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ABSTRACT 

This paper explores the classification of gaze direction using electrooculography (EOG) signals, integrating 

signal processing, deep learning, and ensemble learning techniques to enhance accuracy and reliability. A 

complex technique is proposed in which several feature types are derived from EOG data. Spectral 

properties generated from power spectral density analysis augment basic statistical characteristics such as 

mean and standard deviation, revealing the frequency content of the signal. Skewness, kurtosis, and cross-

channel correlations are also used to represent intricate nonlinear dynamics and inter-channel 

interactions. These characteristics are then reformatted into a two-dimensional array imitating picture 

data, enabling the use of the pre-trained ResNet50 model to extract deep and high-level characteristics. 

Using these deep features, an ensemble of bagging-trained decision trees classifies gaze directions, lowering 

model variance and increasing prediction accuracy. The results show that the ensemble deep learning 

model obtained outstanding performance metrics, with accuracy and sensitivity ratings exceeding 97% 

and F1-score of 98%. These results not only confirm the effectiveness of the proposed approach in 

managing challenging EOG signal classification tasks but also imply important consequences for the 

improvement of Human-Computer Interaction (HCI) systems, especially in assistive technologies where 

accurate gaze tracking is fundamental. 

Keywords-electrooculography (EOG); gaze direction classification; deep learning; ensemble learning; 

ResNet50; feature extraction 

I. INTRODUCTION  

Electrooculography (EOG) is a biometric method that 
quantifies the corneo-retinal standing potential that exists 

between the front and the back of the human eye [1, 2]. 
Captured with superficially placed silver electrodes on the face, 
the EOG signal follows eye movements along both horizontal 
(left-right) and vertical (up-down) channels [3]. EOG is useful, 
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especially for people with motion problems who use eye 
movement to communicate. Many everyday systems use this 
technology [4]. Users may, for example, write by choosing 
words from a restricted list to create sentences, operate electric 
wheelchairs, and move cursors or even guide robots solely with 
their eye movements. Focusing on average and maximum 
speeds and voltage ranges, these applications use EOG data, 
including saccadic movements and ocular reflexes [5, 6]. EOG 
signals are usually observed in a low-frequency bandwidth of 
0.5 to 50 Hz. Thus, the classification of eye movements 
depends on algorithms that compute signal derivatives. To 
precisely characterize motions, these algorithms focus on 
several criteria, including velocity, acceleration, amplitude, and 
signal fit [7, 8]. 

Eye motions within the EOG data have been effectively 
detected using classification techniques such as K-Nearest 
Neighbor (KNN), Support Vector Machines (SVM), and 
Decision Trees (DT) [9, 10]. Combining these techniques, 
especially KNN and SVM, improves classification efficiency 
and achieves notable accuracy in identifying unique 
characteristics, including states conveyed by eye movements. 
Deep learning's ability to extract significant, deep features from 
challenging datasets has transformed the method academics 
take to classification challenges in many different fields. When 
paired with sophisticated classifiers that can use these 
characteristics for higher accuracy, this capacity is very strong. 
In this context, the conversion of manufactured characteristics 
into picture-shaped forms becomes a crucial step that allows 
the use of Convolutional Neural Networks (CNNs), including 
ResNet50, which are intrinsically designed to analyze image 
input [11-13]. CNN's spatial hierarchical feature extraction 

capacity allows the use of either signal-based or numerical data 
in 2D picture arrays. This method improves the feature 
representation and fits the architectural strengths in capturing 
important patterns that are less obvious in conventional, non-
image data formats.  

