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ABSTRACT 

Acute Lymphocytic Leukemia (ALL) is a form of blood cancer that mainly affects lymphocytes and white 

blood cells. The severity of this cancer varies and progresses quickly, requiring immediate and intensive 

treatment and making a quick and accurate diagnosis essential. This study presents a diagnostic model for 

the diagnosis of ALL using deep learning. YOLOv8 achieved 95% accuracy when trained on the C-NMC 

dataset and 94% when trained on the ALL-IDB2 dataset while maintaining generalization. YOLOv8 

outperformed other models such as SVM, ResNet-50, a hybrid model that integrates ResNet-50 with the 

SVM classifier, and DenseNet121. YOLOv8, with its strong architecture, can efficiently extract intricate 

patterns from medical imaging data and diagnose ALL. The proposed model can potentially reduce 

pathologist workloads and improve patient diagnosis. This research contributes to the field by providing a 

reliable tool for automated leukemia detection, paving the way for further advances in medical image 

analysis. 

Keywords-Acute Lymphocytic leukemia (ALL); CNN; RestNet-50; SVM; YOLOv8; DenseNet121 
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I. INTRODUCTION  

Acute Lymphocytic Leukemia (ALL) is a severe cancer 
that can be fatal, affecting the bone marrow and White Blood 
Cells (WBC). Despite ongoing research, the precise causes of 
this fatal disease remain unidentified [1]. The diagnosis of ALL 
involves bone marrow biopsies, imaging studies, and blood 
tests. About 54% of ALL occurs in children, accounting for 
most childhood malignancies [2]. The worldwide incidence of 
ALL is around 1.8 per 100,000 people annually, with a 
mortality rate of about 0.4 per 100,000 people [3]. ALL is more 
common in individuals under 15 years of age and older than 50 
years of age, with a 5-year survival rate of 78% between 2014 
and 2022 [3, 4]. The countries with the highest number of ALL 
cases are the United States, India, China, Brazil, Russia, Japan, 
Germany, the United Kingdom, France, and Mexico [4-7]. In 
Saudi Arabia, approximately 8,712 ALL cases were reported 
between 1999 and 2013 [8]. The occurrence of ALL in 
different regions and demographic groups highlights the urgent 
need for efficient diagnostic methods.  

Rapid and early diagnosis can improve treatment results 
[9]. Traditional diagnostic methods are accurate but require 
training and can be time-consuming, causing delays in 
diagnosis and treatment [10]. These methods include flow 
cytometry and cytogenetic analysis. Flow cytometry is a laser-
based test to detect chemical and physical differences in cells 
or particles. Cytogenetic analysis is a test that checks cells in 
tissue, blood, bone marrow, or fluid for changes in 
chromosomes. With the growth of digital pathological images 
and advances in processing capacity, Machine Learning (ML) 
and Deep Learning (DL) have shown promise in improving the 
accuracy and efficiency of diagnosis. By analyzing large 
datasets, ML and DL can identify abnormal cells and diagnose 
ALL with greater ease [11-22], which is crucial in time-
sensitive circumstances. In addition, they can reduce the 
manual labor required for the analysis, leading to faster and 
more accurate diagnoses of ALL.  

The contributions of this study can be summarized as 
follows: 

 Used the YOLOv8 model to enhance the diagnostic 
accuracy for ALL, demonstrating its effectiveness in a 
critical medical context. 

 The proposed model was trained on two publicly available 
datasets, ensuring that the findings are based on widely 
recognized and accessible data sources. 

 Carried out a comparative analysis of the YOLOv8 model 
against four existing models, namely SVM, ResNet50, 
DenseNet121, and a hybrid, providing a comprehensive 
evaluation of its performance relative to established 
methods. 

 Investigated the generalization capabilities of the YOLOv8 
model, assessing its robustness and applicability across 
different datasets. 

