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ABSTRACT 

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass 

Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to 

develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. 

Multilayer networks that employ reactive error distribution approaches can determine the residual tensile 

strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized 

one or two inputs while disregarding the others. Multilayered networks employing reactive error 

distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. 

Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal 

impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because 

the latter depends on two variables (thickness and temperature). The ANN accurately predicted the 

residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% 

and a determination coefficient of 94.3%. 

Keywords-artificial neural networks;fire; GFRP, elevated temperatures; prediction model; transition 

temperature 

I. INTRODUCTION  

Fiber Reinforced Polymer (FRP) composites are 
advantageous materials offering numerous benefits compared 
to conventional ones. FRP composites have fiber 
reinforcement, including glass, carbon, or aramid, contained 
within a polymeric resin, usually consisting of polyester, 
epoxy, or vinyl ester [1-4]. The initial component provides 
elasticity and strength, whereas the subsequent component 
preserves fiber alignment, especially during compression, and 
ensures uniform stress distribution within the material [5-7]. 
pultruded Glass FRP (GFRP) profiles exhibit considerable 
potential for civil engineering applications due to their 
lightweight composition, strength, superior insulating 
properties, resilience in adverse conditions, and low 
maintenance requirements [8-10]. Pultruded GFRP profiles are 
controversial in civil engineering because of their fire 
performance. Few studies have evaluated the mechanical and 
fire behavior of GFRP material at high temperatures and 
connections [11-13]. One-way slab studies in [14-19] were 
performed below the glass transition and decomposition 
temperatures of GFRP. Although some fire simulations have 
been carried out, more is needed to accurately predict the 
thermal and mechanical responses of the GFRP members. In 

[18, 20, 21] the compressive behavior of the pultruded profile 
was simulated using a finite element model. In [15, 19], the 
mechanical response of GFRP multicellular slabs was modeled, 
whereas in [22] the fire behavior of the pultruded GFRP beam 
was simulated analytically [23-25]. 

Artificial Neural Networks (ANNs) are recognized as a 
fundamental instrument for regression problems due to their 
strong learnability after substantial training. ANNs have 
recently been employed in civil engineering for many purposes, 
including the prediction of concrete qualities [26-28], 
identifying structural damage [29], forecasting the compressive 
strength of concrete subjected to prolonged sulfate exposure 
[30], assessing chloride diffusivity in high-performance 
concrete [12], measuring the permeability of asphalt concrete, 
modeling material behavior, and optimizing structural designs 
[26]. ANNs have exhibited encouraging results in modeling 
intricate domains and have yielded highly accurate predictions 
using untrained data. Employing regression methods to forecast 
nonlinear material properties is an essential research avenue for 
construction materials. Recently, self-compacting mortar has 
gained prominence in construction [27]. Numerous studies 
employed mathematical models to predict the tensile strength 
of GFRP with a limited number of components [15, 18-22]. 



Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18277-18282 18278  
 

www.etasr.com Ali & Allawi: An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength 

 

This study aims to predict the residual tensile strength of 
GFRP using an ANN with six input parameters, in contrast to 
the mathematical models proposed in previous studies, which 
relied on one or two inputs and neglected the rest. The accuracy 
of the previous models was less than that of the proposed 
model because they did not take into account all the inputs 
affecting the result of the residual tensile strength.  

II. MODEL DEVELOPMENT USING ANN 

An ANN was employed to assess and predict the effect of 
variables on the residual tensile strength in the GFRP section. 
The ANN determined the variables to be inputted and predicted 
the residual tensile strength of the GFRP. Neural networks 
possess self-regulation capabilities [27]. This approach utilized 
a feed-forward neural network design composed of 
interconnected neuron layers. Every neuron in a layer is 
interconnected with all neurons in the subsequent layer, 
although there are no connections among neurons within the 
same layer. The conventional architecture of these networks 
comprises three neural layers: the input layer, the hidden layer, 
and the output layer. Data are transmitted from the input layer 
to the hidden layer. Figure 1 illustrates the flow of information 
from the hidden layer to the output layer. SPSS was used to 
build the ANN. 

 

 
Fig. 1.  Architecture of the ANN. 

TABLE I.  DEFINITION OF VARIABLES IN THE ANN  

Variables Type Symbol 
Sub-variables 

Variables Symbol 

% Residual strength Output %P 

 
Temperature test Input T 
Glass transition 

temperature 
Input Tg 

GFRP type Input Gt 
Pultruded 1 

Bar 2 
Laminate 3 

Fibres orientation Input Fo 
Unidirectional 1 

Woven 2 
Chopped strand mat 3 

Resin type Input Rt 

Polyester 1 
Vinyl ester 2 

Epoxy 3 
Other 0 

Specimen dimensions 
(mm) 

Input D 
 Time test (min) Input Ti 

% Resin to fiber Input Rf 

III. STATISTICAL STUDY USING ANNS 

The input model comprises the independent variables 
specified in Table I. The output data represent the residual 
strength ratio for GFRP. The data were split into three sets: a 
training group, charged with adjusting the weights of the ANN, 
a testing group, which ensures the network's performance; and 
a validation group to assess the model's performance. Training 
stopped when the error increased within the testing group. 

