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ABSTRACT 

The Compressive Strength of Concrete (CSC) is a critical parameter for evaluating the quality of concrete 

used in various construction projects, including buildings, bridges, and roads. The primary objective of 

this study is to examine the efficacy of a Gaussian Process (GP) Machine Learning (ML) model employing 

two kernel functions: Radial Basis Function (RBF) and Polynomial (POL), for predicting the CSC, 

considering readily quantifiable parameters. Based on these kernel functions, two models were created for 

this prediction, GP-RBF and GP-POL. The modeling process employed a total of 369 concrete sample 

data, including compressive strength values and eleven other physico-mechanical properties, collected 

from the Cua Luc bridge project in Vietnam. This dataset was partitioned into a training set (70%) and a 

testing set (30%) for model training and validation. Various validation metrics, including R2, Root Mean 

Square Error (RMSE), and Mean Absolute Error (MAE), were used to evaluate and compare the models. 

The findings of this study demonstrated that both models GP-RBF and GP-POL exhibited strong 

performance in predicting CSC, with GP-POL demonstrating marginal superiority over GP-RBF. 

Consequently, it can be concluded that POL is more efficacious than RBF in training the GP model for 

CSC prediction. 
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I. INTRODUCTION  

An accurate prediction of the CSC is of critical importance 
for ensuring the safety and durability of concrete structures. 
The compressive strength of concrete, a crucial metric for 
evaluating its quality, is influenced by a multitude of factors, 
including the proportions of the mixture, the conditions during 
curing, and the inherent properties of the materials [1-4]. 
Consequently, the estimation of this parameter poses a 
substantial challenge. Conventional prediction methods 
frequently depend on empirical formulas and require extensive 
experimental testing, which is not only time-consuming but 
also resource-intensive. Consequently, there has been a 
growing interest in leveraging advanced computational 
techniques to enhance prediction accuracy and efficiency [5]. 
ML techniques have emerged as a significant advancement in 
this field, providing robust tools for prediction in various 
domains [6-8], including the prediction of the properties of 
construction materials [9, 10]. Among these, GP regression, a 
non-parametric Bayesian technique, has emerged as a 
prominent method for modeling complex, non-linear 
relationships in various fields [11, 12]. The efficacy of GP 
models is contingent on the selection of an appropriate kernel 
function, which delineates the covariance structure of the data 
and exerts a significant influence on the model's capacity to 
generalize from the training data. The selection of an 
appropriate kernel function [13], is a critical step in the 
modeling process, as different kernel functions are capable of 
capturing distinct types of relationships and patterns in the data 
[14]. The objective of this study is to address this knowledge 
gap by investigating the performance of various kernel 
functions within the GP regression framework for predicting 
the CSC. The focus is on a comparative analysis of the RBF 
and POL kernels, with an assessment of their prediction 
accuracy and robustness through extensive experimentation on 
concrete strength datasets from real-world contexts. The 
modeling process involved the utilization of a comprehensive 
dataset comprising 369 concrete samples, encompassing their 
compressive strength and an additional 11 physico-mechanical 
properties, obtained from the Cua Luc bridge project in 
Vietnam. This dataset was apportioned for the construction of 
training (70%) and testing (30%) sets, which were employed 
for the training and validation of the models. Various validation 
metrics, including R2

, RMSE, and MAE, were employed to 
assess and compare the models. The findings of this study will 
contribute to a more comprehensive understanding of how 
different kernel functions impact the predictive capabilities of 
GP models. This knowledge will aid in the development of 
more accurate and efficient predictive models for concrete 
compressive strength, ultimately enhancing the design and 
safety of concrete structures. 

II. MATERIALS AND METHOD 

A. Data Used 

In the context of regression modeling, two primary 
variables must be determined: the dependent variable, which 
corresponds to the output, and the independent variables, which 
correspond to the input. In the context of this study, the CSC is 
designated as the dependent variable, while the other physico-

mechanical properties of concrete are defined as independent 
variables. The generation of databases for the modeling of 
prediction of the CSC prediction involved the usage of a 
dataset comprising 369 concrete samples collected from the 
Cua Luc bridge project in Vietnam. A total of 70% of the data 
was selected for the generation of the training dataset, which 
was used to train the models, while the remaining 30% was 
utilized for the generation of the testing dataset, which was 
used to validate the models. The prediction of the CSC was 
facilitated by the employment of eleven independent variables, 
namely the age of concrete, cement content, coarse aggregate 
10 mm × 20 mm, coarse aggregate 5 mm × 10 mm, natural 
sand content, water content, superplasticizer admixture content, 
silica-fume admixture content, slump, water to cement ratio, 
and aggregate to cement ratio. The initial data analysis of the 
parameters used in this study is presented in Table I. The data 
processing and modeling were conducted deploying the Weka 
software. 

