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ABSTRACT 

Accurate identification of brain tissue is an ill-posed problem due to the inhomogeneous intensity and the 

extremely complicated and irregular border between endocrine tissues. This study introduces a superpixel-

based approach to brain tissue classification in MRI scans. The proposed approach starts with image 

smoothing and feature highlighting, followed by image splitting based on the SLIC superpixel and merging 

strategy. Then, distinct superpixel-based appearance and boundary features are extracted and refined by 

minimizing redundancy and maximizing relevance technique before sending to the C-support vector 

classifier. Finally, a refinement step is adopted based on morphological characteristics and the distance 

regularized level set evolution model to modify the matter contour. The proposed approach was evaluated 

and compared with ten existing algorithms using the publicly accessible IBSR dataset. The experimental 

results show the better efficiency of the proposed approach in delimiting the contour of each matter than 

the other approaches in the literature. 

Keywords-brain tissue MRI; classification; feature selection; c-support vector classification; distance 

regularized level set evolution 

I. INTRODUCTION  

Magnetic Resonance Imaging (MRI) is a popular medical 
imaging modality that presents important structural data about 
the brain. Complete and accurate automatic segmentation of 
MRI brain tissue plays a vital role in a variety of clinical 
applications, such as disease diagnosis, surgical planning, and 
treatment monitoring. Over the past years, various 
unsupervised and supervised classification techniques have 
been proposed to segment MRI brain images into White Matter 
(WM), Gray Matter (GM), Cerebrospinal Fluid (CSF), and 
background. 

Unsupervised methods are commonly used for brain tissue 
segmentation, such as expectation maximization, k-means, and 
fuzzy clustering. Fuzzy C-Means clustering (FCM) [1] is an 
unsupervised method that is successfully exploited although 
ignoring the spatial information. It was later extended into 
FANTASM which alters the target function with a penalty term 
depending on the neighbors' membership to other classes, 
leading to better performance. Fuzzy clustering shows a high 
capacity to handle complex, largely uncertain, and imprecise 
brain images. Another FCM-based method was introduced in 
[2]. This method incorporated a kernel-induced distance, 
instead of the original Euclidean distance in the FCM, and local 
spatial information into a weighted membership function. This 
leads to an improved accuracy compared to the classical FCM. 

In [3], a fuzzy consensus clustering technique was 
presented to classify image pixels based on a voting technique 
defining a membership function. This algorithm starts with 
image preprocessing before segmenting the MRI image with 

common fuzzy and intuitionistic set methods. Then, a voting 
technique is adopted to combine the results obtained. In [4], 
another brain segmentation method was introduced, based on 
pixel- and superpixel-wise features classified with LSTM. 
Combining these two features enhances computational 
efficiency and robustness to noise. However, unsupervised 
clustering methods generally fail in segmenting images with 
existing noise and intensity heterogeneity resulting from the 
acquisition procedure. 

The Markov Random Field (MRF) model was used in [5, 
6]. Specifically, in [4], the iterative expectation maximization 
technique was integrated with K-means initialization to 
estimate the MRF parameters, whereas in [6], a real-coded 
genetic algorithm was employed to estimate the iterative 
conditional mode algorithm and initialization parameters. The 
Gaussian mixture model was also used for brain tissue 
segmentation in SPM5 [7] and SPM8 [8]. SPM5 and SPM8 
differ in mixing proportions, registration, and an extended set 
of probabilistic atlases. Similarly to SPM methods, a Gaussian 
mixture model was also used in [10] to derive tissue 
distributions by GAMIXTURE. In this algorithm, a real-coded 
genetic method was applied to estimate the GMM initial and 
subsequent parameters. 

Semi-supervised and supervised learning algorithms based 
on training data have also been used for MRI brain tissue 
segmentation. One such approach was presented in [9] using a 
Self-Organizing Map (SOM) neural network, where statistical 
analysis was applied to the extracted features before entering 
the neural network to organize unknown data into classes based 
on a similarity criterion, e.g., Euclidean distance. In [11], a 
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self-trained k-nearest neighbor classifier trained by registering 
brain atlases was presented to classify objects with the 
maximum probability group acquired from the tissue atlases.  

Recently, machine learning and neural networks have been 
used for medical image segmentation and classification. A 
fuzzy min-max neural network was used in [12] for MRI tissue 
segmentation. This approach starts with image denoising using 
the Gabor filtering technique, followed by a region-growing 
technique. The edges were obtained with an edge detection 
approach on the segmented image. The color information was 
then abstracted using an entropy-based method after removing 
the texture information. A comparison of distance in regions 
was used to merge comparable areas in the region merging 
stage. Finally, a fuzzy min-max neural network was applied to 
categorize the regions. Moreover, the maximum-a-posteriori 
classifier was employed in [13] to combine the partial volume 
tissue measurement model with spatial prior. Deep networks 
have also been adopted for supervised MRI brain segmentation 
[14-16]. For instance, SegNet with an encoder-decoder 
architecture was introduced in [16]. Besides the acceptable 
performance of MRI brain tissue segmentation in the literature, 
most of the existing methods have certain limitations, including 
requiring predefined parameters for each dataset, high 
computational complexity, and pixel-wise misclassification.  