IV. DATA COLLECTION AND DISTRIBUTION 

Data were collected based on the experimental tests in [9, 
18, 20, 22, 31-47]. A trial-and-error method was employed to 
determine the data distribution ratio for each of the three 
groups to enhance the performance of the ANN. The objective 
was to achieve the maximum correlation coefficient (r), which 
quantifies the accuracy of the projected residual strength ratio 
for GFRP from the network output to the actual residual 
strength ratio. 

V. BUILDING THE MODEL  

Table I shows the independent variables in the input model. 
The output was the residual strength. The training group adjusts 
ANN weights, the testing group ensures network performance 
by stopping training when the error increases, and the 
validation group evaluates model performance [30]. Table II 
shows the data distribution ratios for the three groups, which 
are needed to maximize the ANN performance and achieve the 
maximum correlation coefficient (r). This demonstrates the 
degree of accuracy in the relationship between the anticipated 
residual strength (network output) and the actual residual 
strength. Table II shows that the training group exhibits the 
highest performance at 84%, followed by the testing group at 
12%, and the validation group at 4%. This assessment is based 
on the lowest testing error ratio of 2.1% and the highest 
correlation coefficient of 97.3%. The 128 samples were 
efficiently divided into three groups using the integrated 
blocked, striped, and random techniques. The striped approach 
was chosen because of its low error rate and better correlation. 

TABLE II.  EFFECT OF DATA DIVISION ON THE ANN 
PERFORMANCE 

Data Division 
Training 

error % 

Testing 

error % 

Correlation 

coefficient  

(r)% 
Training 

% 

Testing 

% 

Validation 

% 

76 21 3 6.8 6.2 96.5 
60 20 20 8.3 9.9 95.9 
76 12 12 6.4 14.6 96.1 
80 12 8 8.6 10.7 95.7 
88 8 4 6.5 9.6 95.9 
80 16 4 6.4 3.8 97.0 
84 12 4 5.7 2.1 97.3 

68 20 12 8.0 5.7 96.1 

 
The important elements were retrieved using SPSS data 

analysis to simplify the equation from eight inputs to six. The 
two lowest importance ratios were excluded and the remaining 
were used as inputs for the proposed model. Table III illustrates 
the relevance of each input. The GFRP type Gt and the resin to 
fiber Rf were removed since they had the lowest ratios (3.9% 
and 10.6%). 
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TABLE III.  INDEPENDENT VARIABLE IMPORTANCE IN THE 
ANN MODEL 

Input Symbol Importance 
Normalized 

importance 

Glass transition temperature Tg 0.108 26.7% 
Temperature test T 0.405 100.0% 

GFRP Type Gt 0.016 3.9% 
Fibres Orientation Fo 0.160 39.5% 

Resin Type Rt 0.109 26.9% 
Specimen Dimensions (mm) D 0.082 20.1% 

Time Test (min) Ti 0.077 19.0% 
% Resin to fiber Rf 0.043 10.6% 

 
The input layer has six neurons and the output has one, the 

residual strength. Several methods were employed to discover 
the ideal count of ANN nodes. The best identification 
technique is to use (1) [29], which selects a single hidden layer 
node and incrementally increases neural nodes until the 
network achieves maximum performance. The following 
equation yielded 13 neural nodes as the maximum number. 

���. ��. �� ��	
 � 1 
 2 � �   (1) 

where � denotes the amount of parameters on the input layer. 

The intermediate layer, or hidden layer, has a tan 
hyperbolic transfer function with a 0.4 learning rate and 0.9 
momentum term. Table IV shows the correlation coefficient 
and testing error ratios for this layer. 

TABLE IV.  IMPACT OF THE NUMBER OF NEURONS IN THE 
HIDDEN LAYER ON ANN EFFICIENCY 

No. of 

nodes 
%Training error %Testing error 

Correlation 

coefficient (r)% 

1 5.8 11.1 95.6 
2 5.1 11.8 97.0 

3 5.7 2.1 97.3 

4 9.1 4.2 96.2 
5 7.3 20.4 96.4 
6 6.5 3.6 96.2 
7 6.7 3.8 95.2 

8 7.7 4.8 94.6 
9 5.2 10.8 96.8 

10 5.7 14.1 94.6 
11 9.6 14.3 95.1 
12 7.4 22.9 92.3 
13 6.0 13.3 96.2 

 

Table IV indicates that the ANN performed optimally with 
three neural nodes in the hidden layer, exhibiting the maximum 
correlation coefficient (r) at 97.3% and the lowest error ratio at 
2.1%. The estimated residual strength of GFRP comprised six 
neurons in the input layer, three in the hidden layer, and one in 
the output layer, as shown in Figure 2. 

VI. RESIDUAL TENSILE STRENGTH MODEL 

The connection between each neuron and another has a 
weight that indicates the importance of the connection. Each 
neuron combines all the products after multiplying each input 

value from the neurons in the layer above by the relevant 
connection weights. Upon completion of the ANN training, 
neural node weights were acquired, encompassing interactions 
between the input and hidden layers, as well as the weights 
linking the hidden and output layers, as seen in Table V. 