TABLE I.  DESCRIPTIVE STATISTICS OF THE STUDY’S 
INPUT AND OUTPUT 

No Parameters Unit Min Max Average STD 

1 Age of concrete (day) 3 28 20 10 

2 Cement content (kg) 230 20 379 81 

3 Coarse aggregate 10 mm × 20 mm (kg) 715 800 755 20 

4 Coarse aggregate 5 mm × 10 mm (kg) 270 370 329 22 

5 Natural sand content (kg) 692 850 781 45 

6 Water content (l) 140 195 160 13 

7 Superplasticizer admixture (l) 2 5 4 1 

8 Silica-fume admixture (kg) 0 26 11 11 

9 Slump (mm) 7 18 14 4 

10 Water to cement ratio - 0 1 0 0 

11 Aggregate to cement ratio - 3 9 5 1 

12 CSC (MPa) 14 73 38 14 
 

B. Gaussian Process 

GP is a powerful framework for modeling distributions 
over functions [15]. It is frequently employed for various 
regression, classification, and uncertainty quantification tasks. 
At the core of the Gaussian processes is the notion of treating 
functions as random variables. Given a set of input-output 
pairs, training data, a GP defines a distribution over functions, 
which is consistent with the observed data. This distribution is 
characterized by a mean function and a covariance function, 
also known as a kernel function, which specifies how the 
outputs at different input points are correlated. One of the key 
strengths of GP is its flexibility in modeling complex data 
patterns while providing principled uncertainty estimates. The 
choice of the kernel function plays a crucial role in shaping the 
characteristics of the inferred functions. There are two main 
types of kernel functions used in developing the GP model: 

����(�, �′) = 
��( − |���′|�
��� )   (1) 

where l is the length scale of the kernel, x and x’
 are two data 

points, and: 

�����(�, � ′) = (��� ′ + �)�   (2) 

where � is the degree of the POL and � is a constant term. GPs 
offer a versatile and powerful approach to modeling and 
predicting the behaviour of construction materials. Their 
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capacity to manage intricate relationships and furnish 
uncertainty estimates renders them especially beneficial in 
ensuring the safety, durability, and sustainability of 
construction projects. By leveraging GPs, engineers and 
researchers can make more informed decisions, optimize 
material usage, and enhance the overall quality and 
performance of construction materials. In addition to the kernel 
functions employed for training the GP model, other 
hyperparameters were used, as shown in Table II. 

TABLE II.  THE PARAMETERS USED FOR THE MODEL 
DEVELOPMENT 

No Hyper-parameters GP-POL GP-RBF 

1 Batch size 100 100 

2 Debug False False 

3 Filter Type Normalize Standardize 

4 Kernel Poly Kernel RBF Kernel 

5 Noise 1.0 1.0 

6 Num Decimal Places 2 2 

7 Seed 1 1 

8 Cache Size 250,007 250,007 

9 Exponent 1.0 1.0 

10 Use Lower Order False False 
 

C. Validation Metrics 

In order to validate and compare the regression models, 
three main validation metrics are often used: the determination 
coefficient (R²), the MAE, and the RMSE. The following is a 
description of these metrics: R² is a statistical measure used in 
regression analysis to assess the goodness of fit of a model. It 
represents the proportion of the variance in the dependent 
variable that is predictable from the independent variable (s). 
R² values range from 0 to 1, where 0 indicates that the model 
does not explain any of the variance and 1 indicates that the 
model explains all the variance in the dependent variable [16]. 
The formula for R² is: 

�� = 1 − ∑ (������ �!" )�
∑ (����⃐$)� �!"

    (3) 

where %&  represents the actual values of the dependent variable, 
%�& represents the predicted values of the dependent variable by 
the regression model, and %&  is the mean of the actual values of 
the dependent variable. MAE is a widely used metric in 
regression analysis to measure the accuracy of a model in 
predicting continuous outcomes [17]. MAE quantifies the 
average magnitude of the errors between the predicted values 
and actual values, providing a straightforward interpretation of 
prediction accuracy [18]. A distinguishing feature of MAE is 
its equitable treatment of all individual differences between the 
predicted and actual values, a characteristic that lends it 
resilience as a metric for evaluating model performance. The 
formula for MAE is: 

'() = *
+∑ |%& − %�&|+&,*    (4) 

where - is the number of data points, %&  represents the actual 
value of the dependent variable for the .-th observation, and |%& − %�&| represents the predicted value of the dependent 
variable for the .-th observation. RMSE is a frequently utilized 
metric for evaluating the accuracy of a regression model. It 
quantifies the mean absolute deviation between the predicted 

values and the actual values, thereby offering insights into the 
model's predictive capability [18]. A notable advantage of 
RMSE is its sensitivity to outliers, as it places greater emphasis 
on larger errors [19]. The formula for RMSE is: 

�'/) = 0*+∑ (%& − %�&)�+&,*    (5) 

where - is the number of observations, %&  represents the actual 
values of the dependent variable, and %�&  represents the 
predicted values of the dependent variable by the regression 
model. 

