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ABSTRACT 

Underwater Image Enhancement (UWIE) is essential for improving the quality of Underwater Images 

(UWIs). However, recent UWIE methods face challenges due to low lighting conditions, contrast issues, 

color distortion, lower visibility, stability and buoyancy, pressure and temperature, and white balancing 

problems. Traditional techniques cannot capture the fine changes in UWI texture and cannot learn 

complex patterns. This study presents a UWIE Network (UWIE-Net) based on a parallel combination of a 

denoising Deep Convolution Neural Network (DCNN) and blind convolution to improve the overall visual 

quality of UWIs. The DCNN is used to depict the UWI complex pattern features and focuses on enhancing 

the image's contrast, color, and texture. Blind convolution is employed in parallel to minimize noise and 

irregularities in the image texture. Finally, the images obtained at the two parallel layers are fused using 

wavelet fusion to preserve the edge and texture information of the final enhanced UWI. The effectiveness 

of UWIE-Net was evaluated on the Underwater Image Enhancement Benchmark Dataset (UIEB), 

achieving MSE of 23.5, PSNR of 34.42, AG of 13.56, PCQI of 1.23, and UCIQE of 0.83. The UWIE-Net 

shows notable improvement in the overall visual and structural quality of UWIs compared to existing 

state-of-the-art methods. 

Keywords-blind convolution; deep convolutional neural network; image denoising; underwater image 

enhancement 

I. INTRODUCTION  

Underwater Images (UWIs) are used for various objectives 
in science, business, and pleasure. Marine research and 
biology, underwater environment monitoring, underwater 
archaeology, oceanography, fishery management, aquaculture, 
tourism, recreational scuba diving, underwater maintenance 
and inspection, underwater rescue and search operations, 
documentary and filmmaking productions, underwater 
vehicles, and commercial photography and advertising are 
among the most notable applications of UWIs [1-4].  

UWIs are very difficult to work with due to their unique 
qualities and other difficulties compared to images captured 
above the water. UWIs often encounter problems due to color 

distortion, poor lighting, decreased vision, contrast issues, 
stability and buoyancy, pressure and temperature, white 
balance, and other issues [5-6]. The scattering and absorption 
processes are responsible for the color distortion, characterized 
by the primary impact on yellow and red objects and the tinting 
of green and blue colors. As a result of the haze that surrounds 
submerged objects, vision and overall UWI clarity are reduced 
[7]. The dispersion of light in the water also tends to affect the 
contrast. As water has a refractive index, the picture quality of 
a UWI may be compromised by blurring and distortion [8]. The 
restricted availability of UWI datasets makes it difficult to 
perform an exhaustive study [9]. Color distortion occurs due to 
differences in the water absorption rate for distinct 
wavelengths. The red color is absorbed earlier and the blue 
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color is absorbed later. Therefore, the blue color penetrates 
more deeply than the red color. Suspended particles in the 
water, such as sediments and plankton, scatter light and result 
in reduced visibility, a foggy effect, and poor contrast [10-11]. 
Stability is negatively affected by buoyant forces, making it 
challenging to capture stable images, causing a lack of 
sharpness and motion blur. In deep water, the temperature 
decreases and water pressure increases, degrading light 
behavior and reducing image clarity. The light-bending effect 
in water leads to the creation of haze and bright spots [12-13]. 
Figure 1 visualizes various issues associated with UWIs. 

 

 
Fig. 1.  Several characteristics of UWIs. 

UWIs suffer from low contrast and color cast due to 
distance, wavelength-based scattering, and attenuation. In [14], 
UColor was proposed, which is a combination of a multicolor 
space encoder network and an attention mechanism for UWIE. 
A multicolor space encoder was utilized to characterize distinct 
colors in a unified structure, and an attention mechanism was 
used to integrate and highlight multicolor attributes. This 
method showed superior results for contrast enhancement and 
color cast adaptation but gave inferior results for UWIs with 
lower illumination. In [15], the Bayesian Retinex (BR) method 
was presented for UWIE, focusing on the multicolor gradient 
priors of illumination and reflectance. The BR scheme has 
shown naturalness preservation, color correction, structure and 
detail promotion, and noise and artifact minimization. In [16], a 
robust, efficient, generalized, and fast UWIE method was 
proposed, called Minimal Color Loss and Locally Adaptive 
Contrast Enhancement (MLLE), providing superior 
performance in sandstorm and foggy environments. This 
method used a locally adaptive color correction technique 
based on the minor color loss principle and the highest 
attenuation map-guided fusion strategy. It also provided a 
locally adaptive contrast enhancement scheme that uses 