II. RELATED WORKS 

Some studies used standalone ML and DL models [11-19], 
while others proposed hybrid models [20-22]. In [11], 
microscopic images of patients were used to diagnose and 
classify ALL. A fine-tuned VGG-16 outperformed ResNet-50 
and a CNN model, achieving an accuracy of 84.62% when 
trained on the C-NMC dataset. This model also outperformed 
six ML classification algorithms, with the lowest accuracy 
obtained by Multilayer Perceptron (MLP) (27.33%) and the 
highest by Random Forest (RF) (81.72%). In [12], pre-trained 
VGG-16 was also used for ALL diagnosis from blood smear 
images. The VGG-16 model achieved the highest accuracy of 
85.62% compared to MLP and SVM, highlighting the 
importance of optimizing CNN architectures for precise 
medical diagnostics. In [13], ResNetX50 was fine-tuned using 
the C-NMC dataset, achieving an 88.91% F1-score in ALL 
image classification. In [14], an explainable AI (XAI) model 
was proposed based on RF, which aimed to classify WBC as 
healthy or ALL using 24 explainable and interpretable features. 
These features provide insight into the most critical variables 
for cell classification. The model was trained on ALL-IDB and 
CNMC datasets and achieved 86% on C-NMC and 100% on 
ALL-IDB2, showing that it performed approximately 4.38% 
better than other solutions while using fewer features. 
However, the validation accuracy suggested that this RF model 
slightly overfitted the training data. 

In [15], an automated CNN-based framework for ALL 
detection was proposed, combining preprocessing techniques 
and adopting five pre-trained CNNs (VGG-16, Xception, 
MobileNet, InceptionResNet-V2, DenseNet121) on the C-
NMC dataset. Xception with some enhancements and a 
weighted ensemble approach achieved a peak accuracy of 94%. 
In [16], the effectiveness of Naïve Bayes (NB), K-Nearest 
Neighbors (KNN), SVM, and an ANN was examined in 
diagnosing ALL and Acute Myeloid Leukemia (AML). This 
study utilized Minimum Redundancy Maximum Relevance 
(MRMR) for feature selection to reduce dimensionality and 
identify the most informative features from the dataset, 
resulting in improved classification accuracy for both KNN and 
SVM using 67, 30, and 24 features, highlighting the 
importance of focusing on the most relevant features for these 
models. NB performed consistently well across all feature sets, 
with an accuracy ranging from 97.2% to 98.6%, indicating that 
it is less sensitive to feature selection.  

In [17], Multi-Attention EfficientNetV2S and 
EfficientNetB3 were used on the C-NMC dataset to predict 
ALL. These two models showed better accuracy than the 
previously mentioned models, achieving 99.73% and 99.25% 
accuracy, respectively. This approach highlighted the 
importance of the model architecture in improving diagnostic 
accuracy. In [18], CNNs were shown to be successful in 
accurately classifying images of ALL cells, achieving an 
accuracy of 94.37% when trained on the C-NMC dataset. 
However, generalizability and computational efficiency were 
constrained by challenges such as a limited dataset size, 
insufficient annotated data, and technical limitations. In [19], a 
method was proposed for early cancer detection using a custom 
CNN classifier called ALL-NET, which achieved a maximum 
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accuracy of 95% when trained on the C-NMC dataset. The 
limitations of this study included the need for larger and noisier 
datasets and the exploration of alternative models such as 
YOLOv4, ResNet, and AlexNet for better performance. 

Some studies integrated ML and DL models to improve 
performance. In [20], seven DL models were used, namely 
ResNet152, VGG-16, DenseNet121, MobileNetV2, 
InceptionV3, EfficientNetB0, and ResNet50, for deep feature 
extraction from blood smear images. ANOVA, PCA, and RF 
were used to extract valuable features. The selected feature 
map was then classified using Adaboost, SVM, MLP, and NB. 
The best model was the hybrid that integrated ResNet50 as a 
feature extractor, RF for feature selection, and SVM as a 
classifier, achieving 90% accuracy on the C-NMC dataset. In 
[21], ALLNet, a hybrid CNN was proposed that combined the 
VGG-16, ResNet50, and InceptionV3 models. With an 
accuracy of 92.09%, ALLNet surpassed the VGG-16, ResNet, 
and Inception models on the C-NMC dataset. In [22], a hybrid 
ML technique was proposed to detect ALL using microscopic 
blood images. This hybrid Fuzzy C-Means (FCM) with an RF 
classifier achieved a 99.06% accuracy, outperforming SVM, 
KNN, ANN, CNN, and NB on a dataset combined from three 
resources. 

