road obstacle dataset. 

II. TOOLS AND METHODS 

A. Tools 

TABLE I.  TOOLS USED IN THE STUDY 

Tool Table column subhead 

Label-Studio Data annotation 
CUDA and CUDNN GPU acceleration during training 

Nvidia GeForce RTX 3050 laptop Training models 
Samsung Galaxy A13 phone Image capture 

 

B. Data Preparation 

Images of commonly encountered African road obstacles 
were obtained from multiple sources: 1,655 were collected 
from online image repositories using Imageye [39], 1,000 were 
extracted from the Open Image Dataset v4 (OIDv4) [40], and 
396 were captured with a phone camera on an urban road in 
Kenya. In searching the images from the online repositories, 
the object names on the highways and rural and urban roads 
were used for the objects. The object classes considered 
included car, van, truck, person, motorcycle, bicycle, 
motorcyclist, tricyclist, dog, cow, elephant, pig, signpost, goat, 
sheep, zebra, buffalo, lion, horse, donkey, and minibus. Images 
of interest from the online repositories were downloaded using 
Imageye [39] in JPG and PNG formats. The PNG images were 
converted to a JPG format for dataset consistency and renamed 
with the corresponding object classes. Duplicates in the 
formatted image were removed using a Python script, and 
formatted images were then manually analyzed to remove 
Artificial Intelligence (AI) generated and unnecessary images, 
ensuring the inclusion of various lighting and weather 
conditions. Images were extracted from the OIDv4 dataset 
using the OIDv4_Toolkit and specific commands to specify 
object classes. 

The dataset was further refined by subdividing the vehicle 
classes to reflect the real-world scenarios on road networks. A 
vehicle is encountered in various positions, and the collision 
avoidance decision depends on the actual position in which it is 
encountered. Hence, for each vehicle class, three subdivisions 
of the body of the vehicle represent the sides of the vehicles 
that may be encountered as stationary vehicles parked on the 
road: the rear of the vehicle represents the vehicles being 
approached from behind, and the front of the vehicle represents 
vehicles being approached in the opposite direction. These 
subdivisions ensure elaborate and detailed class definitions, 
reflecting the different orientations of the vehicles encountered 
in the actual road environment. A total of 3,051 images were 
collected for all object classes of commonly encountered road 
obstacles, with each considered class having at least 100 
representative images. The images were then loaded into Label 
Studio, an open-source tool that exports annotations in YOLO 
format. Rectangular boxes were created around the objects of 
interest for the 33 object classes considered in the dataset. A 
comprehensive set of annotation guidelines with a clear 
definition of each object class and instructions for bounding 
box placement was used to ensure consistency of the bounding 

boxes created. This was used along with a two-stage quality 
annotation process involving initial annotation and review and 
validation with the help of Label Studio's quality control 
feature of show overlap. Figure 1 shows examples of annotated 
images. 

 

 
Fig. 1.  Images from the dataset: (a) bus and car, (b) persons in rain, (c) 
car, (d) elephants, (e) cow, (f) sheep. 

Using the Label Studio annotation tool, 8,133 labels were 
created for all the images. Figure 2 shows a histogram with a 
breakdown of annotations for each object class considered.  

 

 
Fig. 2.  Histogram showing the number of labels per class. 

After labeling, the dataset was exported in a YOLO format 
to train the YOLO models. A single line in YOLO format 
represents each object class and its bounding box details in a 
given image as: <������ ��	

> <��
���
> <��
���
> <����ℎ> 
<ℎ���ℎ�>. Here, <������ ��	

> is a whole number denoting 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19045-19051 19048  
 

www.etasr.com Mutabarura et al.: Comparative Evaluation of YOLO Models on an African Road Obstacles Dataset for … 

 

the class of the object assigned using an auto-increment integer 
starting from 0, <��
���
> and <��
���
> are the normalized 
coordinates of the center of the bounding box ranging from 0 to 
1, while <ℎ���ℎ�> and <����ℎ> represent the normalized 
height and width of the image, respectively, ranging from 0 to 
1. These values were obtained using: 

