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ABSTRACT 

The localization system is the most important part of the overall drone navigation system. The Global 

Positioning System (GPS) or Global Navigation Satellite System (GNSS) is the main device commonly used 

in a drone. However, under certain conditions, GPS or GNSS may not function optimally, such as in 

situations of signal jamming or enclosed environments. This paper implemented a new approach to 

address this issue by combining GNSS data with Visual Odometry (VO) through Machine Learning (ML) 

methods. The followed process consists of three main stages. First, performing speed and orientation 

estimation using VO. Second, performing left and right feature separation on the images to generate a 

more stable and robust estimation of speed and rotation. Third, refining speed and orientation estimation 

by integrating GNSS data through ML-based data fusion. The proposed method strives to enhance drone 

localization accuracy, despite disruptions or unavailability of GNSS signals. The research results indicate 

that the introduced method significantly reduces Absolute Translation Error (ATE) compared to utilizing 

VO or GNSS separately. The average ATE produced reached 4.38 m and an orientation of 8.26°, indicating 

that this data fusion approach provides a significant improvement in drone localization accuracy, making 

it reliable in operational scenarios with limited GNSS signals. 

Keywords-drone localization; data fusion; machine learning; visual odometry; GNSS 

I. INTRODUCTION  

The use of the GPS for global localization has been 
implemented in many devices. In drone technology, GPS is 
widely utilized for localization/,such as drones [1-3]. However, 
GPS has several drawbacks, involving slow signal recovery, 
limited accuracy, and sensitivity to interference from structures 

and vegetation [4. 5]. As a solution, the GNSS is considered an 
alternative choice because it uses more satellites, allowing for 
faster signal recovery and addressing potential disruptions. 
Thus, GNSS is well suited for use as a global localization 
technique. However, both GPS and GNSS have an accuracy 
range of up to 3 meters [6]. It is, hence, deemed necessary to 
improve its accuracy. To accomplish this, GNSS acting as a 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19466-19471 19467  
 

www.etasr.com Firmansyah et al.: Drone Localization using Global Navigation Satellite System and Separated Feature … 

 

coarse search can be combined with odometry techniques for a 
finer search [7, 8]. Odometry, a technique for tracking changes 
in relative position, contributes significantly to accuracy 
improvement [9]. 

VO uses cameras to track the relative motion of drones by 
analyzing changes in the positions of the surrounding objects, 
which allows for accurate pose estimation, but is susceptible to 
changes in lighting [10, 11]. Inertial Navigation Systems (INS) 
utilize inertial sensors to track the drone's movement without 
relying on the visual environment, but are prone to cumulative 
drift [12]. LiDAR-based odometry provides high accuracy and 
resilience to changes in lighting although it is vulnerable to 
weather limitations [13]. Thermal image-based odometry offers 
resilience to lighting changes and the ability to detect unseen 
objects, but it is also susceptible to decreased accuracy in 
certain weather conditions [14]. Meanwhile, depth odometry 
deploys depth sensors to estimate the distance between the 
drone and surrounding objects, offering the ability to operate in 
various lighting conditions and sensitivity to details [15, 16] 
although it can become inaccurate in conditions with strong 
light reflections. To achieve better results, some researchers are 
trying combinations of more than one sensor. The combination 
of multiple sensors has also been done before, including the use 
of visual inertial [17], LiDAR inertial [18], and depth inertial 
[19]. To obtain pose results from two or more sensors, data 
fusion is generally performed using the Kalman filter and its 
developments, such as the Extended Kalman Filter (EKF) and 
the Unscented Kalman Filter (UKF). AI-based data fusion has 
also been developed and shows good results. The use of 
Convolutional Neural Networks (CNN) [20, 21] and Long 
Short-Term Memory (LSTM) exhibits better results than 
conventional filters [22]. This paper combines GNSS data with 
VO to achieve more accurate results. The contributions of this 
paper are: 

 An increase in localization accuracy when applying VO 
alone by separating left and right features. This technique 
increases the overall accuracy compared with the 
conventional VO [10]. 