integral and squared integral maps to competently calculate the 
variance and mean of local UWI blocks for contrast 
adjustment. In [17], an innovative approach was proposed, 
utilizing a random forest regression model to evaluate the 
transmission of underwater scenes. Building on this, in [18], a 
technique was designed to restore UWIs leveraging principles 
of light absorption and addressing image blurriness. In [19], an 
advanced method employing a Generalized Dark Channel Prior 
(GDCP) framework was proposed, specifically designed to 
rectify underwater, foggy, and affected by haze and sandstorm 
images. This method marked a significant advance in image 
enhancement and restoration techniques, offering potential 
applications in various domains such as marine exploration, 
environmental monitoring, and remote sensing. In [20], a UWI 
restoration technique based on an adaptive attenuation-curve 
prior was introduced. In [21], a UWI restoration approach was 
presented, which focused on estimating transmission maps and 
decomposing reflections. DL-based schemes based on DCNN 
and generative adversarial networks have attracted wide 
attention toward UWIE due to their high-level hierarchical 
feature learning and ability to handle multiple issues at once 
[22-23]. However, several problems make UWI analysis and 
object recognition difficult. As water bodies scatter and absorb 
incoming light, underwater images are blue-green or fog-like. 
Blur, poor contrast, atomization phenomena, noise, color 
distortion, restricted visual range, uneven lighting, color bias, 
and ambiguous details are common factors that reduce the 
quality of UWIs. Thus, improving UWIs while preserving 
picture-perceived quality is difficult [24-25]. This study 
presents a robust method, called UWIE-Net, based on a parallel 
DCNN and blind convolution-based denoising schemes. The 
main contributions of this study are summarized as follows: 

 The DCNN-based UWIE enhances the contrast, color, and 
texture of the image.  

 Blind convolution-based image denoising minimizes the 
noise and irregularities in the image texture. 

 Discrete Wavelet Transform (DWT)-based image fusion 
improves the edge and texture information of the UWIs. 

II. METHODOLOGY 

Figure 2 presents the flow diagram of the proposed method, 
which uses in parallel a DCNN and a blind convolution model 
to denoize the image. DCNN enhances the contrast, color, and 
texture of the image. The blind convolution is employed to 
minimize the noise and irregularities in the image's texture. The 
color UWI is divided into three color channels: red (RC), green 
(GC), and blue (BC). The DCNN and blind convolution-based 
denoising are applied to three color components separately to 
analyze the effect of color variation on the UWI. The images 
obtained from the DCNN and blind convolution are fused using 
mean wavelet fusion to obtain the overall enhanced UWI. 
Wavelet-based fusion helps retain the structural, textural, and 
edge information of UWIs. The hybrid combination of blind 
convolution and DCNN provides superior generalization 
capability and a lightweight DL-based UWI framework that 
can minimize color distortion/blur, color unbalancing, 
scattering and absorption effect, noise, irregularities, haze, and 
contrast issues cumulatively. 
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TABLE I.  COMPARATIVE ANALYSIS OF STUDIES ON UWIE 

Study Method Dataset Performance Remarks 

[14] UColor 
Test-S1000 
Test-R90 

Test-S1000 (PSNR-23.05, MSE-0.50), Test-R90 (PSNR-20-63, MSE-
0.73) 

Poor results for UWIs with limited lightning. 

[16] MLLE 
UIEB, 
UCCS, 
UIQS 

UIEB (AG-1227, PCQI-1.136, UIQM-5.29, CCF-46.872) UIEB (AG-
10.121, PCQI-1.203, UIQM-3.915, CCF-41.707), UIQS (AG-10.505, 

PCQI-1.180,UIQM-3.928, CCF-44.201) 

Good generalization capability, better contrast 
enhancement, etc. Fails to handle UWIs captured 

under low illumination conditions. 

[7] GLHDF UIEB MSE=87.31, SNR=27.39, AG=9.85, PCQI=0.94 , UCIQUE=0.67 
Better results for color disturbance, less visual quality 

of UWIs. 