 

 
Fig. 2.  Neural network for residual strength of GFRP. 

TABLE V.  WEIGHTS OF THE LINK BETWEEN LAYERS AND 
THRESHOLD LIMITS 

Predictor 

Predicted 

Hidden Layer Output Layer 

H(1:1) H(1:2) H(1:3) % P 

Input Layer 

(Bias) 0.056 -0.137 -0.039  
Tg -0.542 0.380 0.533  
T -1.087 0.603 -0.652  
Gt -0.540 -0.049 -0.135  
Fo 0.748 -0.112 -0.587  
Rt 0.144 0.278 0.325  
D -0.245 0.472 0.175  

Hidden 

Layer 

(Bias)    0.779 

H(1:1)    -1.147 

H(1:2)    0.469 

H(1:3)    -0.789 

 
It is important to note that during the training phase, all 

inputs (Tg, T, Fo, Rt, D, and Ti) were changed from their actual 
values to relative values within the range of (-1, 1) in 
compliance with the criteria of SPSS. This adjustment was 
completed using the weights (Wi) and the threshold limit (Bias) 
listed in Table V. Thus, the equations (2)-(4)were produced. To 
acquire the actual values of %P outputs,  the relative value of 
the output was modified using (5). 

 

�� � ���ℎ���0.054. ��� � �0.004. �� � �0.540. ��� 
 �0.748. !"� 
 �0.052. #� 
 �0.005. �$� 
 4.877%  (2) 

�& � ���ℎ��0.038. ��� 
 �0.002. �� � �0.049. ��� � �0.112. !"� � �0.052. #� 
 �0.005. �$� � 4.071%  (3) 
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�) � ���ℎ��0.053. ��� � �0.002. �� � �0.135. ��� � �0.587. !"� 
 �0.061. #� 
 �0.002. �$� � 2.092%  (4) 

%,-./0 � 1����ℎ���1.147. �1� 
 �0.469. �2� � �0.789. �3� 
 0.779% ∗ 463 
 48    (5) 

The retrieved values were validated using statistical criteria, 
including MAPE, AA%, R2, and R to confirm the accuracy of 
the equation generated by the ANN. Equations (6) and  (7) 
were employed to compute the MAPE and AA percentages. 

�4,5 �  6∑⎸9:;⎹
9 =∗�>>

?     (6) 

44% � 100 % � �4,5   (7) 

where 4 denotes the actual values of %P, 5 denotes the values 
of %P calculated by (5), and � denotes the number of samples. 
The average accuracy percentage (AA%) is determined using 
(7). 

Table VI shows the validation model statistical standards 
for 8% of the samples. The results show that the ANN equation 
for GFRP %P residual strength is 92.3% accurate. The 
proposed model matches the practical results, as shown in 
Figure  3. 

TABLE VI.  ANN VALIDATION RESULTS 

Average 

Accuracy 

percentage 

(AA %) 

Mean Absolute 

Percentage 

Error (MAPE) 

Determination 

coefficient (R2) 

Correlation 

coefficient 

(R) 

Statistical 

standards 

92.3 7.7 94.3 97.3 
Statistical 

value for 

ANN 

 
After verifying the model, SPSS was used to get the 

essential ratios to determine how each input affects the 
equation's output. Table VII shows that temperature T had the 
most significant impact of 100%. However, the sample 
dimensions D had the most minor influence at 17.9 %.  

 

 
Fig. 3.  Agreement between the practical results and the proposed model. 

 

TABLE VII.  INDEPENDENT VARIABLE IMPORTANCE IN THE 
ANN MODEL 

Input Symbol Importance 
Normalized 

importance 

Glass transition temperature Tg 0.089 20.6% 
Temperature test T 0.431 100.0% 

Fibres Orientation Fo 0.176 40.9% 
Resin Type Rt 0.140 32.5% 

Specimen Dimensions (mm) D 0.077 17.9% 
Time Test (min) Ti 0.087 20.3% 

 
Figure 4 shows the mathematical models adopted in [20, 

34, 48-50] compared to the proposed model. It should be noted 
that the closest mathematical model to the proposed is the Bazli 
model because it depends on two variables (thickness and 
temperature) unlike the rest of the models that relied on only 
temperature or temperature and glass transition temperature Tg, 
which had an importance of 20.6 % as previously mentioned. 

 

 
Fig. 4.  Proposed model vs previous models. 

VII. CONCLUSIONS 

After collecting the data and training the ANN model, 
weights were obtained for each input to build a mathematical 
model, concluding the following: 

 The variables Gt and Rf had the least significance with 
importance ratios of 3.9% and 10.6%. So they were 
excluded, reducing the model inputs from eight to six. 

 The optimal number of neurons in the hidden layer of the 
ANN is 13. 

 The ANN model demonstrated 92.3% accuracy in 
predicting the GFRP %P residual strength, confirming the 
efficiency of the proposed model. 

 The proposed model was close to Bazli's model, which 
considered both thickness and temperature, making it more 
accurate than models relying solely on temperature. 
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 The proposed model aligns well with practical results 
demonstrating its reliability in real-world applications. 
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