This study proposes a hybrid method to improve the 
classification of gaze directions in EOG data using an 
integrative approach that includes signal processing, deep 
learning, and ensemble learning techniques. To ensure data 
quality, EOG signals are preprocessed. This preprocessing 
consists of filtering and normalizing the signals to eliminate 
noise and normalize the dataset for subsequent investigations. 
An advanced feature extraction phase follows, which extracts 
features from the EOG data. Although spectral data produced 
by power spectral density analysis disclose the frequency 
content, statistical features such as mean and standard deviation 
offer fundamental signal insights. Skewness, kurtosis, and 
cross-channel correlations, among other aspects, help to 
represent the nonlinear dynamics and interactions among signal 
channels. The features obtained are converted into a 2D array 
form, suitable for image processing using deep learning 
methods. These images are then sent to a pre-trained ResNet50 
model to produce high-level deep features. Using the bagging 
technique, an ensemble of decision trees is trained to categorize 
gaze directions after feature extraction with ResNet50. Using 
this combined technique, model variance decreases and 
prediction accuracy increases. Model performance is evaluated 
using accuracy, sensitivity, specificity, F1-score, and AUC. 
The robustness and dependability of the model are ensured 
using validation methods such as k-fold cross-validation and 
holdout methods. 

 

 
Fig. 1.  The proposed approach to classify eye movements based on EOG.  

II. RELATED WORKS 

Various classification methods have been applied in 
Human-Computer Interaction (HCI) using EOG signals. In 
[14], 16 parameters were extracted from EOG movement data 
in the time domain from a sample of 12 test subjects. Using 
DT, KNN, and SVM techniques, 95.4%, 99.6%, and 99.1% 
classification accuracy was obtained. The ROC curve showed 
that the KNN method was especially successful. The study in 

[15] focused on the time domain implementation. It was 
observed that with six parameters, the SVM algorithm was able 
to obtain a classification accuracy of 60%. In the larger 
framework of EOG signal classification, several studies have 
underlined the simplicity and good performance of KNN, 
SVM, and DT. In [16], Power Spectral Density (PSD) was used 
for EOG signal classification, in which SVM paired with 
neural networks achieved a classification accuracy of 69.75%. 
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In [9], the cooperative use of KNN and SVM in image 
classification was investigated, using spectral feature 
parameters to improve accuracy and classification speed. In 
[10], emotional classification was performed using 23 distinct 
emotional states, including wrath, fear, happiness, and sadness. 
This study showed an accuracy of 75.15% for KNN and 80% 
for SVM, highlighting the need to evaluate several methods to 
choose the best classifier. 

In [17], applications were customized using digital EOG 
signals as control inputs for HCI. In [18], several classifiers, 
including DT, KNN, and SVM, were used for effective signal 
classification, obtaining excellent accuracies. EOG signal 
analysis has progressed significantly due to feature extraction 
methods. The study in [19] focused on class separability and 
feature extraction robustness. In [20], frequency-based AR 
models were coupled with template matching and wavelet 
decomposition to improve the analytical process. In [21], 
ensemble methods were used, utilizing bagging and adaptive 
boosting to classify eye movements and achieving an accuracy 
of 92.27%. Meanwhile, in [22], a pulse detection method was 
integrated into a Human-to-Television Interface (HTI), 
demonstrating an average performance of 93.41%. EOG 
signals have been used to help people with severe disabilities. 
The studies in [23] and [24] focused on aiding patients with 
ALS and severe mobility impairments, respectively, through 
innovative EOG signal processing for eye-writing systems and 
wheelchair control. Real-time applications, such as the 
asynchronous EOG-based virtual keyboard in [25] and a 
wearable forehead EOG measurement system in [26], 
showcased practical implementations of EOG technology with 
high classification accuracy. Furthermore, the advanced 
processing algorithms in [27] and [28] have refined the 
detection of eye movements. The study in [27] combined 
derivative and amplitude level inputs to effectively filter noise 
and detect signal edges, while in [28], Independent Component 
Analysis (ICA) was used with SVM for saccadic signal 
recognition, achieving a classification accuracy of 99.57%. 

In [29], a cutting-edge Recurrent Neural Network (RNN) 
was introduced, utilizing Gated Recurrent Unit (GRU) layers in 
a bidirectional configuration followed by dense layers. This 
model was developed to classify four directional eye 
movements, up, down, left, and right, across both vertical and 
horizontal channels of EOG signals. This classifier achieved 
accuracies of 99.77% and 99.74% for vertical and horizontal 
channels, respectively, setting a new benchmark in 
classification performance for HCI applications in 
rehabilitation and beyond. In [30], EOG signals generated 
during various eye movements, including blinking, were 
classified. This approach modeled the eye as a dipole and used 
the wavelet transform to extract features in the frequency 
domain, within a bandwidth of 0.5 to 50 Hz. KNN, SVM, and 
DT were implemented, achieving classification accuracies of 
69.4%, 76.9%, and 60.5%, respectively. The effectiveness of 
these classifiers was evaluated using the Jaccard index, 
confusion matrix, and ROC curve, with SVM emerging as the 
superior classifier for this set of tasks. 