 Stability in localization when GPS/GNSS signals are lost 
because VO can operate independently. 

II. METHOD 

The drone localization system depicted in Figure 1 is 
designed to combine GNSS data and VO to enhance the 
accuracy of position and speed estimation. When the drone is 
flown, GNSS data and camera images are recorded for offline 
analysis. Oriented FAST and Rotation BRIEF (ORB)-based 
VO and optical flow are used to accurately estimate linear 
movement; however, difficulties arise in estimating rotation, 
especially during rapid maneuvers. To address this issue, 
rotation estimation is calculated by comparing the average 
positional changes of features on the left and right sides of the 
image. Subsequently, the VO data are compared with GNSS 
through data fusion utilizing CNN, which receive inputs of 
speed, drone rotation, and absolute GNSS position. The CNN 
output, consisting of speed and rotation estimates, is used to 
calculate the final position of the drone deploying kinematic 
equations. 

 

Fig. 1.  Block diagram of the proposed method. 

A. Experimental Approach 

The aim of this experiment is to develop a more accurate 
drone localization system by combining data from GNSS and 
VO. The system is also designed to provide a backup 
mechanism that remains operational when GNSS signals are 
unavailable, such as when the drone is flying in environments 
with signal obstructions or interference. As a result, this system 
can provide more precise position estimates in various 
environmental conditions. 

The experimental setup portrayed in Figure 2 involves the 
use of the FIMI X8 drone equipped with an onboard camera 
and GNSS as the primary reference. Additionally, the drone 
carries an external GNSS and an external camera as the main 
data collection tools. The data collected include the absolute 
position from GNSS as well as the images captured by the 
external camera, which are then utilized for VO. 

 

 

Fig. 2.  Experiment setup. 

The experiment was conducted in three different 
environments: river, beach, and mountain (Figure 3). The data 
collection was conducted from a height of between 50 and 100 
meters, using the orthogonal imaging method. This varied 
environmental condition aims to test the localization system's 
capabilities in challenging conditions, including terrain 
variations and potential GNSS signal interference. The drone is 
flown manually using a remote control within a maximum 
radius of 1 km from the starting point. The flights were carried 
out under various scenarios to explore how the system responds 
to changes in altitude, speed, and drone rotation. The 
evaluation is performed by measuring several performance 
metrics: position estimation accuracy in meters, speed error in 
meters per second, and heading error in degrees for rotation 
estimation. This metric provides an overview of how well the 
localization system performs under various flight scenarios and 
environments. 
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Fig. 3.  Experiment location. 

B. Feature Detection and Tracking 

The initial stage begins with the processing of the first 
frame, denoted as frame �. At this stage, the algorithm performs 
feature extraction using ORB. ORB is a combination of the 
FAST feature detector and the modified BRIEF descriptor to 
enhance performance. ORB uses FAST to detect keypoints, 
then filters the best keypoints using the Harris measure, and 
applies a pyramid structure to detect features at various scales. 
To ensure feature orientation, ORB calculates the intensity-
weighted centroid around the keypoint and uses the vector from 
the keypoint to the centroid as the orientation, making the 
feature more robust to rotation. 

After the ORB feature is detected, each ORB feature in the 
image is labeled as ����, �, �, �	, where �  and � represent the 
position of the feature in the image, � is the sequential label 
number of the feature, and � is the time. Next, the feature in 
tracking uses optical flow. Optical flow describes the 
movement of each pixel between two consecutive frames in an 
image. Assuming that pixel intensity remains constant during 
the transition between frames, the basic equation for optical 
flow can be derived as [10]:  

����, �, �, �	 = ���� + �, � + 
, �, � − 1	  (1) 

Figure 4 shows that the same features are consistently 
detected in two or more consecutive frames. 

 

 

Fig. 4.  Frame by frame ORB tracked feature. 