This study presents a superpixel-based classification 
approach for MRI brain tissue. The proposed approach 
incorporates discriminative appearance and boundary cues, 
sufficiently distinguishing different tissue components at the 
superpixel representation level. These cues are then used with 
the trained C-SVC. Then, the Distance Regularized Level Set 
Evolution (DRLSE) model is adopted for the classified regions 
to obtain a more accurate border. The proposed approach is 
compared with ten classification approaches, showing higher 
performance in CSF, GM, and WM classification. 

II. RESEARCH METHODOLOGY 

The proposed model was used on a publicly available 
Internet Brain Segmentation Repository (IBSR) dataset [17], 
which consists of 20 MRI brain images, each with several 
subjects with a size of 256×256 pixels. These images were 
preprocessed, classified, and post-processed as shown in Figure 
1. The proposed model consists of three main phases: 1) MRI 
brain preprocessing and superpixelling phase, 2) C-support 
vector classification with superpixel-based distinctive features, 
and 3) MRI brain matter refinement phase based on edge and 
shape. 

 

 
Fig. 1.  The flowchart of the proposed approach: (1) Preprocessing and superpixelling phase, (2) feature extraction and classification phase, and (3) post-
processing phase by shape and edge-based refinement. 

A. Preprocessing and Superpixelling Phase 

The preprocessing phase plays a vital role in the accurate 
classification of MRI tissue and consists of several steps: 

 Intensity normalization: Intensity is one of the most 
dominant and recognizable low-level visual characteristics 
to describe a CSF region in an MRI brain image. However, 
it varies based on the difference between the acquisitions of 
various sequences. Thus, intensity normalization is 
performed to enhance the appearance of brain tissue. 

 Image smoothing: Smoothing is accomplished using the 
Gabor filtering technique to enhance the image texture and 
eliminate the noise, thus, the brain matters will be 
accurately classified in the next phase. 

 Feature highlighting: For this purpose, Contrast-Limited 
Adaptive Histogram Equalization (CLAHE) [18] and 
morphological filtering by reconstruction (opening and 
closing) [19] were used to highlight the discriminative 
characteristics of brain tissue. 
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 SLIC superpixelling: The MRI data is divided into small 
regions with similar color information using the Simple 
Linear Iterative Clustering Technique (SLIC) [20]. SLIC is 
one the most efficient superpixelling techniques and is 
widely used with medical images due to its low 
computational time and ability to produce regularly shaped 
and semi-equal-sized superpixels, facilitating the 
differentiation of image components based on the 
superpixel shape. It performs in a five-dimensional color 
and image plane space, efficiently producing condensed and 
nearly homogenous superpixels by incorporating color and 
spatial information [21]. 

 Superpixel fusion: Superpixelling may produce some small 
superpixels with few isolated pixels, which may lead to 
misclassifying them later. Thus, a fusion step is performed 
to integrate superpixels smaller than 50 pixels with their 
adjacent superpixels. All background superpixels are 
merged into a single superpixel as well. 

B. Superpixel-based Classification Phase 

The classification phase is then performed to divide the 
MRI brain image into CSF, gray, and white matters, as shown 
in Figure 2. This is performed in two steps: 

 

Fig. 2.  The components of an MRI brain tissue image. 

 Feature selection: First, distinct features are extracted from 
each superpixel for subsequent classification. According to 
our observation, the CSF region can be distinguished by 
dark and smooth intensity, elliptical shape, and connected 
edge surrounding the region. Thus, a set of texture, edge, 
and shape features, as well as comparative features with 
good discriminative ability are extracted from each 
superpixel including, average and median intensity, 
standard deviation, entropy, the average intensity difference 
between the patch-in-focus and the surrounding patches, 
number of border pixels, area, and circularity. The extracted 
features are then refined using the minimum Redundancy 
Maximal Relevance (mRMR) feature selection algorithm 
[22] to choose the most suited features to distinguish brain 
tissue based on the maximal statistical dependency criterion 
of mutual information. 