III. METHOD 

A. Data Collection 

The dataset [31] used in this study includes EOG data along 
with head posture and position information recorded from eight 
healthy participants (six males and two females, mean age of 
25.8 ± 5.8 years), all of whom had normal or corrected-to-
normal vision. Data collection was carried out according to an 
approved protocol by the University Research Ethics 
Committee (UREC) of the University of Malta, and all subjects 
provided their informed consent before participating in 
recording sessions. The participants were seated at a distance of 
approximately 60 cm from a 24-inch LCD screen. During the 
sessions, they were instructed to focus on visual cues presented 
at various screen positions while allowing natural head 
movements. Each session consisted of 200 trials, each lasting 
four seconds, with specific eye movements being recorded. At 
the start of each trial, a visual cue was displayed in a position 
(P1j), which then shifted to a different location (P2j) after one 
second. During the next two seconds, participants were 
instructed to blink as the cue color changed, marking the end of 
the trial. The initial position (P20) was centered on the screen, 
while the subsequent positions (P1j and P2j) were randomized. 
The EOG signals were recorded using a standard setup with 
four electrodes, including reference and ground electrodes, and 
amplified using a biosignal amplifier with a sampling 
frequency of 256 Hz. Signal processing involved applying a 50 
Hz notch filter to remove electrical noise and a bandpass filter 
with a range of 0-30 Hz. Additionally, the head posture and 
position data were captured using the 3D Guidance TrakSTAR 
system, which utilizes an electromagnetic transmitter and a 
sensor mounted on the participant's head via a headband. This 
system allows six degrees of freedom tracking, capturing both 
the position (3D coordinates) and orientation (yaw, pitch, and 
roll angles) of the head throughout the trials. The data were 
provided in MATLAB format, with separate files for each 
subject containing EOG signals, control signals, gaze angles, 
inter-pupillary distance, distance from the screen, head pose, 
and head position. 

B. Preprocessing and Features 

Target gaze angles aid in segment contextualization, while 
control signals mark each sample of the EOG data for precise 
segmentation. The segmentation approach ensures no 
information loss at segment borders by including a pre-
segmentation phase having 51 samples before each detected 
change in the control signal. After that, the signals are filtered 
using a bandpass FIR filter with a filter order of 20 and cutoff 
frequencies set between 0.5 and 35 Hz, matching the frequency 
characteristics relevant to EOG signals. 

After filtering, the EOG segments are normalized using 
mean subtraction and standard deviation division. This stage 
helps improve attention to waveform patterns and lower model 
sensitivity to amplitude fluctuations. These processed sections 
are converted to a format suitable for deep learning analysis 
with the ResNet architecture. This transformation, along with 
spectral elements produced from the normalized power spectral 
density over specified frequency bands, entails the computation 
of temporal characteristics such as mean, standard deviation, 
skewness, and kurtosis. Spectral characteristics are 
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fundamental as the Welch technique computes the power 
spectrum density of every segment. The frequency spectrum is 
segmented using predetermined sub-bands ranging from 0.5-4 
Hz, 4-8 Hz, 8-12 Hz, to 12-30 Hz, enabling a focused study on 
particular frequency ranges. The overall power throughout the 
wider spectrum 0.5–35 Hz is calculated for every channel 
within a segment, and then the power within each sub-band is 
found. The proportion of the total power occupied by each sub-
band is computed from these data, normalizing the spectral data 
and emphasizing the dominating frequencies for every 
segment. These elements are combined into one complete 
feature vector per segment. 