[17] 
Hybrid 
based 
UWIE 

UIEB MSE=88.34, SNR=26.35, AG=8.98, PCQI=0.93, UCIQUE=0.65 
Poor AG, subjected to poor illumination variations, 

complexity in techniques. 

[18] UIBLA UIEB MSE=83.14, PSNR=28.50, AG=8.23, PCQI=0.94, UCIQUE=0.68 
Poor AG, fails to maintain the structural similarity of 

underwater objects. 

[19] GDCP UIEB MSE=78.03, SNR=29.20, AG=9.25, PCQI=0.94, UCQUE=0.72 
Good PCQI and UCQUE, has vast impact of poor 
color correction, edge smoothening, and blurring. 

 

 
Fig. 2.  Flow diagram of the proposed UWIE scheme. 

 
Fig. 3.  DCNN framework. 

A. DCNN 

The DCNN consists of 20 convolution layers, 19 Batch 
Normalization layers (BN), 19 Rectified Linear Unit layers 
(ReLU), and one regression layer. It uses a series combination 
of convolution layers followed by the ReLU and BN layers. 

Figure 2 shows the architecture of the DCNN. The convolution 
process (IC) is given in (1), where the input image (��) is 
convolved with the convolution filter (�) [27-28]. 

����, 	
 � ∑ ∑ ����  �, �  	
. ���, 	
��������  (1) 
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The ReLU layer ��) boosts the non-linearity of the convolution 
features to enhance the quality of features. It replaces the 
negative values with zero [27-28]: 

���, 	
 � ����0, ����, 	

   (2) 

The BN layer standardizes the ReLU layer output to enhance 
the training performance using the mean (�), standard deviation 
(�), scale (�), and offset (�) parameters as given in (3). The 
values are normalized for the batch size of 32 [27-28]. 

�� �∝. !�µ# $ �    (3) 

B. Blind Convolution 

Blind convolution-based image denoising is utilized to 
improve the quality of noise-corrupted UWIs. This technique 
works by repeatedly estimating the blur kernel that causes the 
UWI deterioration and the latent clean UWI. Blind 
convolution-based algorithms are very flexible to various noise 
circumstances since they dynamically infer the blur kernel, 
unlike classic denoising approaches that assume a 
predetermined degradation model. These techniques can 
remove noisy artifacts caused by convolution with an unknown 
kernel and efficiently recover the underlying UWI structure 
using sophisticated mathematical formulations such as 
variational models or deep learning architectures. Blind 
convolution-based denoising algorithms use iterative 
optimization approaches to achieve a compromise between 
noise reduction and feature preservation, leading to high-
fidelity UWI restorations that are aesthetically pleasant and 
applicable to a wide range of real-world scenarios. 

C. DWT-based Fusion 

DWT-based fusion is used to preserve the content of UWIs. 
The outputs of the DCNN and blind convolution-based 
enhancement schemes are decomposed using DWT into four 
components, representing the approximation, horizontal, 
detailed, and vertical components of UWIs. The mean fusion is 
applied to every decomposition part of DWT to retain the 
textural, structural, and edge information of UWIs. The output 
of DCNN (�%) and Blind convolution (�&) is decomposed using 
the wavelet Daubechies filter (db2) as given in (4) and (5). 
Here, '(, )(, *(, and (( denote the approximation, vertical, 
horizontal, and detailed components of the J-level 
decomposition of the DCNN denoised image. In addition, '�, )� , *� , and (�  describe the approximation, vertical, 
horizontal, and detailed components of the blind convolution 
output. Two-level wavelet decomposition (+ � 2) was used to 
decompose the images to get finer details of UWIs. 