 Superpixel classification: For this purpose, a C-Support 
Vector Classifier (C-SVC) was used to classify the 
superpixels into MRI components using the selected 
superpixel-based features by the mRMR algorithm. A C-
SVC from the LIBSVM package [23] was used. The C-
SVC method was trained using the labeled superpixels from 
the training MRI brain images. C-SVC has shown 
effectiveness in addressing many challenging classification 
and segmentation problems in medical images [24]. 

C. Shape and Edge-based Refinement Phase 

This phase aims to correct the misclassification of some 
dark tissue pixels as background or CSF, using the following 
steps: 

 Shape-based refinement: This step starts with identifying 
the pixels located between the classified brain matters and 
the image background obtained by triangle thresholding 
[25], and labeling those pixels as gray matters. Then, the 
morphological shape characteristics of the classified matters 
are used to filter the regions that are smaller than the 
corresponding matter. In addition, the potential CSF regions 
are checked in terms of size and circularity, and the 
misclassified CSF regions are labeled GM.  

 Edge-based refinement: Finally, edge-based refinement is 
performed to define the accurate segmentation of the MRI 
tissue matters and eliminate extra pixels at the matter 
border. For this purpose, the DRLSE model [26] was 
adopted. To retain the desired form of the level set function, 
a distance regularization term was developed with a 
potential function giving the level set evolution a special 
forward-and-backward diffusion effect. DRLSE ensures 
curve smoothness and does away with the necessity for the 
time-consuming re-initialization process by forcing the 
curve to develop around the signed distance function. 
Assume that the symbol � signifies a level set function on a 
Ω domain. The energy functional to be reduced is given as 
follows: 

� = �����	 + ����	��	 + �����	  (1) 

where c1, c2, and c3 are constants, ���	 is a regularization 
term that keeps the signed distance condition �� =  1 to 
ensure smoothness, and ���	 and ���	 measure the length 
and area of the zero level, respectively. By resolving the 
gradient flow, it is possible to minimize the energy 
functional ���	 as follows: 

��
�� = ����� ����|��|��	 + ������	��� �� ��

|��|� +
    �������	     (2) 

where ��. 	is the Dirac delta function, and �  is the edge-
stopping function adopted to stop the evolving contour at 
the region boundaries, computed as follows: 

��|�!|	 =  �
�" |�# × %|&  

where '  is the Gaussian kernel, and !  is the image on a 
domain Ω. 
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III. EXPERIMENTAL RESULTS 

The Dice similarity coefficient [27] was calculated to 
measure the overlap between the classified regions and the 
ground-truth regions. DSC is calculated as follows:  

(�) = 2 |+,-∩+/01|
|+,-|"|+/01|    (4) 

where �23 and �456 are the ground truth and classified matters, 
respectively, and |.| denotes the number of pixels in the region. 
DSC has a range of 0 to 1, with a higher value indicating better 
performance. Unlike other measures (e.g., Sensitivity, 
Specificity, False Negative, and False Positive Rates), DSC 
incorporates positive and negative outcomes, giving a better 
representation of overall similarity and differences between the 
ground truth and classified regions [28]. 

The performance of the proposed approach was compared 
with ten brain tissue classification approaches on the same 
dataset. The comparison includes five unsupervised methods, 
i.e., FCM [1], FAST [5], SPM5 [7], SPM8 [8], GAMIXTURE 
[10], and five supervised classification methods, i.e., SOM [9], 
KNN [11], FANTASM [30], PVC [13], SegNet [16]. Tables I 
and II present the comparison results in terms of DSC mean 
and standard deviation. The results show that most other 
approaches failed to classify CSF. In [30], this was justified by 
the misclassification of the Sulcal Cerebrospinal Fluid (SCSF) 
as CSF or background regions instead of GM. Therefore, it is 
suggested to evaluate classification performance by ignoring 
the SCSF regions. Thus, the performance of the proposed and 
other approaches was evaluated and presented in the two cases, 
i.e., the normal case with the original ground truth annotations 
in Table I, and the second, by ignoring the SCSF regions in 
Table II. The highest value is shown in bold. 

According to Table I, the proposed approach achieved the 
best classification performance for all tissue regions, i.e., WM, 
GM, and CSF in the case of considering SCSF regions. The 
proposed method obtained a DSC of 0.80 for GM, 0.82 for 
WM, and 0.66 for CSF classification. Table II shows that the 
performance of the proposed approach in GM and WM 
classification was improved to 0.87 and 0.82, respectively, 
when ignoring the SCSF regions. Moreover, the proposed 
scheme obtains a lower standard deviation than the other 
methods. 