III. RESULTS AND ANALYSIS 

The GP-POL and GP-RBF models were trained and 
validated using a training and testing dataset, respectively, for 
the purpose of predicting the CSC. The selection of the optimal 
hyperparameters for the GP models was guided by the 
parameters enumerated in Table I, with the objective of 
attaining the most efficacious performance of the models. The 
outcomes of the training and validation processes are presented 
in Figures 1-3. Figure 1 displays the plots of the actual values 
obtained from the experimental test versus the predicted values 
attained from the prediction models. It is evident that the actual 
and predicted values of the GP-RBF model are more proximate 
than those of the GP-POL model for the training dataset. 
However, the actual and predicted values of the GP-POL 
model are more proximate than those of the GP-RBF model. 
This observation aligns with the error performance metrics 
depicted in Figure 2. Figure 3 portrays the plots depicting the 
relationship between the actual and predicted values of the 
models, with the R2

 values of the models also indicated. It is 
evident from this analysis that while the R2

 value of the GP-
RBF model exceeds that of the GP-POL model for the training 
dataset, the R2 value of the GP-RBF model is lower than that 
of the GP-POL model for the testing dataset. Consequently, it 
can be concluded that the GP-POL model exhibits superior 
predictive capabilities compared to the GP-RBF model in 
predicting the CSC. 

IV. DISCUSSION AND CONCLUSIONS 

The selection of kernel functions has been demonstrated to 
exert a substantial influence on the efficacy of the Gaussian 
Process (GP) models [15]. The Radial Basis Function (RBF) 
kernel is a widely used and effective option for many 
applications due to its flexibility and smoothness assumptions. 
However, the RBF kernel can be more effective for data with 
inherent Polynomial (POL) structures [19]. A recommended 
approach involves the empirical evaluation of diverse kernels 
to identify the most suitable one for a given problem. In this 
study, the GP was trained and validated with two types of 
kernel functions, RBF and POL, to generate two models: GP-
RBF and GP-POL, respectively, for prediction of the 
Compressive Strength of Concrete (CSC) based on eleven 
input parameters, such as age of concrete, cement content, 
coarse aggregate 10 mm × 20 mm, coarse aggregate 5 mm × 10 
mm, natural sand content, water content, superplasticizer 
admixture content, silica-fume admixture content, slump, water 
to cement ratio, and aggregate to cement ratio. The database, 
which was collected from the Cua Luc bridge project in 
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Vietnam, was used for the generation of training and validating 
datasets for the models. The validation and comparison of the 
models was conducted utilizing three common validation 
metrics: R2

, RMSE, and MAE. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 1.  Predicted versus measured values of the compressive strength 

using the applied models: (a) training GP-POL, (b) testing GP-POL, (c) 

training GP-RBF, (d) testing GP-RBF. 

The findings of this study demonstrated that both the GP-
RBF and GP-POL models exhibited commendable 
performance in predicting the CSC. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 2.  Error analysis of the applied models: (a) training GP-POL, (b) 

testing GP-POL, (c) training GP-RBF, (d) testing GP-RBF. 
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However, it was observed that the GP-POL model 
demonstrated a slight edge in its predictive capabilities over the 
GP-RBF model. Therefore, it can be concluded that the 
performance of GP is significantly affected by the selection of 
kernel functions. In this study, the POL kernel function was 
found to be more effective than the RBF kernel function in 
training the GP model for predicting the CSC. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3.  R analysis using the applied models: (a) training GP-POL, (b) 

testing GP-POL, (c) training GP-RBF, (d) testing GP-RBF. 

In the context of predicting the CSC, the usage of a POL 
kernel within a GP model can offer numerous advantages over 
an RBF kernel. For instance, the POL kernel is well-suited for 
capturing nonlinear relationships that are characteristic of 
concrete data. Furthermore, the POL kernel introduces model 
complexity more gradually than the RBF kernel, thereby 
reducing the risk of overfitting, particularly in the presence of 
noisy or limited data. The flexibility of the POL kernel to 
accommodate both linear and nonlinear effects, depending on 
the selected degree, renders it a versatile tool for a range of 
relationship complexities in the data. The findings of this study 
demonstrate that the GP-POL model is a promising tool for the 
rapid and accurate prediction of the CSC. However, to further 
enhance the model's performance, it is recommended to 
conduct a sensitivity analysis to evaluate the importance of the 
input variables. This analysis would facilitate the identification 
and removal of superfluous parameters, thereby enhancing the 
efficiency and precision of the model. 
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