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ABSTRACT 

This article examines the linearization of a nonlinear transfer characteristic in a two-component sensor, 

with the potentiometric level meter serving as a case study. The conducted analysis employs a method of 

interpolation involving two interrelated variables: the liquid level readings are contingent upon both the 

liquid level and the liquid conductivity, while the liquid conductivity readings are influenced by both the 

liquid conductivity and the liquid level. The objective of the current paper is to identify a mathematical 

approach that enhances the precision of the measurement. A methodology for linearizing the nonlinear 

transfer characteristic of a conductivity level meter was established through the integration of two 

conversion correction tables and piecewise quadratic interpolation with iteration in the form of a table 

algorithm. This approach resulted in a reduction in the measurement error compared to the interpolation 

methods without iteration. 

Keywords-potentiometric method; conductive liquid level meter; numerical modeling methods; finite element 

method; measurement error 

I. INTRODUCTION  

Level sensors are designed to precisely measure the level of 
liquids within a container, offering invaluable insights into the 
storage, processing, and distribution of a product. The 
measurement of liquid levels is of significant importance in 
production processes, as it allows the determination of the mass 
and flow rate of liquid products, as well as the control of the 
mixing ratio [1-3]. This crucial parameter not only guarantees 
the effective supervision of production operations but also 

influences the ultimate quality of the final product. To 
guarantee the production of a superior quality product, it is 
essential to ensure the precision of the product level 
measurement. The accurate measurement of product levels 
allows for the optimization of the production processes, the 
reduction of raw material and resource losses, and the 
assurance of their compliance with rigorous regulations and 
quality standards. This ultimately leads to enhanced plant 
competitiveness and customer satisfaction, which are pivotal 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19720-19728 19721  
 

www.etasr.com Smirnov et al.: Reducing the Error of Measurement of the Potentiometric Method of the Conductive … 

 

elements in the contemporary industry. In the filling of dairy 
products, the accurate determination of the product level in the 
intermediate tank is of great consequence with respect to the 
precise dosing of the product. One method of continuous 
measurement is potentiometry. The potentiometric method 
dedployed for measuring the level of an electrically conductive 
liquid has been in use for a considerable period of time [4]. Its 
principal technical characteristics are outlined in [5-8]. In the 
event that level gauges are employed, it is imperative that the 
consumer adhere to all instructions provided with the gauges, 
including consideration of the potential for additional 
measurement error in a range of operational contexts. However, 
the additional errors of the potentiometric level meter remain 
unknown. In order to identify the additional measurement 
errors by the level meter, authors in [9, 10] conducted 
simulations of the liquid level measurement under a variety of 
application conditions. This article presents evidence that an 
additional error in measuring the level of a highly conductive 
liquid by a potentiometric level meter does in fact occur and 
proposes a method for increasing measurement accuracy. 

II. MATERIALS AND METHOD 

A. Analyzing the Occurrence of Additional Measurement 
Error 

The operation of a probe in an electrically conductive liquid 
can be conceptualized as a ladder circuit. As presented in 
Figure 1, the schematic depicts the flow of currents out of the 
probe portion of the probe rSL, placed in the electrolyte through 
the conductive resistors rL electrolyte. The specific electrical 
conductivity of a liquid varies considerably, with its values 
ranging from 0.04 μS/m for distilled water [11] to 2000 μS/m -
42000 μS/m for seawater [12], and up to 30 cm/m for 
concentrated solutions of alkalis and acids. In the schematic, 
USL- is the voltage at the upper extremity of the probe, USL+ is 
the voltage at the lower portion of the probe situated within the 
electrolyte, RSM signifies the electrical resistance of the central 
rod of the probe, RSL1-RSLN are the elements of the probe's 
electrical resistance within the ladder circuit, and RL1-YLN are 
the elements of the electrical resistance of the liquid within the 
ladder circuit. 

 

 
Fig. 1.  Schematic diagram of the probe currents. 

Although the electrical resistance of the electrolyte (rL) is 
considerably greater than that of the probe (rSL), a substantial 
number of resistors in the electrolyte result in a notable current, 
which consequently leads to a reduction in the voltage USL+. 
This indicates a dependence of the voltage USL+ on the specific 
conductivity of the liquid (yL): 

���� � ����	     (1) 

The introduction of this function results in the presence of 
an additional level of measurement error. The additional error 
in level measurement, Δam, caused by currents through the 
electrical resistance of the liquid is shown in Figure 2. 