C. Basic VO 

The VO algorithm developed begins by reading the actual 
location using GNSS data. These data serve as an initial 
reference for the estimation of the drone's position and 
movement in the observed environment. After obtaining the 
initial location data, the video recorded by the drone is 
processed, where each frame captured will be used to estimate 
movement based on changes in the position of visual features 
between frame � and � + 1. 

In frame � + 1 , the position of each detected feature is 
measured again, and then the features are divided into two 
groups: left features and right features. This division is based 
on the position of the features relative to the midpoint of the 
image, where features located on the left of the midpoint are 
grouped as left features, while those on the right are 
categorized as right features. 

The next step is to estimate the speed of the drone. This 
estimation is done by calculating the change in position of the 
features in frame � + 1, relative to their position in frame �. 
The speed estimation is calculated separately for the left feature 
and the right feature, and can be expressed in the form of (2) 
and (3). The number of features available in the image affects 
the movement estimation, so the appropriate number of frames 
will be further tested: 


� =
∑ �����,�	�����,���		

��
���

��
 �   (2) 


� =
∑ �����,�	�����,���		

��
���

��
 �   (3) 

where 
�  and 
�  are speed estimates based on the difference in 
feature changes on the right and left sides,  �  and  �  are the 
number of detected features, �� and ��  are the positions of the 
features in the image expressed in Cartesian coordinates on the 
x-axis and y-axis, � represents the current frame time, and � is 
the scaling factor that indicates the conversion from pixels to 
distance. After obtaining the speed estimates for both feature 
groups, the average total speed of the drone was calculated as: 


 =
!�"!�

#
     (4) 

where 
 is the estimated speed of the drone, 
�  is the estimated 
speed of the right feature, and 
�  is the estimated speed of the 
left feature. This equation provides an estimate of the total 
speed of the drone based on the contributions of the features on 
both sides of the image. Furthermore, the estimation of the 
drone's rotation is carried out by calculating the difference in 
speed between the left feature and the right feature. This 
estimation is crucial for determining the change in the drone's 
orientation between two frames. Equation (5) is used to 
estimate the rotation: 

$ =
!��!�

#�%��&	�%��&		
    (5) 

where $  is the estimated orientation of the drone, 
�  is the 
estimated speed of the right feature, 
�  is the estimated speed of 
the left feature, '���	 is the average position of the right feature 
based on the x-axis, and '���	 is the average position of the left 
feature based on the x-axis. Based on the estimated speed and 
rotation, the algorithm then calculates the new position of the 
drone using: 

Φ��	 = Φ�0	 + �$��	 − $�� − 1		  (6) 

P�x, t	 = P�x, t − 1	 +  
!��	 -./ 0��	

��123 �1�3
  (7) 

P�y, t	 = P�y, t − 1	 + 
!��	 /56 0��	

��123 �1�3
  (8) 

where Φ is the absolute orientation, with Φ�0	 being the initial 
orientation, P is the position estimate, with arguments x and y 
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acting as the coordinate axes, t is the time, and the frame rate in 
this experiment is 30 FPS. This new position P�x, y	 must be 
then converted to a latitude and longitude format to be 
represented in geospatial coordinates. The conversion from the 
x-axis and y-axis coordinates to latitude and longitude is 
carried out using : 

78���	 = 78��0	 +
9�:,�	

���;#<
   (9) 

7= ��	 = 7= �0	 +
9�&,�	

���;#< >?@��1��<		
  (10) 

where 78� is the latitude, 7=  is the longitude, and the constant 
111320 is the distance of one degree of latitude or longitude in 
meters around the equator. This constant is used because the 
experiment was conducted in the area around the equator. 