��
���
 �  �
��      (1) 

��
���
 �  �
��       (2) 

����ℎ �  �
��      (3) 

����ℎ� �  ℎ
��      (4) 

where �, �, �, and ℎ are the bounding box's x-coordinate, y-
coordinate, width, and height, while �  and �  are the 
respective width and height of the whole image [41]. The 
encoded labels were stored in a separate .txt file within a 
"labels" subfolder. Each text file corresponds to a respective 
image file in the "images" subfolder. 

C. Dataset Splitting and Data Augmentation 

For each class in the dataset, the images were divided into 
an 80% training set, a 10% validation set, and a 10% testing 
set. Training sets for all object classes were combined to form 
the final training set, and the individual class testing sets were 
combined to form the test set. Similarly, individual class 
validation sets were combined to form the dataset validation set 
to ensure equal representation of all object classes.  

The training set was subjected to various data augmentation 
techniques, such as flipping, rotation, brightness adjustment, 
and random noise, in Robflow [42] to increase the model's 
generalization and robustness in detecting objects under 
various conditions and illuminations. Random noise simulated 
the rainy weather conditions to enhance the model's detection 
even in rainy conditions. The brightness adjustment facilitated 
object detection for dark conditions at night by introducing 
poorly visible images. Horizontal flipping and 
counterclockwise 90° rotation were also applied to simulate 
real-world scenarios of obstacles in varying orientations and 
ensure reduced overfitting [25]. This resulted in 8,769 training 
images with their respective labels generated to train the 
YOLO models. Figure 3 shows some of the augmented images. 

 

 
Fig. 3.  Examples of augmented images in the dataset. 

D. Data Records 

The augmented African road obstacles dataset was 
uploaded to the Figshare platform [43] as a zip file, containing 
an image folder with the 9,378 images, an annotations folder 
with the corresponding labels, and a classes.txt file with all the 
33 object classes considered. The adopted naming convention 
for the images was c.jpg, where c is the class name. The label 
files in the annotations folder adopt the same naming 
convention but instead use a .txt extension. All images had a 
resolution of 608×608 pixels. 

E. Model Training 

To allow a meaningful comparison across the YOLO 
generations while maintaining the practical constraints of this 
research related to available hardware resources, the YOLOv3, 
YOLOv4, and YOLOv5 models were trained on the custom 
dataset. The three chosen YOLO models are the most widely 
used YOLO versions in obstacle detection because of their 
balance between performance and accessibility. Τhe YOLOv3 
model was trained first in the darknet framework using the 
dataset in its original and augmented forms using a laptop with 
a Nvidia GeForce RTX 3050 with 6 GB RAM GPU. The 
choice of the darknet framework to train the YOLOv3 model 
was inspired by the fact that the model was originally 
developed in this framework [44]. The training 
hyperparameters were carefully selected, following the 
developer's guide to balance the model's performance and 
computational efficiency given the available training hardware 
resources.  

TABLE II.  TRAINING HYPERPARAMETERS 

Hyperparameter  Value 

Batch size 16 
Learning rate 0.001 

Image size 608 x 608 
Weight decay 0.0005 

 
A batch size of 16 was selected to maintain a balance 

between the memory constraints of training hardware and 
training stability, as a relatively smaller batch size reduces 
memory usage and allows for more frequent weight updates. 
The chosen moderate learning rate allowed the model to learn 
progressively while avoiding excessive oscillations. An image 
size of 608×608 pixels was chosen to ensure the detection of 
small objects while maintaining the computational constraints 
of the training hardware. A weight decay of 0.0005 was 
introduced to avoid overfitting by introducing L2 regularization 
to the loss function. The number of filters was calculated using 
[45]:  