 

 

Fig. 2.  Approximate dependence of USL voltage on the probe depth in the 

electrolyte. 

In Figure 2, yL1 is the voltage dependence on the probe at a 
low specific conductivity of the liquid, yL2 is the voltage 
dependence on the probe at a high specific conductivity of the 
liquid, and Δam is the additional measurement error caused by 
currents at a high specific conductivity of the liquid. The input 
electrical resistance RSLI of the probe part, situated within the 
electrolyte, is defined as a ladder fraction: 


��� � ����������������������������  (2) 

In order to determine the solution of the ladder fraction, it is 
necessary to begin with the bottom of the fraction and then 
repeat the division of the fraction. The number of repetitions of 
the fraction's division is equal to half the number of the links in 
the ladder chain. The discrete values of the electrolyte level (L), 
the probe resistance (RSL), and the electrolyte conductivity (YL) 
must be substituted into the error formula: 

��� � � � �� � � � �� ⋅ ��������������  (3) 

The solution of the ladder fraction by numerical methods is 
presented in Figure 3 as a graph of additional measurement 
error. Consequently, the readings obtained from a level gauge 
are contingent upon two variables: the liquid level and the 
liquid conductivity. The maximum relative error of the level 
gauge measurement is equal to � = 62/900 = 0.069 = 6.9%. In 
order to calculate the liquid level, it is necessary to measure the 
conductivity of the liquid in question. The measured 
conductivity of the liquid is not a linear function of the liquid 
level, so it becomes evident that it is required to measure and 
linearize two interdependent parameters, which represents a 
significant challenge. 
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Fig. 3.  Dependence of absolute additional error of measurement Δam on the 

level and conductivity of the electrolyte. 

In instances where the output signal of the sensor is subject 
to the influence of multiple external factors, its transfer 
function becomes multi-dimensional. An example of a sensor 
with a two-dimensional transfer function is an infrared 
temperature sensor [13]. Consequently, the level probe can be 
defined as a two-dimensional sensor, representing a 
combination of a liquid level probe and a liquid conductivity 
probe. 

B. Simulation Method 

In order to solve a mathematical model at the micro level, 
numerical methods based on the discretization of continuous 
variables are used. In the process of discretization, continuous 
ranges of value changes are replaced by sets of values at nodal 
points, which are regarded as nodes within a specific grid. This 
article employs the finite element method [14-16]. In this 
context, the electric field in the electrolyte is modeled in a 
static mode, that is, in a steady state over time. For the 
purposes of this analysis, it is assumed that the specific 
electrical conductivity of the electrolyte is constant and 
identical in all finite elements. A finite element model is to be 
created, and the electrolyte body is to be divided into equal 
cubes in Cartesian coordinates. Figure 4 displays the diagram 
of the potential transfer between the finite elements within the 
electrolyte. The transfer of potential is shown by arrows, 
indicating the manner in which it occurs through the contacting 
faces of adjacent finite elements. The electric field exerts an 
influence upon the electrolyte, whereby electric currents flow 
in a direction from areas of higher potential to areas of lower 
potential, and in a manner perpendicular to the lines of equal 
potential. This process gives rise to a distribution of electric 
field potentials within the electrolyte. It is possible to form an 
equation for the electric currents in the electrolyte using 
Kirchhoff's law in a specific finite element with coordinates x, 
y, and z: 

�� !"#�$��	 � !"#$% & �� !�"'�	#$ � !"#$% &&�� !�"��	#$ � !"#$% & �� !"#�$'�	 � !"#$% &&�� !"�#��	$ � !"#$% & �� !"�#'�	$ � !"#$% � 0 (4) 

where yL is the specific electrical conductivity of the 
electrolyte. Accordingly, the potential of the point of the 

extreme edge of the finite element, x, y, z, will be calculated as 
the arithmetic mean of the potentials of the finite elements in 
contact with the finite element (x, y, z): 

!"#$ � �!"#�$��	 & !�"'�	#$ & !�"��	#$ & &!"#�$'�	 &!"�#��	$ & !"�#'�	$	/6    (5) 

 

 
Fig. 4.  Diagram of potential transfer between finite elements inside the 

electrolyte in the vertical and horizontal planes. 