(-.��%
 � /'(0 , )(0 , *(0 , ((010��2   (4) 

(-.��&
 � /'�0 , )�0 , *�0 , (�010��2   (5) 

The mean of the approximation ('3
, vertical ()3
, horizontal �*3
, and detailed �(3
 components are calculated using: 

'3 � 5%65&7      (6) 

)3 � 8%68&7      (7) 

*3 � 9%69&7      (8) 

(3 � %%6%&7      (9) 

The final enhanced image is obtained using inverse DWT as 
given by: 

:;ℎ�;=>?@3ABC � �(-.�'3, )3 , *3, (31 (10) 

Figure 4 shows the results of the DWT-based fusion. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 4.  Stepwise results for the proposed UWIE scheme: (a) Original 
UWIE, (b) DnCNN output, (c) Blind convolution output, (d) DWT 
decomposition of DnCNN output (2nd level), (e) DWT decomposition of 
blind convolution output (2nd level), (f) Fusion of DWT decomposition,  
(g) Reference UWI, (h) Enhanced UWI. 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The proposed system was implemented using MATLAB 
R2023b on a PC with 20GB RAM and 2 GB graphics card in a 
Windows environment. The UIEB dataset consists of 950 
UWIs where 890 of them have a reference image [26]. It 
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includes images with different scattering, low contrast, color 
bias, atomization phenomenon, blur, unclear details, and noise 
levels. 

A. Evaluation Metrics 

The performance of the proposed UWIE was evaluated 
based on MSE, PSNR, AG, PCQI, and UCIQI. MSE offers an 
overall quantitative error measure between the reference (R) 
and the enhanced UWI (U) as given in (11), measuring the 
overall change in the UWI texture and color properties. PSNR 
provides the overall visual quality measure of the UWIE, which 
depends on the MSE value (12). A higher PSNR value 
indicates the preservation of the visual quality and information 
of UWIs. The AG measures the average value of all pixels on a 
UWI gradient map, which imitates the features of exhaustive 
texture variations and the clarity of the UWI. The AG depicts 
the variations over the edges of UWIs, measuring the changes 
made to the horizontal and vertical edges of the images. Higher 
values indicate the preservation of edge information and the 

structure of image objects. The larger the average gradient 
value, the richer the UWI level and the more precise the UWI. 

AG is given by (13) where 
DEDF  and 

DEDF  stand for the average 

horizontal and vertical gradients of UWIs. 

GH: � �!IJ∗LIM ∑ ∑ �:��, 	
LIM���  ���, 	

7!IJF��     (11) 

NH�� � 7O��√QRE    (12) 

'S � �!IJ∗LIM ∑ ∑ TUVWVXYZ6UVWV[YZ
7LIM���!IJF��   (13) 

PCQI offers a measure of color distortion and color fidelity. 
It indicates the preservation of color properties in the reference 
image. The UCIQE provides evaluation metrics to measure 
poor visibility, color distortion, and contrast issues. A higher 
value of UCIQE indicates better visibility, reduced color 
distortions, and enhanced contrast. 

TABLE II.  VISUALIZATION OF RESULTS FOR UIEB DATASET SAMPLE 1 

 Original Image DCNN output Blind Convolution Output Final image output 

RBG Image 

    

Red Channel 

    

Green 
Channel 

   
 

Blue Channel 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

   
(m) (n) (o) 

   
(p) (q) (r) 

Fig. 5.  Comparative results of the proposed method: (a) Original Image, (b) Reference Image, (c) Gaussian filter, (d-f) Histograms for original, reference, and 
Gaussian filter, (g) Median Filter (h) Weiner Filter (i) Wavelet filter, (j-l) Histograms of median, Weiner and wavelet filters, (m) DCNN, (n) Blind convolution, (o) 
DCNN+blind Convolution (p-r) histograms for DCNN+blind convolution. 
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B. Results and Discussions 

Table II provides the results for the samples from the UIEB 
dataset, showing the results for DCNN-based denoising, blind 
convolution-based denoising, and enhanced UWIs. The 
proposed UWIE scheme provides better visual quality for 
UWIs affected by color disparity, poor contrast, color 
distortion, lower visibility, stability and buoyancy, pressure and 
temperature, and white balancing problems. The results of 
combining DCNN and blind convolution were superior 
compared to those of the individual methods. 

The effectiveness of the proposed UWIE-Net was 
compared with the results of several traditional UWIE 
techniques such as the Gaussian filter, median filter, Weiner 
filter, and wavelet filter, as shown in Figure 5. The histograms 
of the enhanced images using different techniques show the 
distribution of the red, green, and blue intensities in the 
enhanced UWI. The proposed method combining DCNN and 
blind convolution showed better visual and perceptual image 
quality. The histograms of the proposed enhanced UWI and 
reference showed a lower disparity (8%) than the traditional 
techniques (15-34%).  