Although prior studies have utilized various standalone or 
hybrid models to diagnose ALL, this study builds on and 
expands them using the YOLOv8 model, known for its 
advanced real-time object detection capabilities. This model 
was trained on two publicly accessible datasets to ensure that 
the findings are robust and reproducible. Additionally, an 
empirical analysis was carried out against four established 
models: SVM, ResNet50, DenseNet121, and a hybrid. 

III. METHODOLOGY 

This study used the following models: YOLOv8 [23], SVM 
[24], Residual Network 50 (ResNet50) [25], and Densely 
Connected Convolutional Networks (DenseNet121) [26], and a 
hybrid that combined ResNet50 and an SVM classifier. The 
performance of these models was compared using accuracy, 
precision, recall, and F1-score [27-31]. Figure 5 shows a block 
diagram of the method followed. 

A. Datasets and Preprocessing 

This study carried out experiments on two datasets: C-
NMC [32] and ALL-IDB2 [33]. In each dataset, the data were 
preprocessed and augmented to increase the size of the samples 
and improve model generalization. The NumPy [34], OpenCV 
[35], and Pillow [36] Python libraries were used for image 
preprocessing, along with Roboflow [37]. 

1) C-NMC Dataset [32] 
This dataset includes microscopic images of ALL and 

healthy blood cells (hem). Figures 1 and 2 show samples from 
the C-NMC dataset of WBC photomicrographs, preprocessed 
and explicitly designed for the ISBI C-NMC Challenge 2019. 
These images have a resolution of 450×450 pixels, each 
representing a single cell. The cell in this dataset is already 
segmented from the background, with all pixels outside the cell 
colored black. This study used fold0 from this dataset, which 
contains 2,397 samples of infected cases and 1,130 healthy 

cases. Although the C-NMC dataset includes preprocessed and 
segmented images, additional preprocessing was performed. 
The images were cropped vertically and horizontally by 20-
80% to reduce the black background and improve the 
extraction of features. The images were then resized into 
224×224 to fit the model. 

2) ALL-IDB2 Ddataset [33] 
This dataset contains 260 cropped images from ALL-IDB1, 

which is ideal for classification tasks. It includes 130 images of 
healthy cells and 130 images of infected cells. Figures 3 and 4 
show some healthy and infected cells from the ALL-IDB2 
dataset. Preprocessing the ALL-IDB2 dataset was challenging 
due to the presence of cells, among other components, in the 
images. To address this, the active counter algorithm [38] was 
used, which counts objects or features within segmented 
regions of an image based on color, density, or other features. 
The remaining parts of the image were colored black to 
highlight the features for further processing. Following [39], 
the images were converted to grayscale. The Otsu threshold 
was used to separate the foreground objects from the 
background, creating a binary image with a black background 
and white objects. The counter identifies the connected white 
regions. Then, the segmented objects were stored and their 
areas were calculated, setting the minimum object area to 100. 

To enhance model optimization and improve 
generalizability, data augmentation was performed in both 
datasets, which involves generating new data samples using 
existing data. Vertical and horizontal flipping and 90° rotations 
were applied in all directions, as shown in Figure 5. 

 

 
Fig. 1.  Infected cells from the C-NMC dataset. 

 
Fig. 2.  Healthy cells from the C-NMC dataset. 

 

Fig. 3.  Infected cell from ALL-IDB2. 
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Fig. 4.  Healthy cells from ALL-IDB2. 

 

Fig. 5.  Block diagram of the proposed model. 

B. Data Splitting 

The dataset was divided into 80% for training, 10% for 
validation, and 10% for testing. Stratified splitting was used to 
ensure a balanced class distribution, especially for an 
unbalanced dataset such as C-NMC. Table I summarizes the C-
NMC and ALL-IDB2 datasets before and after data 
augmentation. 

TABLE I.  SUMMARY OF THE DATASETS  

No. of samples 

in 

C-NMC ALL-IDB2 

Before DA After DA Before DA After DA 

Training set 2,822 4,036 208 372 

Validation set 352 504 26 47 

Testing set 353 505 26 47 

Total 3,527 5,045 260 466 

 

C. Models' Architecture and Training 

After preprocessing, the following models were trained on 
each dataset. Extensive training was carried out and models 
with the optimal results are reported. 