The modeling of the electric field in the electrolyte in 
Cartesian coordinates is a labor-intensive process, as it is 
necessary to calculate the potentials of the entire set of finite 
elements. The electrolyte model in Cartesian coordinates will 
have the form of a parallelepiped of size x, y, z. To ensure the 
high accuracy of calculations, it is necessary to accept large 
numbers of x, y, and z. To limit the number of the finite 
elements, a model of infinite space of finite elements in the 
faces of the parallelepiped will be constructed by a linear 
extrapolation in the form: 

!+∞ � !+∞'� � �!+∞'� � !+∞'�	 � 2!+∞'� � !+∞'� (6) 

!�∞ � 2!�∞'� � !�∞'�   (7) 

!-∞ � 2!-∞'� � !-∞'�   (8) 

where EX∞, EY∞, EZ∞ are the potential of the face of the infinite 
space of finite elements along the axis x, y, z, correspondingly. 
A numerical model was created to simulate the transfer of the 
electric potential between discrete elements within the 
electrolyte. The calculation employs the iteration method, 
incorporating the boundary conditions within the electrolyte 
and establishing a connection between the source and the edges 
of the probe. 

C. Analysis of Measurement Error 

The level and conductivity probes perform a direct 
conversion of the measured value, in this case the level and 
specific conductivity of the electrolyte, into probe measurement 
signals LS and yS, which are subject to some error: 

�� � �./���, ��	    (9) 

�� � �./���, ��	    (10) 

The level meter and conductometer controller perform an 
inverse transformation on the probe measurement signals LS 
and yS, yielding output signals of the level and specific 
conductivity of the electrolyte LCALC and yCALC with a certain 

degree of error. This yields the approximate relations LC ≈ L 

and yC ≈ yL. The equations of the inverse transformation are 

expressed as a system of nonlinear equations: 
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1�/ � �2/���, ��	 ⋅ �./���, ��	 ⋅ � � �2/���, ��	 ⋅ ���/ � �2/���, ��	 ⋅ �./���, ��	 ⋅ �� � �2/���, ��	 ⋅ ��(11) 

The application of the inverse transformation calculates the 
correction multipliers to the probe direct transformation 
function, which, when multiplied together, linearizes the probe 
transformation function [17-19]. The outcomes of the finite 
element method numerical modeling within the electrolyte with 

varying specific conductivity and electrolyte levels, as 
determined through the iterative finite element potential 

calculations, are presented in Tables I and II, where 3� � �
�� 

and 3� � #�#� . Inverse correction factor tables are generated 

during the calibration of sensors in experimental and 
production settings [20]. 

TABLE I.  DEPENDENCE OF THE INVERSE CORRECTION FACTOR OF THE LEVEL MEASUREMENT ON THE PROBE DEPTH IN THE 
ELECTROLYTE AND THE SPECIFIC CONDUCTIVITY OF THE ELECTROLYTE 

  Probe depth in the electrolyte L, mm 

Calculated inverse 

conversion factor of the 

probe KL 

yL (S/m) 50 100 200 400 800 1.000 1.100 1.150 1.250 

66.7 1.0053 1.0068 1.0142 1.0389 1.0769 1.0660 1.0484 1.0361 1.0037 

16.8 1.0044 1.0038 1.0047 1.0104 1.0201 1.0175 1.0130 1.0098 1.0012 

4.17 1.0044 1.0030 1.0023 1.0032 1.0054 1.0047 1.0035 1.0027 1.0005 

1.04 1.0041 1.0028 1.0017 1.0014 1.0016 1.0014 1.0011 1.0009 1.0003 

0.26 1.0039 1.0027 1.0016 1.0010 1.0007 1.0006 1.0005 1.0004 1.0003 

0.004 1.0039 1.0027 1.0015 1.0008 1.0004 1.0003 1.0003 1.0003 1.0002 

TABLE II.  DEPENDENCE OF THE INVERSE TRANSFORMATION COEFFICIENT OF THE SPECIFIC CONDUCTIVITY MEASUREMENT 
ON THE PROBE DEPTH IN THE ELECTROLYTE AND THE SPECIFIC CONDUCTIVITY OF THE ELECTROLYTE 