After normalizing and reshaping this feature vector into an 
image structure, shrinking it to meet the input dimensions 
needed by ResNet that are typically 224×224 pixels, the single-
layer feature picture is repeated across three channels to meet 
the three-channel input need of the network, therefore 
producing a chessboard-like pattern that faithfully captures the 
features of the original EOG data. 

C. Resnet 50 

ResNet50 is a powerful deep learning model derived from 
the family of residual networks (ResNets), especially created to 
solve the challenge of training very deep neural networks [32]. 
Residual blocks consist of a few layers where the input to the 
block is added to the output, enabling gradients to flow straight 
through these connections throughout the training phase. 
ResNet50 consists of 50 layers, including fully connected, 
convolutional, normalizing, and ReLU activation layers. 
Starting with a convolutional layer, then a batch normalizing 
layer, and finally a max-pooling layer, the network reduces 
spatial dimensions and enhances feature extraction. A series of 
residual blocks follows, with several convolutional, batch 
normalized, and ReLU activation layers. These blocks are 
designed so that, by using a shortcut connection to bypass one 
or more levels, the input to each block is connected to its 
output, providing a direct route for the data flow across the 
layers. This design can mitigate the vanishing gradient 
problem, which is a common issue in conventional deep 
networks where gradients could become too small to have any 
appreciable impact during backpropagation as the depth 
increases. ResNet50 accelerates training convergence by 
allowing gradients to escape numerous layers at once via 
shortcut connections, conserving the gradient's strength. 
Typically, at the end of the network, ResNet50 pulls features 
from the avg_pool layer. This layer performs global average 
pooling on the feature maps derived from the last convolutional 
block, transforming each map into a single scalar value. By 
using pooling, the spatial information of the feature maps is 
efficiently condensed into a small feature vector, preserving the 
most important information required for classification tasks. 
The avg_pool layer produces a highly distilled representation 
of the input data that captures the most essential patterns and 
features to separate between various classes in a classification 
task. 

D. Ensemble Learning Classifier 

Ensemble learning combines many models or the same 
model with varying initializations to detect eye movement 
directions based on deep data. In ensemble learning, bagging or 

bootstrap aggregating is a typical method where many models 
are trained on separate subsets of the training data and 
subsequently aggregated by voting or averaging. This method 
is advantageous in complicated feature spaces, such as deep 
learning outputs, because it lowers the variance of the 
predictions, reducing the ensemble's overfitting susceptibility. 

To implement ensemble learning in classifying deep 
features, a specific type of ensemble model known as Random 
Forest (RF) or an ensemble of decision trees can be typically 
used [33]. These are trained on random subsets of the training 
data using a technique called bootstrap aggregating. Each tree 
in the ensemble votes on the class, and the class receiving the 
majority of votes becomes the model's prediction. When 
applying ensemble methods to classify eye movement 
directions, the model processes labeled data that correspond to 
specific directions, quantified from EOG signal characteristics 
such as horizontal and vertical components of gaze angles. 

E. Performance Metrics 

The key performance metrics used in this study are: 

 Accuracy: Measures the overall correctness of the model 
and is calculated as the ratio of correct predictions to the 
total number of cases examined. It provides a quick 
indication of how well the model performs across all 
classes. 

Accuracy =  
	
��� �� ������ ���������� 

����� �
��� �� ����������
  (1) 

 Confusion matrix: A table used to describe the performance 
of a classification model on a set of test data with known 
true values. It allows the visualization of the model's 
predictions, including the number of True Positives (TP), 
False Positives (FP), True Negatives (TN), and False 
Negatives (FN) for each class. 

 Sensitivity (true positive rate or recall): Measures the 
proportion of actual positives that are correctly identified as 
such (e.g., the percentage of 'up' directions that are correctly 
predicted as 'up'). It is crucial for applications where 
missing a positive prediction is costly. 

Sensitivity =  
�"

�"#$	
    (2) 

 Specificity (true negative rate): Measures the proportion of 
actual negatives that are correctly identified (e.g., the 
percentage of non-up directions that are correctly identified 
as not up). High specificity reduces false alarms. 

Specificity =  
�	

�	#$"
    (3) 

 Precision: Indicates the accuracy of positive predictions. 
Formulated as the ratio of TP to the sum of TP and FP, 
shows how many of the positively labeled predictions were 
actually correct. 