TABLE I.  COMPARISON IN TERMS OF DSC ± STANDARD 
DEVIATION USING THE ORIGINAL GROUND TRUTH 

ANNOTATIONS 

Methods GM WM CSF 

FCM 0.70 ± 0.09 0.78 ± 0.14 0.15 ± 0.05 
FAST 0.69 ± 0.06 0.80 ± 0.10 0.14 ± 0.04 
SPM5 0.77 ± 0.06 0.81 ± 0.04 0.18 ± 0.07 
SPM8 0.79 ± 0.06 0.82 ± 0.08 0.22 ± 0.07 

GAMIXTURE 0.78 ± 0.09 0.75 ± 0.16 0.26 ± 0.12 
SOM 0.70 ± 0.09 0.78 ± 0.14 0.16 ± 0.06 
KNN 0.65 ± 0.09 0.81 ± 0.06 0.14 ± 0.04 

FANTASM 0.71 ± 0.10 0.78 ± 0.14 0.16 ± 0.06 
PVC 0.67 ± 0.11 0.64 ± 0.23 0.14 ± 0.05 

SegNet 0.74 ± 0.07 0.71 ± 0.04 0.65 ± 0.08 
Proposed Model 0.80 ± 0.03 0.82 ± 0.03 0.66 ± 0.20 

 

TABLE II.  COMPARISON TERMS OF DSC ± STANDARD 
DEVIATION WITH IGNORING THE SCSF REGIONS. 

Methods GM WM CSF 

FCM 0.82 ± 0.08 0.78 ± 0.14 0.77 ± 0.12 
FAST 0.83 ± 0.06 0.79 ± 0.12 0.77 ± 0.12 
SPM5 0.87 ± 0.03 0.83 ± 0.02v 0.83 ± 0.08 
SPM8 0.87 ± 0.06 0.82 ± 0.07 0.84± 0.08 

GAMIXTURE 0.84 ± 0.06 0.75 ± 0.16 0.76 ± 0.10 
SOM 0.82 ± 0.08 0.78 ± 0.14 0.77 ± 0.12 
KNN 0.79 ± 0.08 0.81 ± 0.06 0.76 ± 0.12 

FANTASM 0.82 ± 0.08 0.78 ± 0.14 0.78 ± 0.12 
PVC 0.80 ± 0.09 0.53 ± 0.24 0.78 ± 0.12 

SegNet  0.74 ± 0.07 0.71 ± 0.04 0.65 ± 0.08 
Proposed Model 0.87 ± 0.02 0.82 ± 0.03 0.66 ± 0.19 

 
Figure 3 illustrates the visual inspection of the classification 

performance of the proposed method compared to the 
performance of the unsupervised classification in [1] and the 
supervised classification in [9]. The proposed method had the 
best classification performance similar to the ground truth, 
whereas the other two methods fail in classifying the GM and 
CSF regions. 

Overall, the proposed method yielded superior performance 
compared to other methods. This superior performance returns 
the superpixel-based features successfully representing the 
different brain regions. For example, CSF regions are 
characterized by comparatively low and homogeneous 
appearance with well-defined semicircular shapes, which are 
properly represented by the extracted intensity, edge, and shape 
features. In addition, the feature selection algorithm helps in 
filtering these features to select the best features based on the 
training dataset, leading to more accurate classification. 

IV. CONCLUSIONS 

Accurate automated segmentation of brain tissue plays a 
significant role in the clinical diagnosis of brain diseases using 
MRI. This study proposed an efficient superpixel-based 
classification model for MRI brain tissue. The proposed model 
is based on a C-SVC trained on robust intensity, boundary, and 
shape features, as well as comparative features with good 
discriminative ability. The selected features successfully 
represent the difference between the brain regions, leading to 
high classification accuracy. Moreover, a post-processing 
procedure is utilized, including matter filtering and 
regularization based on morphological features and the DRLSE 
model to further improve the pixel-wise classification 
performance.  

The proposed technique was evaluated and compared with 
ten supervised and unsupervised classification techniques using 
ISRB20 images. The comparison results demonstrate the 
superiority of the proposed approach in classifying all brain 
tissue components, i.e., GM, WM, and CSF matters. The 
proposed model yields a DSC value above 0.8 for GM, 0.82 for 
WM, and 0.66 for CSF, with 11%, 7%, and 200% performance 
improvements over the existing approaches, respectively. 
Quantitative and qualitative evaluations show a good 
improvement over other classification techniques. Future 
studies should integrate more effective and discriminative 
features with classifiers to improve the segmentation of MRI 
brain images or to detect tumors on pathological images. 
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Fig. 3.  Randomly chosen test samples from the IBSR dataset, where the first column represents the original MRI brain images, the second column represents 
the ground-truth tissue maps, the third column represents the predicted tissue maps of the proposed approach, and the fourth and fifth columns represent the 
predicted tissue maps of unsupervised clustering [1] and the predicted tissue maps of supervised clustering [9], respectively 
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