  Probe depth in the electrolyte L, mm 

Calculated inverse 

conversion factor of the 

probe KY 

yL (S/m) 50 100 200 400 800 1.000 1.100 1.150 1.250 

66.7 0.931 1.044 1.189 1.431 1.797 1.866 1.854 1.832 1.754 

16.8 0.899 0.973 1.035 1.110 1.210 1.231 1.231 1.228 1.214 

4.17 0.883 0.947 0.987 1.019 1.051 1.058 1.058 1.058 1.055 

1.04 0.879 0.940 0.975 0.996 1.011 1.014 1.015 1.015 1.014 

0.26 0.878 0.940 0.972 0.991 1.001 1.004 1.004 1.005 1.005 

0.004 0.877 0.940 0.973 0.991 1.000 1.002 1.003 1.003 1.004 
 

D. Analyzing Data from Inverse Correction Factor Tables 

The data from the inverse correction factor Tables I and II 
were subjected to analysis, which revealed that the inverse 
correction functions fBCL and fBCY are represented in the tables 
by discrete inverse correction coefficients of the inverse 
transformation of the probe/probes KL and KY. This is to say 
that fBCL= KL and fBCY= KY at the known discrete values L, yL. 
The data L, yL, KL, and KY are organized into matrices for the 
purpose of visualizing the three-dimensional surfaces of the 
inverse transformation functions fBCL and fBCY. As illustrated in 
Figures 5 and 6, the inverse transform functions are represented 
as interconnected, continuous, and non-monotonic nonlinear 
functions of two variables. 

E. Piecewise Quadratic Interpolation by Power Polynomials 
with Iteration 

The sectors of the three-dimensional surface containing the 
measurement point from Figures 5 and 6 have been extracted 
and presented in the separate Figures 7 and 8 for purposes of 
analysis. The sectors of the three-dimensional surface are 
defined by curved lines between the interpolation nodes, with 
nine nodes in total. The inverse correction point of the KLS 
probe is defined by the coordinates LS and yS and is located on 
the three-dimensional surface of the inverse transformation 
function fBCL. The probe inverse correction point, KL, is defined 
by the coordinates L and yL and is located on the three-
dimensional surface of the inverse transformation function, 
fBCL. The transition from the point KLS to the point KL is 
accomplished through a step-by-step iterative process, as 
indicated by the arrow. 

 

Fig. 5.  Three-dimensional surface of the inverse transformation function. 

 
Fig. 6.  Three-dimensional surface of the inverse transformation function. 
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Fig. 7.  Selected sectors of the three-dimensional surface of the inverse 

transformation function. 

 
Fig. 8.  Selected sectors of the three-dimensional surface of the inverse 

transformation function. 

The inverse transformation function, fBCY, exhibits a 
comparable structural configuration. The sought point of the 
inverse correction of the probe KY is defined by the coordinates 
L and yL and is located on the three-dimensional surface of the 
inverse transformation function fBCY. The transition from point 
KYS to point KY is accomplished through a step-by-step iterative 
process in the direction indicated by the arrow. If the function 
of two variables, f (x, y), is known at the nodes of a two-
dimensional rectangular grid, it can be interpolated to any point 
(x, y). In the first instance, a grid (xi ... xn) × (yi ... ym) must be 
interpolated to m points (x, yi) ... (x, ym) along the variable x. 
From the values of the function obtained at these points, one 
may then proceed to interpolate on the variable y and thereby 
obtain the value at the point (x, y) [21, 22]. As the interpolating 
polynomials of several variables are unwieldy, a pragmatic 
technique is employed: the method of successive interpolation 
on each variable. Univariate methods are used for this purpose. 
For the specified sectors of the three-dimensional surface of the 
function fBCL and fBCY, a sequential two-dimensional 
interpolation is applied by a second-degree polynomial with a 
non-uniform grid. Nevertheless, the issue of interpolating the 
inverse correction coefficients KL, KY cannot be directly 
addressed, as the probe generates the vectors LS and yS, yet fails 
to produce the unknown vectors L and yL, which is the object of 
this study’s search. The aforementioned interpolation issue can 
be addressed through the implementation of numerical 
techniques, whereby the system of equations pertaining to the 
KL and KY coefficients can be solved in conjunction with 
iteration. There is a need to develop a method of interpolation 
with iteration. Piecewise quadratic interpolation using 
Newton's second-degree stepped polynomials is conducted to 

achieve the desired accuracy [23]. The equations of the lines 
highlighted in the Figures with thickened lines are formulated 
and solved: 