1) SVM [24] 
SVM is a supervised ML algorithm that is commonly used 

for classification tasks. It finds a level to separate data into 
distinct categories. This study used a linear kernel in the SVM 
classifier to distinguish between the ALL and hem classes 
using the extracted features. HOG was used for feature 
extraction, which captures gradient and orientation information 
in localized image regions, providing rich representations that 
distinguish between the two classes. 

2) ResNet50 [25] 
This is a well-known DL model for its robust performance 

in image classification. It extracts features from an input image 
using convolutional layers. It is composed of two essential 

building components: the identity block and the convolutional 
block. The identity block learns residual functions, while the 
convolutional block processes and transforms features. Fully 
connected layers are used to obtain the final classification. The 
layers are input into a softmax activation function, which 
generates class probabilities. Multiple convolutional layers, 
batch normalization, ReLU activation, and max pooling layers 
make up the architecture. This study used the pre-trained 
ResNet-50 model and fine-tuned it to take advantage of its 
extensive training on the ImageNet dataset. For training on the 
C-NMC dataset, after various training and tests, the best-
performing model was trained using 15 epochs, a batch size of 
32, a dropout of 0.3, a learning rate of 0.001, and the Adam 
optimizer. For training on the ALL-IDB2 dataset, the best 
results were achieved with 10 epochs, a learning rate of 0.001, 
a batch size of 32, a dropout of 0.3, and the Adam optimizer. 

3) Hybrid Model 
The pre-trained ResNet-50 model was used as a feature 

extractor, transforming input data into a high-dimensional 
representation. This involved removing the fully connected 
layer responsible for classification on the ResNet-50 
architecture and integrating the extracted feature into the SVM 
classifier. For training on the C-NMC dataset, the same 
hyperparameters were used as described above. For training on 
the ALL-IDB2 dataset, the best results were achieved with five 
epochs, a learning rate of 0.0001, a batch size of 8, a dropout of 
0.5, and the Adam optimizer. 

4) DenseNet121 [26] 
This is a DL architecture that stands out due to its dense 

connectivity pattern, setting it apart from traditional CNNs. 
Similar to Resnet50, the pre-trained DenseNet121 model was 
used on ImageNet with its final layers unfrozen for further 
training. In this process, a linear layer with ReLU activation 
was used, followed by a dropout layer to prevent overfitting, 
and another linear layer to accommodate the two classes: hem 
and ALL. The Adam optimizer was used to update the model 
weights during training, focusing exclusively on optimizing the 
parameters of the modified classifier part. The best-performing 
model for both datasets was trained using 15 epochs, 64 batch 
sizes, 0.001 learning rate, and the SGD optimizer. 

5) YOLOv8 [23] 
This model consists of several convolutional layers 

followed by max-pooling operations for feature extraction, 
fully connected layers, and adaptive average pooling to 
standardize feature map sizes. This study fine-tuned YOLOv8 
on both datasets, and the best-performing model was trained 
using 15 epochs, 32 batch size, a learning rate of 0.01, and an 
auto-optimizer. 

D. Evaluation Metrics 

Accuracy, precision, recall, and F1-score evaluate a model's 
ability to distinguish between different classes with four 
components: True Positives (TP), for correctly classified 
positive instances, False Positives (FP), for incorrectly 
classified negative instances as positive, True Negatives (TN), 
for correctly classified negative instances, and False Negatives 
(FN), for incorrectly classified positive instances as negative. 
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Accuracy [28] is a basic metric for evaluating classification 
models, measuring the overall correctness of a model's 
predictions by dividing the number of correctly predicted 
classifications by the total number of classifications. A high 
accuracy score indicates a high percentage of correct 
predictions, while a low score indicates more 
misclassifications. 

Accuracy �Ac	  

�� 
 ��

�� 
 �� 
 �� 
 ��
  (1) 

Precision [28] measures how well the model predicts 
positive outcomes, as the ratio of TP predictions to the sum of 
TP and FP predictions.  

Precision�P	 

��

�� 
 ��
    (2) 

Recall [28] evaluates how well the model fits each case 
correctly while there is a low probability of false negatives. 
High recall indicates that positive cases were captured with 
high accuracy. Recall is important in medical and healthcare 
applications, where FN results can put people's lives at risk.  