Precision =  
�"

�"#$"
    (4) 

 F1-score: It is a weighted average of precision and recall, 
taking both FP and FN into account. It is especially useful 
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when the class distribution is uneven. The F1-score is the 
harmonic mean of precision and recall. 

F1 − score = 2 × 
"�������×.����

"�������#.����
  (5) 

 Area Under the ROC curve (AUC-ROC): A performance 
measurement for classification problems at various 
threshold settings. ROC is a probability curve that plots the 
true positive rate (sensitivity) against the false positive rate 
(1-specificity) at various threshold settings. AUC represents 
the degree or measure of separability, indicating how much 
the model is capable of distinguishing between classes. 

IV. RESULTS 

The dataset involves eight subjects with a total of 1600 
trials that were meticulously analyzed to understand the 
distribution of eye movement types. Each subject underwent 
200 trials, focusing on their gaze behavior across various 
directional stimuli. This research categorizes eye movements 
into nine distinct cases, eight representing specific directional 
movements and one indicating no movement. 

The distribution of these eye movements is quantified and 
presented systematically. As outlined in Table I, the samples 
used for classification reveal a relatively balanced distribution 
among the nine classes, albeit with slight variations that may 
reflect natural differences in individual gaze patterns or the 
experimental setup. For instance, eye movements towards the 
lower-left direction (↙) accounted for the highest percentage of 
the total samples (12.22%), represented by 220 instances. This 
was closely followed by down (↓ ) and down-right ( ↘ ) 
movements, with 206 (11.44%) and 209 (11.61%) instances, 
respectively. In contrast, the least represented were right (→) 
and left (←) movements, each constituting slightly more than 
10% of the dataset, indicating a possibly less frequent 
occurrence of these movements under experimental conditions. 

TABLE I.  DISTRIBUTION OF DIRECTIONS AND SAMPLES 
USED FOR CLASSIFICATION 

Eye movement type Percentage of total Count 

1: top left (↖) 10.61% 191 
2: top (↑) 10.72% 193 

3: top right (↗) 11.33% 204 
4: left (←) 10.17% 183 

5: no movement 11.78% 212 
6: right (→) 10.11% 182 

7: bottom left (↙) 12.22% 220 
8: bottom (↓) 11.44% 206 

9: bottom right (↘) 11.61% 209 

 
A structured training and testing approach was used, 

assigning 70% of the data to training and the remaining 30% to 
testing. This division is standard practice in machine learning 
to ensure both robust training and an unbiased evaluation of the 
model's generalization capabilities on unseen data. The 
performance metrics, as presented in Table II, demonstrate 
ResNet50's effectiveness in learning and predicting the 
classification of eye movements based on the generated 
features from EOG data. The training and testing accuracy 
reflect the model's consistency across various eye movements, 
capturing the inherent variability and complexity of eye 

movement patterns. For instance, the model achieved a training 
accuracy of 86.52% and a testing accuracy of 88.93% for the 1 
- top left ( ↖ ) eye movement, suggesting a commendable 
generalization beyond the training set. Similar trends are 
observed in other types, such as 9 - bottom right (↘), where the 
training accuracy was 87.28%, with a slightly higher testing 
accuracy of 89.74%, indicating effective learning and an 
impressive capture of underlying patterns within the test data. 
However, some types, such as 5 - no movement and 7 - bottom 
left (↙), showed a decrease from training to testing accuracy, 
which may indicate potential overfitting or inadequacy in the 
model's ability to generalize from training data to real-world 
variability in these specific types of eye movements. 
Specifically, 5 - no movement showed a substantial drop from 
88.06% in training to 85.23% in testing, prompting a need for 
further analysis and possible adjustments in the model's 
training phase or parameter tuning to enhance its performance. 