⎩⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎧

8� 8 � 0 :ℎ<= �+ � ��; �+ � ��;8� 8 ? 0 :ℎ<= �+ � 3�/ ⋅ ��; �+ � 3�/ ⋅ ��;8� 8 @ 5 :ℎ<= 8 � 8 & 1;<CD< �/ � �+; �/ � �+; <=E;3�FG � 3�GG & H3�G�� ⋅ ��+ � �G	&H3�G�� ⋅ ��+ � �G	��+ � ��	3�F� � 3��G & H3���� ⋅ ��+ � �G	&H3���� ⋅ ��+ � �G	��+ � ��	3�F� � 3��G & H3���� ⋅ ��+ � �G	&H3���� ⋅ ��+ � �G	��+ � ��	3�/ � 3�FG & H3��F�� ⋅ ��+ � �G	&H3��F�� ⋅ ��+ � �G	��+ � ��	3�FG � 3�GG & H3�G�� ⋅ ��+ � �G	&H3�G�� ⋅ ��+ � �G	��+ � ��	3�F� � 3��G & H3���� ⋅ ��+ � �G	&H3���� ⋅ ��+ � �G	��+ � ��	3�F� � 3��G & H3���� ⋅ ��+ � �G	&H3���� ⋅ ��+ � �G	��+ � ��	3�/ � 3�FG & H3��F�� ⋅ ��+ � �G	&H3��F�� ⋅ ��+ � �G	��+ � ��	

 (12) 

where H3�G�� � IJ�KL'IJ�KLK�L'�K  are the first separated 

differences KL for line 0 of the second order, H3��F�� �IJ��ML'I���M#L'#K  are the first separated differences KL for line 4 

of the second order, H3�G�� � IJ�KL'IJ�KLK#L'#K  are the first 

separated differences KY for line 0 of the second order, H3��F�� � IJ��ML'I���M�L'�K  are the first separated differences KY 

for line 4 of the second order. To begin the solution of the 
equations, it is necessary to identify a known point, LS and yS. 
This can be achieved by replacing L by LS and yL by yS in the 
equations within the zero-iteration loop. In order to solve the 
system of equations in the initial and subsequent iteration 
cycles, it is necessary to replace LS by LC and yS by yC in the 
equations, as this will result in the subsequent iteration causing 
the system of equations to reach equilibrium. 

The system of equations in the initial and subsequent 
iteration cycles will exhibit a tendency for LX to approach L and 
for yX to approach yL. Upon completion of the designated 
number of iterations, the results LX and yX are written to LC and 
yC, which serve as the sought-after measurement results. The 
piecewise quadratic interpolation with iteration automatically 
selects the coefficients of the polynomials for the inverse 
transform function in both sensor components. The 
measurement errors for both sensor components are reduced by 
the accuracy of the initial data and the interpolation method. In 
order to calculate the value/values using the piecewise 
quadratic interpolation method with iteration, the original value 
of the test signal, L = 600, y = 2.5 will be used, which was 
measured to yield LS = 598.240, and YS = 2.435. Table III 
presents the initial values for the calculation, while Table IV 
provides a breakdown of the calculation iterations. 
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TABLE III.  INITIAL DATA FOR THE CALCULATION OF EQUATIONS BY THE PIECEWISE QUADRATIC INTERPOLATION METHOD 
WITH ITERATION FOR THE MICROCONTROLLER 

Coordinates of grid nodes 

L0 200 y0 1.04 

L1 400 y1 4.17 

L2 800 y2 16.8 

Correction coefficients in level meter grid nodes (from Table I) 