Recall�R	 

��

�� 
 ��
    (3) 

F1-score [28] is a pivotal metric in classification, as it 
provides a balanced evaluation considering both precision and 
recall. It is especially valuable in imbalanced class scenarios 
because it highlights the ability of the classifier to achieve high 
precision and high recall.  

F1 � score�F1	 
 2 �
����� !"# � $��%&&

����� !"#
 $��%&&
  (4) 

IV. RESULTS AND DISCUSSION 

As shown in Figure 6, the models trained on the ALL-IDB2 
dataset generally outperformed the models trained on the C-
NMC dataset in accuracy. Although YOLOv8 was trained on 
two different datasets, it outperformed all other models, 
reaching 95% and 94% when trained on the C-NMC and ALL-
IDB2 datasets, respectively. Although the hybrid model 
achieved 95% accuracy when trained on the ALL-IDB2 
dataset, a deeper analysis showed that it suffers from 
overfitting.  

TABLE II.  COMPARISON BETWEEN THE FIVE MODELS  

Model  
C-NMC (%) ALL-IDB2 (%) 

Ac P R F1 Ac P R F1 

SVM 84 77 75 76 88 100 79 88 

ResNet 50 84 84 61 71 91 88 96 92 

Hybrid 89 89 77 82 95 100 90 95 

DenseNet121 85 76 63 69 89 90 90 90 

Yolov8 95 96 90 93 94 83 97 89 

 
For a fixed input size and model architecture, the time 

complexity of processing a single image with YOLOv8 is 
generally constant, denoted as O(1). This means that the time 
taken to process each image does not depend on the size of the 
dataset. This proves the efficiency of the model and enhances 
its applicability. 

 

Fig. 6.  Comparisons between the five models trained on the two datasets. 

A. Investigating Models' Generalization 

Table II shows that SVM achieved 77% and 75% precision 
and recall, respectively, when trained on the C-NMC dataset. 
Its total F1-score was relatively low at 76%. On the other hand, 
SVM showed a notable improvement in precision (100%) 
when trained on the ALL-IDB2 dataset, indicating possible 
overfitting or bias toward specific classes. These results are 
comparable to those of previous research, explained by the 
small size of the dataset. Upon training on the C-NMC dataset, 
it was found that the performance of the ResNet50 model had a 
relatively poor recall (61%), suggesting that a substantial 
number of pertinent instances may have been missed. 
However, in the ALL-IDB2 dataset, ResNet50 significantly 
improved recall (96%), indicating improved generalization and 
the ability to capture relevant instances, which resulted in a 
higher F1 score. Training DenseNet121 on the C-NMC dataset 
showed average performance, with precision and recall of 
about 70%, suggesting that there is potential to improve the 
model's ability to capture pertinent instances. DenseNet121's 
recall was around 90% on the ALL-IDB2 dataset, even if it 
exhibited increased precision, indicating that further balance is 
required to increase its F1-score even higher. The hybrid model 
exhibited balanced performance, suggesting a stable model 
with precision, recall, and an F1-score of about 82% on the C-
NMC dataset. Although the hybrid model performed well on 
the ALL-IDB2 dataset, it may have overfitted. 

The YOLOv8 model achieved high recall (90%) and 
precision (96%), indicating a high F1 score of 93% on the C-
NMC dataset. On the ALL-IDB2 dataset, it had a high recall of 
97%, suggesting a great ability to capture significant features 
while having lower precision. Regarding accuracy, YOLOv8 
performed comparably well and achieved 95% and 94% 
accuracy on the C-NMC and ALLIDB2 datasets. Figure 7 
illustrates the generalizability of the YOLOv8 model to unseen 
data. Comparing the loss of the two YOLOv8 models trained 
on C-NMC and ALLIDB2, the first dataset has a narrower gap 
between the training and validation loss curves, indicating a 
higher generalizability. 

Due to the small size of the ALL-IDB2 dataset compared to 
C-NMC, it presents several obstacles in its use. Data 
augmentation was affected, mostly in the preparation phase. 
Our best efforts were unsuccessful in resolving the poor 
findings of the ALL-IDB2 dataset, which showed overfitting 
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and uneven performance in the test, validation, and training 
sets. A larger training dataset is necessary to extract 
complicated features in medical imaging, which is a common 
challenge. The tests with models trained in the ALL-IDB2 
dataset demonstrate the overfitting problem. 