TABLE II.  TRAINING AND TESTING PERFORMANCE OF 
RESTNET50 USING CHESSBOARD IMAGES 

Eye movement type Training accuracy (%) Testing accuracy (%) 

1: top left (↖) 86.52% 88.93% 
2: top (↑) 87.62% 86.00% 

3: top right (↗) 87.16% 87.57% 
4: left (←) 86.46% 87.96% 

5: no movement 88.06% 85.23% 
6: right (→) 85.70% 88.04% 

7: bottom left (↙) 86.46% 85.85% 
8: bottom (↓) 86.83% 85.33% 

9: bottom right (↘) 87.28% 89.74% 

 
As shown in Table III, the deployment of ensemble 

learning methods using deep features extracted by ResNet50 
has demonstrated significant efficacy in classifying eye 
movements. Including accuracy, sensitivity, and F1-score, the 
performance evaluations provide a full view of training and 
testing phases across several eye motion patterns. With 
accuracy rates typically near or over the 95% threshold, the 
models demonstrate great performance in the training phase, 
therefore proving their potential to effectively learn and adapt 
to the complexity of the input data. For 1 - top left (↖), for 
example, the accuracy reached almost 100%, stressing the 
precision with which the ensemble model could identify this 
sort of movement dependent on the acquired traits. Similarly, 
high sensitivity values, such as 97.73% for 3 - top right (↗), 
showcase the model's responsiveness to the existence of certain 
classes, therefore ensuring that the movements are precisely 
detected with low false negatives. In the testing phase, the 
models maintain great accuracy with few deviations, such as in 
motions like 8 - bottom (↓), where accuracy falls significantly. 
Still, the test sensitivity and F1-scores, such as a 99.55% 
sensitivity for 2 - top (↑) and a 99.93% F1-score for 6 - right  
(→), showcase the models' consistent capacity to extend the 
learned patterns to fresh data. These findings indicate the 
model's balanced capacity to effectively regulate both recall 
and accuracy, hence lowering FP and FN. Furthermore, 
differences in training and testing performance, such as the 
lower testing accuracy for 9 - bottom right (↘) relative to its 
training equivalent, require improvements. Improving model 
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resilience and ensuring constant performance across several 
situations and datasets need further investigation. 

TABLE III.  TRAINING AND TESTING PERFORMANCE OF 
ENSEMBLE LEARNING USING DEEP FEATURES. 

Eye 

movement 

type 

Training Testing 

Accuracy 

(%) 

Sensitivity 

(%) 

F1-

score 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

F1-

score 

(%) 

1 (↖) 99.83 96.52 98.42 99.04 95.49 97.20 
2 (↑) 95.61 95.17 96.29 97.48 99.55 98.31 
3 (↗) 96.56 97.73 99.85 97.60 95.92 98.88 
4 (←) 99.70 97.99 95.44 99.47 99.61 95.98 

5 -  95.23 96.94 99.14 96.63 96.36 96.78 
6 (→) 96.40 95.70 95.37 97.71 99.01 99.93 
7 (↙) 98.86 95.03 98.53 95.99 99.08 98.65 
8 (↓) 98.86 96.79 99.32 95.37 95.58 98.12 
9 (↘) 96.65 96.55 98.65 95.32 96.63 98.19 

Average 97.52 96.49 97.89 97.18 97.47 98 

 
Figure 2 shows the confusion matrix, providing a 

comprehensive overview of the classifier's performance across 
nine distinct eye movement classes. Each green-highlighted 
cell on the diagonal quantifies the correct predictions for each 
class, showcasing accuracy rates predominantly above 96%, 
which underscores the classifier's effectiveness. Off-diagonal 
pink cells, indicating misclassifications, are minimal, with most 
error rates below 0.3%, suggesting a high degree of precision in 
class differentiation. 

 

 
Fig. 2.  Confusion matrix of classifying testing data. 

The ROC graph in Figure 3 presents a clear and effective 
illustration of the classifier performance in comparison to 
random chance. The ROC curve, represented by the solid blue 
line, hugs the upper left corner of the plot, which indicates an 

exceptionally high true positive rate while maintaining a low 
false positive rate across all thresholds. This characteristic is 
indicative of excellent classifier performance, as the ROC 
curve nearly reaches the perfect classification point at (0,1), 
where the FP rate is zero and the TP rate is one. 

 

 
Fig. 3.  AUC curve of training data. 