KL00 1.00171 KL10 1.00231 KL20 1.00470 

KL01 1.00139 KL11 1.00321 KL21 1.01040 

KL02 1.00165 KL12 1.00536 KL22 1.02009 

Correction coefficients in the conductometer grid nodes (from Table II) 

KY00 0.97492 KY10 0.99614 KY20 1.01093 

KY01 0.98735 KY11 1.01922 KY21 1.05112 

KY02 1.03510 KY12 1.10984 KY22 1.21038 

Calculations of divided differences of the level meter grid 

(by Newton interpolation) 

Calculations of divided differences of the conductometer 

grid (by Newton interpolation) 

δKL011 -0.00000158 δKY011 0.00397076 

δKL021 0.00000064 δKY021 0.00378068 

δKL012 0.000000004 δKY012 -0.00001206 

δKL111 0.00000451 δKY111 0.00737397 

δKL121 0.00000538 δKY121 0.00717460 

δKL112 0.000000001 δKY112 -0.00001265 

δKL211 0.00002849 δKY211 0.01284015 

δKL221 0.00002422 δKY221 0.01260969 

δKL212 -0.00000001 δKY212 -0.00001462 

TABLE IV.  CALCULATION OF EQUATIONS BY THE PIECEWISE QUADRATIC INTERPOLATION METHOD WITH ITERATION FOR THE 
MICROCONTROLLER 

Iteration number 0 1 2 3 4 5 

KL40 1.00137 1.00137 1.00137 1.00137 1.00137 1.00137 

KL41 1.00422 1.00423 1.00423 1.00423 1.00423 1.00423 

KL42 1.01549 1.01552 1.01552 1.01552 1.01552 1.01552 

δKLY411 0.0009092 0.0009116 0.0009116 0.0009116 0.0009116 0.0009116 

δKLY421 0.0008922 0.0008946 0.0008946 0.0008946 0.0008946 0.0008946 

δKLY412 -0.00000108 -0.00000108 -0.00000108 -0.00000108 -0.00000108 -0.00000108 

KL 1.002642 1.002696 1.002698 1.002698 1.002698 1.002698 

Lc 598.240 599.821 599.853 599.854 599.854 599.854 

KY40 0.98049 0.98071 0.98071 0.98071 0.98071 0.98071 

KY41 1.00646 1.00686 1.00687 1.00687 1.00687 1.00687 

KY42 1.02888 1.02958 1.02960 1.02960 1.02960 1.02960 

δKYL411 0.00012985 0.00013078 0.00013081 0.00013081 0.00013081 0.00013081 

δKYL421 0.00005604 0.00005679 0.00005681 0.00005682 0.00005682 0.00005682 

δKYL412 -0.00000012 -0.00000012 -0.00000012 -0.00000012 -0.00000012 -0.00000012 

KY 1.02249 1.02314 1.02316 1.02316 1.02316 1.02316 

Yc 2.4350 2.4898 2.4914 2.4914 2.4914 2.4914 
 

III. RESULTS 

A. The Linearization Progress 

The linearization progress of the two-component level 
gauge in the process of iteration by steps of calculation 
repetition is shown in Table V and Figure 9. The level 
measurement error associated with the piecewise quadratic 
interpolation method with iteration approaches a limiting value 
of Δm=-0.146 mm following the second or third iteration step. 

TABLE V.  PROGRESS OF LINEARIZATION OF THE TWO-
COMPONENT LEVEL GAUGE IN THE PROCESS OF 

ITERATION BY STEPS OF REPETITION OF 
CALCULATIONS 

 Measurement error (mm) 

Iteration step number 0 1 2 3 4 5 

Piecewise quadratic 

interpolation with iteration 
1.760 0.179 0.147 0.146 0.146 0.146 

 
Fig. 9.  Progress of linearization of the two-component level gauge in the 

process of iteration by steps of repetition of calculations. 
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B. Functional Diagram of a Two-Component Level Gauge 
with Nonlinearity Correction 

In accordance with the proposed method of interpolation 
with iteration, a functional diagram of a two-component level 
gauge is developed, integrating the liquid level meter and the 
conductometer, as portrayed in Figure 10. 