 

 
Fig. 7.  YOLOv8 training and validation loss/accuracy on: (a) C-NMC 

dataset, (b) ALL-IDB2 dataset. 

Additionally, it was observed that certain images from the 
ALL-IDB2 dataset's hem class (healthy cell) were not entirely 
segmented, with certain components showing up next to the 
nucleus. This problem arises because the active contour 
algorithm segments certain darker portions along with the cell 
since it is based on color or density. In the future, we plan to 
investigate other segmentation algorithms. 

B. Comparison with Previous Studies 

This study utilized the YOLOv8 model to diagnose ALL 
and compared its performance against several established 
models. As shown in Table III, YOLOv8 achieved superior 
performance on both the C-NMC and ALL-IDB2 datasets, with 
accuracy rates of 95% and 94%, respectively, outperforming 
the SVM (84% and 88%) and ResNet50 (84% and 91%) 
models, and showing an improvement over DenseNet121 and 
the hybrid model in terms of precision, recall, and F1 scores. 
These findings align with the trends observed in previous 
studies [11-22], where newer architectures and hybrid 
approaches progressively enhanced diagnostic accuracy. 
However, these results demonstrate that YOLOv8 provides a 
distinct advantage in both accuracy and generalization across 
datasets, highlighting its potential as a robust tool for ALL 
diagnoses. For instance, in [11] and [12], accuracy rates of 
84.62% and 85.62%, respectively, were reported using VGG-
16-based models on the C-NMC dataset. Similarly, in [13], an 
F1 score of 88.91% was achieved with ResNet50 on the same 
dataset, which, while competitive, is surpassed by the YOLOv8 
93% F1 score. In [15], a maximum accuracy of 94% was 
reported using Xception and further enhancements through an 
ensemble approach, which closely matches the results of 
YOLOv8. Furthermore, in [17], multi-attention 
EfficientNetV2S achieved 99.73% accuracy on the C-NMC 
dataset, demonstrating the potential of advanced architectures 
in ALL diagnosis. However, unlike [17] which relied on 
feature attention mechanisms, the proposed YOLOv8 model 
demonstrates comparable performance without additional 

modifications, making it simpler to implement. In addition, this 
study shares similarities with hybrid approaches such as [20] 
and [21], which use feature extraction and hybrid CNNs to 
achieve accuracies of around 90-92% on the C-NMC dataset. 

TABLE III.  COMPARISON OF THE FIVE MODELS IN THIS 
AND PREVIOUS STUDIES 

Classifier Ref. Dataset Accuracy (%) 

Models from 

previous studies 

SVM [12] 

C-NMC 

75.00 

ResNet 50 [11] 81.63 

Hybrid 
[20] 90.00 

[21] 92.00 

VGG-16 
[11] 84.62 

[12] 85.62 

Xception  [15]  94.00 

This study's 

models 

SVM 
C-NMC 84.00 

ALL-IDB2 88.00 

ResNet 50 
C-NMC 84.00 

ALL-IDB2 91.00 

Hybrid 
C-NMC 89.00 

ALL-IDB2 95.00 

DenseNet121 
C-NMC 85.00 

ALL-IDB2 89.00 

YOLOv8 
C-NMC 95.00 

ALL-IDB2 94.00 

 

V. CONCLUSION 

This study investigated automating the diagnosis of ALL on 
blood smear images using ML and DL methods. This 
comprised a thorough analysis of five models (SVM, ResNet-
50, hybrid CNN-SVM model, DenseNet121, and YOLOv8) 
trained on two datasets. This study examined each model's 
generalization capacity and overfitting. After training on both 
datasets, YOLOv8 had the highest accuracy in identifying ALL 
and healthy cells while maintaining generalization. The hybrid 
model was overfitted when trained on the ALL-IDB2 dataset 
and produced good accuracy. The ALL-IDB dataset presents 
difficulties due to its modest size and uneven correctness. 

Medical imaging is a rapidly developing discipline with 
many opportunities for future research in diagnosis. Future 
directions include comparing and examining the impact of 
different segmentation techniques on the DL model training 
process. Future research should also focus on developing high-
accuracy and efficient AI models for diagnosing real-time 
medical conditions. In a real-world scenario, designing an 
interface can simplify interactions for practitioners where the 
proposed models are embedded.  
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