Table IV shows a detailed comparison of test performance 
across several classification models based on accuracy, 
sensitivity, and F1-score. These measures are essential for 
evaluating a model's general performance in not only accurate 
data classification but also in ensuring that classifications are 
balanced among several categories. SVM achieved 79.44% 
accuracy, 72.39% sensitivity, and 84.26% F1-score, reflecting 
quite modest performances. The lower sensitivity suggests a 
propensity to overlook more true positive classifications than in 
other models. With an accuracy of 85.22%, a sensitivity of 
81.23%, and an F1-score of 85.42%, the DT classifier 
demonstrated superior results, implying greater overall 
performance in collecting pertinent data features. RF showed a 
possible compromise between precision and recall, with a 
lower F1-score of 78.55 %. However, its accuracy and 
sensitivity were comparable to those of DT. The simplest of the 
models, KNN, had the lowest performance on all measures. 
Although with somewhat less sensitivity, Logistic Regression 
(LR) offered a decent mix between accuracy (82.73%) and F1-
score (80.17%). With an accuracy of 87.54%, a sensitivity of 
82.64%, and an F1-score of 86.01%, a second DT model 
showed remarkably improved performance, perhaps indicating 
adjustments in tree parameters or training subsets that might 
favorably affect performance measures. With excellent metrics, 
such as 97.18% accuracy, 97.47% sensitivity, and 98% F1-
score, the ensemble deep learning model outperformed all other 
models. This better performance emphasizes the benefits of 
applying sophisticated ensemble methods to increase 
classification accuracy and robustness. Combining several 
learning algorithms helps the ensemble model to efficiently use 
deep characteristics, allowing it to shine in performance criteria 
and proving its ability to offer thorough and consistent 
classifications. 
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TABLE IV.  COMPARISON OF TESTING PERFORMANCE OF 
DIFFERENT MODELS 

Classifier Accuracy (%) Sensitivity (%) F1-score (%) 

SVM 79.44 72.39 84.26 
DT 85.22 81.23 85.42 
RF 79.88 80.45 78.55 

KNN 70.51 72.16 70.63 
LR 82.73 76.29 80.17 
DT 87.54 82.64 86.01 

Ensemble deep 
learning 

97.18 97.47 98 

 

V. DISCUSSION 

Conventional models such as SVM, DT, RF, KNN, and LR 
displayed a spectrum of results, thereby stressing a 
fundamental fact: no model consistently performed better than 
others on all measures. DT and RF, for example, may not 
always ensure increased sensitivity, even if they are often 
excellent at processing nonlinear data. They may not be 
suitable for applications where failure to recognize true 
positives may have substantial effects. Conversely, models 
such as KNN lagged significantly on all metrics, even if they 
are straightforward and user-friendly, suggesting their 
inadequacy in handling complex or large data. The remarkable 
performance of the ensemble deep learning model highlighted 
the need to apply many techniques to increase prediction 
accuracy and robustness. From medical diagnoses to financial 
projections, this model's potential to achieve high scores in 
accuracy, sensitivity, and F1-score illustrates its usefulness in 
balancing precision and recall, which is a fundamental aspect in 
many pragmatic purposes. Combining numerous models or 
iterations helps the ensemble approach to clearly use the 
strengths of every component model and minimize their 
particular weaknesses. This performance disparity fuels a 
broader discussion of application-specific variables that 
influence the choice of the model. High accuracy might be 
given top attention in some circumstances, depending on the 
cost of false negatives or the necessity of balanced precision-
recall trade-offs. In others, sensitivity or F1-score may be more 
crucial. Thus, the model choice should be driven not only by 
performance criteria but also by a whole understanding of the 
behavior of the model under several conditions. Furthermore, 
the results of this study reinforce the ongoing discussion of the 
evolution of algorithmic sophistication and its implications. As 
models become more complex, transparency and 
interpretability become more critical, highlighting a sector 
where simpler models may still be useful. The balance between 
simplicity for interpretability and complexity for speed will 
always determine how machine learning systems evolve and 
find applications. 