In the diagram, BL is the liquid level probe, which turns a 
non-electrical value of liquid level L into the voltage LS. BY is 
the liquid conductivity probe, which turns the non-electrical 
value of specific conductivity yL into the voltage yS. ADC1 and 
ADC2 are the analog-to-digital converters, which convert 
analog signals LS and yS into the digital signals LS# and yS#. 
MUL1 and MUL2 are the digital signal multipliers, which 
linearize the nonlinear digital signals LS# and yS# into the linear 
digital signals LC# and yC#. The digital converters change the 
analog signals LS and yS into the digital signals LS# and yS#. 
DDC1 and DDC2 are digital-to-digital converters that convert 
the digital signals LC# and yC# into the digital inverse 
conversion coefficients KY# and KL#. 

 

 
Fig. 10.  Functional diagram of the two-component sensor, the combination 

of the liquid level transmitter, and the conductometer. 

C. Stability Analysis of the Two-Component Sensor and 
Iteration Convergence 

The two-component sensor has a functional diagram with 
closed-loop feedback in the circuit. The MUL1-DDC2-MUL2-
DDC1-MUL1 configuration can cause the trigger to be 
activated or result in unstable positions under certain 
conditions. The closed-loop feedback is shown in open-loop 
form in Figure 11, along with the stability conditions. 

 

 
Fig. 11.  Functional diagram of open-circuit feedback of a two-dimensional 

sensor. 

In order to calculate the feedback gain of the feedback 
circuit, it is necessary to provide a small signal LC in addition to 

the ΔL0 signal. Following this, the transmission of the ΔL0 signal 
through the feedback circuit can be evaluated: 

�J� � NJ�N� ��G    (13) 

��� � �J ��� � NJ�N� ��G��   (14) 

�J� � NJ�N# ��� & NJ�N� ��G  

          � NJ�N#
NJ�N� ��G�� & NJ�N� ��G   (15) 

��� � �J��� � �� ONJ�N#
NJ�N� ��G�� & NJ�N� ��GP (16) 

Using the equation of the output signal, the feedback gain 
KBL  is found: 

32� � Q�Q�K � NJ�N#
NJ�N� ���� & NJ�N� ��  (17) 

In accordance with the Nyquist criterion, the feedback 
circuit is deemed to be stable when the real part of the K_BL 
feedback coefficient is less than one. In the KBL feedback 
coefficient equation, all the numbers are real, indicating that 
the stability condition is not situated within the complex 
domain but rather on the real number line: 

32� � NJ�N#
NJ�N� ���� & NJ�N� �� @ 1  (18) 

It is necessary to examine the stability condition of the 
feedback circuit for the two-component sensor. In order to do 
so, the derivatives must be substituted in the equation with the 
first-order Newton polynomial divided differences from Table 
III: 

32� � H3��F��H3��F������ & H3�G���� @ 1 (19) 

Upon substituting the numerical values, the result is: 

32� � 0.00089462 ⋅ 0.00005682 ⋅ 598.240 ⋅ 2.435&
0.00000064 ⋅ 598.240 � 0.000456 ≪ 1  (20) 

The feedback gain of the feedback circuit KBL of the two-
component sensor is observed to be less than one on numerous 
occasions. The feedback loop gain value corroborates the 
convergence property of the iteration in this calculation. 

D. Verification of Measurement Error 

It is recognized that the minimum deviation of the KL 
coefficient calculated by the piecewise interpolation method is 
situated in proximity to the grid nodes. Consequently, the 
maximum deviation of the KL coefficient will be located in the 
vicinity of the midpoint between the grid nodes. In order to 
evaluate the accuracy of the piecewise interpolation method 
with iterations, a test signal was selected from the middle of the 
interpolation sector, specifically L=600, yL=2.5. This location is 
depicted in Figures 6 and 7 as a point. In this instance, LS 
(y=2.5, L=600) is equal to 598.24 mm, while yS (y=2.5, L=600) 
is equal to 2.435 S/m. The calculations of the errors associated 
with the method of interpolation with iteration are presented in 
Table IV. The absolute errors of the method of piecewise 
quadratic interpolation with iteration are: ΔL = 599.854 - 600= -
0.146 mm, Δy = 2.4914 – 2.5 = -0.0086 S/m. The relative errors 
of the method of piecewise quadratic interpolation with 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19720-19728 19727  
 

www.etasr.com Smirnov et al.: Reducing the Error of Measurement of the Potentiometric Method of the Conductive … 