������
 � ��� ��� �� ��	

�
 !  5# $ 3  

The YOLOv3 model was trained on the original and 
augmented datasets for 66,000 iterations, calculated from 
 	�&'��(
) �  2000 $ �� ��� �� ��	

�
  [45], and the 
weights were saved after every 10,000 iterations for model 
evaluation on the validation dataset. To train the model, the 
pre-trained YOLOv3 convolutional weights file 
darknet53.conv.74 from the official YOLOv3 website, was 
used [44]. 
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The training procedure was repeated with the YOLOv4 in a 
darknet framework using the same training hardware and 
hyperparameter values on both the original and augmented 
datasets. The yolov4.conv.137 pre-trained weights file was 
used. In contrast, the YOLOv5 model was initially developed 
and trained in the PyTorch framework due to its key 
advantages in terms of superior flexibility, user-friendliness, 
and enhanced performance capabilities. In addition, the 
computation graph obtained in a PyTorch framework is 
dynamic, allowing for easier debugging and experimentation. 
This is key when implementing new features or modifying the 
model, which is crucial for adapting various datasets and tasks. 
Thus, YOLOv5 was trained in a PyTorch framework using the 
same hyperparameters and hardware resources. 

F. Testing the Trained YOLO Models on the Dataset 

For each model, the best weights were used to make an 
inference on the testing dataset. Bounding Boxes (BBs) marked 
the detected objects with the corresponding class labels and 
their confidence scores. The confidence score, ranging from 0 
to 1, indicates the probability that the model detects an image 
accurately in a given BB. BBs with an IoU lower than the IoU 
threshold of 0.5 were filtered out, removing bounding boxes 
with minimal overlap with actual objects. Non-Maximum 
Suppression (NMS) was applied for all the BBs predicting the 
same object so that only one BB with the highest confidence 
score was responsible for predicting it. The detected images 
were saved locally to analyze the correct labels. 

G. Testing the Models with Webcam and Live Videos 

Using OpenCV's video capture function, a Python script 
was written to capture separate frames from either a webcam or 
live road traffic videos. The captured frame was passed through 
the trained models independently for real-time object detection. 
The trained models identified objects within the captured 
frame, drew the BBs around the predicted objects, and assigned 
a confidence score to each detection, indicating the predicted 
object's certainty. The predicted images with the corresponding 
bounding boxes, class labels, and confidence scores were saved 
locally on the laptop for further analysis of the predictions. 

H. Evaluation Metrics 

The trained models were evaluated for their performance on 
the validation dataset using the mean Average Precision (mAP) 
metric at IoU thresholds of 0.5 and 0.75. The mAP is the mean 
of the dataset's average precisions of all object classes, 
calculated by integrating the recall-precision curve using [46]: 

 ,- �  . /��#��
0

1
      (5) 

where /��# is the precision-recall curve. 

TABLE III.  PERFORMANCE OF THE TRAINED MODELS  

Model  

Inference 

time (ms) 

Without 

augmentation  
With augmentation 

 mAP0.5 mAP0.75 mAP0.5 mAP0.75 

YOLOv3 26.3 71.44 52.09 89.74 81.62 
YOLOv4 25.6 77.95 72.15 90.42 84.58 
YOLOv5 24.2 84.66 76.55 94.68 88.80 

 

III. RESULTS AND DISCUSSION 

Table III shows the models' performance regarding the 
best-achieved mAP values at different IoU threshold values 
and the inference times. The results demonstrate that the three 
YOLO models significantly benefited from data augmentation, 
reflected in the increases in the mAP scores. This is because 
data augmentation artificially generates variations of the 
original data in the custom dataset, enriching it and broadening 
the spectrum of object representation that the model encounters 
[24]. Therefore, the models learn invariant features from the 
different variations generated, leading to increased 
generalization and robustness in detecting objects under 
various conditions. 