In this framework, this study makes a significant 
contribution by adopting an ensemble learning strategy 
combined with deep features retrieved with ResNet50. This 
approach not only accepts the complexity inherent in EOG data 
but also utilizes the resilience provided by ensemble 
techniques, establishing a new standard in the classification 
accuracy and dependability of eye movement predictions. With 
performance measures well above those attained by traditional 
classifiers such as SVM, DT, and KNN, the proposed ensemble 

deep learning model exhibits extraordinary capability. For 
example, while works such as [30] show SVM with an 
accuracy of up to 76.9%, the ensemble model in this study 
mostly achieves higher accuracy, sensitivity, and F1 scores, all 
in the upper 90th percentile. This performance jump emphasizes 
the success of combining deep learning with ensemble 
techniques by using the capabilities of several sophisticated 
algorithms to minimize the shortcomings of single models. 
Furthermore, using ResNet50 for deep feature extraction 
leverages the model's capacity to detect complex patterns in 
EOG data that less advanced methods could ignore. Especially 
in applications that require great accuracy, including assistive 
technologies where the precise interpretation of eye movements 
may greatly improve user engagement, this capacity is very 
vital. Furthermore, the application of ensemble techniques, 
such as bagging and boosting, improves the model stability and 
reduces the risk of overfitting. This feature is especially crucial 
in medical and HCI applications, where mistakes can be 
somewhat costly. Apart from offering protection against such 
hazards, the ensemble model ensures consistency in 
performance over several datasets and in different operational 
environments. Unlike the literature cited, which mostly 
addresses single parts of EOG signal processing or the 
effectiveness of particular classifiers, this study combines 
various elements into a coherent framework. In terms of 
classification accuracy and model dependability, this all-
encompassing strategy not only pushes the edge but also 
provides a basis for further investigations into increasingly 
difficult practical uses of EOG technology. 

Although the results of this study show great promise, 
certain constraints require attention and open the way for 
further investigation. The intrinsic complexity of ensemble 
learning and deep feature extraction methods is one major 
constraint that can make model interpretability difficult. 
Understanding the particular contributions of various elements 
or decisions inside a model becomes more challenging as the 
models become more complicated, which might provide 
difficulties in therapeutic or sensitive settings when 
explainability is absolutely important. Future research should 
focus on improving the scalability and efficiency of these 
models. This can entail the creation of more simplified deep 
learning architectures, lowering processing requirements while 
preserving high accuracy. Moreover, studies might look at 
ways to make deep learning models more interpretable, perhaps 
by combining ideas from the discipline of explainable artificial 
intelligence (XAI). This would not only help to make the 
models more transparent but also more trustworthy, particularly 
in applications requiring significant decision-making. 

VI. CONCLUSION 

This study introduced a novel ensemble deep learning 
model for classifying EOG signals, demonstrating significant 
advances in biometric signal processing. The proposed 
ensemble deep learning model outperformed traditional 
machine learning classifiers, achieving an accuracy of 97.18%, 
a sensitivity of 97.47%, and an F1-score of 98%. In 
comparison, other models such as DT (87.54% accuracy), 
SVM (79.44% accuracy), and RF (79.88% accuracy) showed 
notably lower performance. This better performance 
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underscores the advantages of applying sophisticated ensemble 
methods that combine multiple learning algorithms to enhance 
predictive accuracy and robustness. The superior performance 
of the ensemble deep learning model highlights its ability to 
efficiently leverage deep features, providing thorough and 
consistent classifications across various testing scenarios. 
Unlike traditional classifiers, which often struggle with the 
complexity and variability of EOG signals, the ensemble 
approach capitalizes on the strengths of multiple models, 
reducing variance and improving the overall stability of the 
predictions. Despite challenges with model complexity and 
computational requirements, the benefits of this approach 
emphasize its potential to expand HCI technologies, 
particularly for people with mobility limitations. Future work 
should aim to streamline the model to reduce computational 
load and improve interpretability, making it more accessible for 
real-time applications. Additionally, efforts to integrate other 
biometric signals could further amplify the model's utility in 
clinical and consumer technology domains. In general, this 
study sets a new standard in EOG signal classification, offering 
both technical advances and a practical framework for future 
research in this field. 
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