 

iteration have a value of: σL = ΔL/L = -0.146/600 = -0.00025, 
and σY = Δy/y = -0.0086/2.5 = -0.0035. Since the inverse 
transformation functions of the probe KL and KY have 
descending and ascending regions, we can accept as the result 
of the numerical simulation for piecewise quadratic 
interpolation with iteration can be accepted as: ΔL = ±0.15 mm, 
Δy = ±0.009 S/m, σL = ±0.00025, σY = ±0.0035. 

IV. DISCUSSION 

Authors in [14] proposed a method of two-dimensional 
linearization, whereby the coefficients of a surface polynomial 
are calculated from four systems of equations. In this case, 
there is no correlation between the values of the second 
measured value and those of the first value. The two-
dimensional polynomial calibration algorithm was tested using 
the MatLab program, but the calculations are exceedingly 
complex. The presented interpolation method with iterations is 
based on the calculation of two interrelated measured values, 
which are presented in two tables of correction coefficients. 
The method is performed by calculating one system of 
equations without an intermediate calculation of the 
polynomial coefficients. The presented interpolation method 
with iterations is less costly and can be implemented in an 
inexpensive general-purpose microcontroller, rather than in a 
Digital Signal Processor (DSP). The system of (12) is a 
compiled algorithm for calculating on a microcontroller. It is a 
relatively straightforward process to develop a program for 
calculating using a microcontroller. The calculation program 
comprises two distinct components: a fixed component, and a 
variable component. Figure 9 shows the manner in which the 
variable component of the program reduces the measurement 
error incrementally with the number of calculation iterations. 
Equation (20) demonstrates the stability of the method and 
provides numerical evidence in accordance with the Nyquist 
criterion. The method is verified by a numerical method using a 
test signal, which is obtained in a manner analogous to that 
utilized to derive the conversion correction coefficients through 
the simulation of the field of the level gauge in the electrolyte. 

V. CONCLUSIONS 

The present article outlines the operational principle of a 
potentiometric level gauge and provides numerical evidence to 
substantiate the existence of an additional error in level 
measurement that arises in the presence of a high specific 
conductivity of the liquid. The subsequent numerical modeling 
of the level meter probe in the liquid confirmed the appearance 
of an additional measurement error of a maximum of 7.7% at a 
specific electrical conductivity of the liquid, 66.7 S/m, 30% 
H₂SO₄, and at a liquid level of 0.65 of the probe length. The 
inverse correction factor for the inverted transformation 
functions of the potentiometric level meter and conductometer 
were obtained through the numerical modeling of the level 
meter probe in liquid. From these inverse correction factor 
tables, visual representations of the inverse transformation 
function are obtained through interpolation. The inverse 
transformation function is presented as a set of interconnected, 
continuous, non-monotonic, nonlinear functions of two 
variables. A substantial number of technical publications 
describe methods for reducing errors through the linearization 
of inverse transform functions, including both additive and 

multiplicative approaches. Nevertheless, as the inverse 
transformation functions of a two-component level meter are 
nonlinear and interrelated, the problem of interpolating the 
inverse correction coefficients KL, KY cannot be solved directly. 
This is because the probe produces the vectors LS, yS, but does 
not provide the vectors L, yL, which are the unknown variables. 

The proposed method of interpolation with iteration, 
enables the simultaneous numerical interpolation of two 
variables representing measured quantities. The incorporation 
of iteration into the process of interpolation calculation has 
been demonstrated to reduce the measurement error by a factor 
of seven for piecewise quadratic interpolation. In accordance 
with the proposed method of interpolation with iteration, a 
functional diagram of a two-component level meter, which is a 
combination of a liquid level meter and a liquid conductometer, 
is constructed. This allows for the composition of an algorithm 
for calculating the interpolation with iteration by a 
microcontroller. Additionally, a methodology for analyzing the 
stability of the two-component sensor was presented, including 
an equation for determining the stability condition of the two-
component level gauge in the presence of a trigger lock or the 
generation of unstable positions under specific conditions in 
closed-loop feedback. 
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