D. Data Fusion using CNN 

Data fusion is applied by integrating historical data from 
three main sources, namely speed (
 ), orientation ($ ), and 
position data from GNSS. Speed is calculated using (4), and 
orientation is obtained using (5). CNN are used as a key 
component in this process, where the model is trained to learn 
patterns from the previous 10 data points to predict speed and 
orientation at the present time. The CNN process each input 
through several convolutional layers, extracting important 
features from the time series data. These features are then 
further processed to produce the final estimates of speed and 
orientation. The created CNN structure consists of three 
convolutional layers followed by a pooling layer that reduces 
the data dimensions, and a fully connected layer to unify all the 
learned features. In the final layer, the sigmoid activation 
function is used for the estimation of speed and rotation. 

To train the CNN, the data are divided into two parts: 
training data and validation data. The training data are used to 
train the model by learning the patterns of the relationships 
between the historical estimates of 
, $, and GNSS. The test 
data are employed to evaluate the model's performance after 
training. This process is carried out deploying the cross-
validation method to ensure that the model is evaluated 
properly. During training, CNN minimize prediction errors 
using the Mean Squared Error (MSE) loss function so that the 
output generated is closer to the actual value. The ration of 
training data to validation data is 80% to 20%. After estimating 
speed and orientation using CNN, the VO (4) and (5) are 
modified into the new data 
 and $. Next, to estimate position 
and convert geospatial coordinates, we continue to use (6)-(10). 

III. RESULTS AND DISCUSSION 

In this section, testing is conducted to evaluate the proposed 
method. The first test aims to analyze the correlation between 
the number of features used ( ) and the computation time, 
Absolute Translation Error (ATE), and orientation error. The 
number of features is varied to observe its effect on the 
processing speed as well as the accuracy of position and 
orientation estimation. The second test evaluates the results of 
data fusion using CNN, which are compared with the GNSS-
only method and VO, to determine whether this data fusion can 
improve the accuracy of position and orientation estimation 
compared to other methods. 

A. VO Localization 

This experiment was conducted to determine the correlation 
between the number of features extracted in the VO process 
and three important variables: computation time, ATE, and 
orientation error. The aim of this experiment is to understand 
how variations in the number of features used to track the 
movement of objects in images affect the accuracy of position 
and orientation estimation, while also considering computation 
speed. This experiment was conducted by varying the number 
of features used in the VO process, from 50 to 500 features in 
increments of 50 features. 

Table I illustrates the results of the experiments that 
examined computation time, ATE, and orientation errors in the 
VO system. These results are very important. First, regarding 
computation time, it was found that the time required to 
process data is relatively constant, ranging from 0.022 to 0.028 
seconds, regardless of the number of the features utilized. This 
can be explained by the ORB feature detection mechanism, 
which is a key factor in determining computation time. 
Computation time tends to remain stable when there is no 
significant feature loss, as the system only re-detects ORB 
features when there is feature loss. Therefore, as long as the 
system successfully maintains features without a significant 
loss, the computation time remains consistent, even as the 
number of features increases. 

TABLE I.  SEPARATED ORB FEATURE VO RESULT 

Features 

(n) 

Metrics 

Computation 

time (s) 
ATE (m) 

Orientation 

Error (°) 

50 0.028 16.19 18.97 

100 0.023 11.83 17.88 

150 0.024 11.45 16.52 

200 0.024 12.08 16.16 

250 0.022 11.76 15.41 

300 0.023 14.41 14.21 

350 0.023 10.75 14.12 

400 0.024 12.54 15.34 

450 0.023 11.55 16.93 

500 0.027 11.20 16.43 

 

Next, the ATE metric shows a clear downward trend as the 
number of features increases from 50 to 350 features. At 50 
features, the recorded ATE was 16.193 meters, which is the 
highest value compared to the number of other features. The 
performed analysis shows that having too few features, such as 
50, increases the risk of feature loss, which is the loss of 
features tracked by the algorithm, thereby significantly 
reducing positional accuracy. With a small number of features, 
the system does not have enough information to accurately 
track movements, resulting in a large ATE. However, as the 
number of features increases, reaching above 100, the ATE 
begins to decrease and tends to stabilize. This is because 
feature loss becomes less frequent with a larger number of 
features, allowing the system to maintain stable accuracy. At 
350 features, the ATE reached a low point of 10.750 meters 
although at larger feature counts the ATE experienced slight 
fluctuations without significant changes. 