YOLOv5 outperformed YOLOv3 and YOLOv4, as 
demonstrated by the best mAP scores with and without data 
augmentation on the dataset. This superior object detection 
accuracy performance of YOLOv5 over YOLOv4 and 
YOLOv3 agrees with what has been recorded in recent studies 
comparing the three YOLO models [12, 47, 48]. The 
superiority of YOLOv5 on the custom dataset can be attributed 
to its ability to auto-learn the BB anchors [49], a specific 
feature that allows better adaptability to specific datasets. The 
auto-learning results in best-matched anchors, leading to better 
initial guesses and allowing faster convergence. While 
YOLOv3 exhibited the least mAP, it demonstrated a 
remarkable improvement when trained with augmented data on 
the custom dataset. Its mAP at an IoU threshold of 0.5 
increased to 89.74% and 81.62% at an IoU threshold of 0.75, 
surpassing YOLOv4's performance without data augmentation. 
YOLOv4's performance at IoU thresholds of 0.5 and 0.75 was 
better than that of YOLOv3 but lagged behind YOLOv5. 
Compared to YOLOv3, which uses a darknet53 backbone that 
struggles to detect small objects, YOLOv4 and YOLOv5 use 
CSPdarknet53 with freebies and a bag of specials, significantly 
increasing object detection accuracy [12]. Interestingly, 
YOLOv3 achieved an inference time close to that of the other 
two models. Thus, YOLOv3 with offline data augmentation 
can achieve a high object detection accuracy with an inference 
speed closer to those of YOLOv4 and YOLOv5. 

Figure 4 shows examples of the predicted objects using the 
trained model through a webcam, live videos, and images from 
the dataset's test set. It can be observed that the trained models 
correctly detected objects in images, webcam, and live road 
traffic videos with correct BBs, class labels, and higher 
confidence scores at an IoU threshold of 0.5. This shows that 
the models trained on the custom dataset can be effectively 
deployed in real-world applications for real-time road obstacle 
detection. Higher confidence scores in the detected objects 
indicate the models' confidence in reliably detecting the 
objects. The results of this study reveal the relevance of the 
developed dataset for object detection in African road 
scenarios, as demonstrated by the high mAP values obtained, 
particularly with the application of data augmentation. Table 
IV shows how the trained models compare with other studies 
using custom datasets. 
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Fig. 4.  Testing results: (a) and (b) from the webcam, (c) and (d) from live 
videos, and (e) and (f) from the testing set. 

TABLE IV.  COMPARISON WITH PREVIOUS STUDIES 

Study  Model used mAP (%) 

[50] YOLOv5 81.02 

[38] 
YOLOv3 76.26 
YOLOv5 73.78 

[37] YOLOv3 79.40 

This study 
YOLOv5 94.68 
YOLOv4 90.42 
YOLOv3 89.74 

 

IV. CONCLUSION 

This study compared the performance of three YOLO 
models on a custom dataset tailored for African road scenarios 
and evaluated the effectiveness of the dataset with rare object 
classes on African roads for road obstacle detection. The 
dataset comprised 33 object classes of commonly encountered 
road obstacles with rare animal species, addressing a critical 
gap in existing datasets. Offline data augmentation was applied 
to enhance the models' ability to generalize and detect objects 
reliably and accurately in real-world scenarios. The findings 
showed that YOLOv5 outperformed the object detection 
accuracy of the two other YOLO models, both with and 
without data augmentation, indicated by the highest achieved 
mAP. Data augmentation drastically improved the object 
detection accuracy of the YOLOv3 model, bringing it closer to 
the detection accuracy of YOLOv4 and YOLOv5. In particular, 
these results demonstrate that the trained models on the custom 
dataset achieve object detection accuracies higher than those 
recorded in the literature. Future work should focus on 
expanding the dataset to include additional object classes with 

additional images captured using advanced sensors, such as 
LiDAR and radar sensors, to enhance object detection 
accuracy. Furthermore, deploying the trained models for real-
world obstacle detection could reveal more about the 
effectiveness of the dataset in road obstacle detection. 
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