In terms of orientation errors, the conducted experiments 
show a different pattern. Orientation errors are generally not 
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directly affected by the total number of features, but rather by 
the distribution of features between the left and right sides of 
the image. When there is an imbalance in the number of 
features detected on both sides of the image, orientation errors 
tend to increase. For example, at 350 features, the orientation 
error rises sharply to 28.11941°, indicating a significant 
imbalance between features on the left and right sides. This 
suggests that orientation errors are more related to the 
imbalance in feature distribution than to the total number of 
features used. After 350 features, the orientation error 
decreases again and stabilizes around 15° to 16°, indicating that 
the feature distribution becomes more balanced, even as the 
number of features continues to increase. 

B. GNSS and VO Fusion 

Based on the VO estimation results, the drone's path 
deviates significantly compared to the Ground Truth path, as 
reflected by an ATE of 10.75 m. This error is most likely 
caused by the accumulation of drift error that often occurs in 
VO, especially in complex and winding environments. In 
addition, the orientation estimation by VO demonstrates an 
error of 14.12°, indicating a lack of precision in calculating the 
change in direction or rotation of the drone. 

The accuracy improved significantly after the data fusion 
between VO and GNSS. The ATE dropped to 4.38 m. This 
indicates that GNSS data can provide a more stable and 
accurate position reference, thereby correcting the cumulative 
errors from VO. Furthermore, the orientation error has been 
reduced to 8.26°. Table II displays the comparison results 
between the VO method alone and the fusion method. With the 
availability of GNSS data, the navigation system is able to 
reduce orientation errors that were previously caused by the 
limitations of VO in tracking angular changes with precision. 

TABLE II.  OVERALL RESULT COMPARISON 

Method 

Metrics 

Computation 

time (s) 
ATE (m) 

Orientation 

Error (°) 

VO 0.023 10.75 14.12 

VO+GNSS fusion 0.03 4.38 8.26 

 
In terms of computation time, VO alone takes 0.023 

seconds, which is slightly faster than VO+GNSS fusion, which 
takes 0.03 seconds. Although the computation time has slightly 
increased, this is considered reasonable given the additional 
process of integrating data from GNSS. This small increase in 
computation time is still acceptable in real-time applications, 
and the significant improvement in accuracy makes the trade-
off in computation time very worthwhile. Overall, these results 
indicate that the use of VO+GNSS fusion significantly 
improves the performance of drone navigation systems in terms 
of position and orientation accuracy. Figure 5 depicts the 
drone's trajectory when using 350 features. This trajectory is 
plotted deploying GPS visualizer based on the data that have 
been obtained. 

 

Fig. 5.  Trajectory comparison result. 

IV. CONCLUSIONS 

On the basis of the obtained data, the Visual Odometry 
(VO) method independently exhibits a high error rate, with an 
Absolute Translational Error (ATE) of 10.75 meters and an 
orientation error reaching 14.12 degrees. This reflects a 
significant deviation between the estimates and the actual 
position, as well as a lack of accuracy in the directional 
calculations. However, after applying VO and Global 
Navigation Satellite System (GNSS) fusion, there was a 
significant improvement in performance compared to 
conventional VO [10]. The ATE decreased to 4.38 m, and the 
orientation error was reduced to 8.26 °, indicating a tangible 
improvement in position and orientation estimation. The main 
advantage of VO+GNSS fusion is its reliability, offering good 
localization even in the case of sensor collapse, with VO 
compensating during GNSS weakness and vice versa. In the 
future, the integration of thermal imaging will enable VO to 
operate in low-light conditions, improving performance in 
scenarios where lighting is a challenge. 
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