Table III compares the results of the proposed with 
traditional popular UWIE techniques for the sample UWI. The 
proposed method achieved PSNR of 41.53, MSE of 37.70, AG 
of 11.34, PCQI of 0.99, and UCIQE of 0.87, which is superior 
to traditional techniques. The DCNN and blind convolution 
alone offered PSNR of 40.32 and 41.1 which indicate superior 
visual quality compared to wavelet, Weiner, median, and 
Gaussian filters.  

TABLE III.  RESULTS FOR UIEB SAMPLE 

Algorithm MSE PSNR AG PCQI UCIQE 

Gaussian  41.7 39.49 3.78 0.98 0.73 
Median  41.3 39.68 4.71 0.98 0.74 
Weiner 41.1 39.78 5.07 0.9 0.76 
Wavelet 40.8 39.92 7.01 0.93 0.76 
DnCNN 40 40.32 7.9 0.99 0.83 

Blind Convolution 38.5 41.1 9.06 0.99 0.84 
DnCNN+ Blind Convolution 37.7 41.53 11.34 0.99 0.87 

 
The overall results for the UIEB dataset are summarized in 

Table IV. The proposed denoising scheme achieved MSE of 
23.5, PSNR of 34.42, AG of 13.56, PCQI of 1.23, and UCIQE 
of 0.83, which is a notable improvement over the results of 
DCNN and blind convolution. The DCNN-based UWIE 
scheme provided an MSE of 35.6, PSNR of 32.61, AG of 
12.78, PCQI of 1.18, and UCIQE of 0.80. The blind 
convolution-based UWIE scheme resulted in an MSE of 30.6, 
PSNR of 33.27, AG of 13.13, PCQI of 1.19, and UCIQE of 
0.81. UWIE-Net provided an overall boost of 33.98% in MSE, 
5.55% in PSNR, 6.10% in AG, 4.23% in PCQI, and 3.75% in 
UCIQE over DCNN-based UWIE. In addition, UWIE-Net 
offered an overall improvement of 23.20%, 34.42%, 13.56%, 
3.36%, and 2.46% in MSE, PSNR, AG, PCQI, and UCIQE 
over blind-convolution-based UWIE. The DCNN can learn the 
complex pattern features of UWIs, retain the fine details of the 
UWIs, and is robust against different noises. Blind 
convolution-based UWIE provides robustness for unknown 
noise, turbidity, camera artifacts, and lighting conditions and 

preserves fine details of the UWI texture. The proposed UWIE-
Net combines blind convolution and DCNN to enhance the 
robustness of the UWIE under different conditions. The 
proposed scheme provides superior AG, PCQU, and UCIQE 
due to better quality texture, edge smoothness, and color 
correction by combining the advantages of both methods.  

Table IV and Figures 6-10 compare several UWIE 
techniques, showing significant variations. In contrast to other 
approaches, the GLHDF method had the highest MSE score of 
87.31, suggesting relatively low fidelity. The proposed method 
had the lowest MSE of 23.5, indicating better preservation of 
image quality. The comparison shows significant differences in 
PSNR values. The proposed method had the highest PSNR of 
34.42, indicating the best reconstruction quality. In addition, 
the proposed method regularly outperformed the other 
approaches, in AG, PCQI, and UCIQE, demonstrating 
significant differences. The statistical analysis and comparison 
highlights how the proposed method produces better image 
restoration results, defined by reduced error metrics and higher 
quality indicators. 

TABLE IV.  PERFORMANCE COMPARISON ON THE UIEB 
DATASET 

Method MSE PSNR AG PCQI UCIQE 

GLHDF [5] 87.31 27.39 9.85 0.94 0.67 
Hybrid-based [15] 88.34 26.35 8.98 0.93 0.65 

UIBLA [16] 83.14 28.50 8.23 0.94 0.68 
GDCP [17] 78.03 29.20 9.25 0.94 0.72 

DnCNN 35.6 32.61 12.78 1.18 0.80 
Blind Convolution 30.6 33.27 13.13 1.19 0.81 
Proposed Method 23.5 34.42 13.56 1.23 0.83 

 

 
Fig. 6.  MSE comparison of UWIE techniques. 

 
Fig. 7.  PSNR comparison of UWIE techniques. 
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Fig. 8.  AG comparison of UWIE techniques. 

 
Fig. 9.  PCQI comparison of UWIE techniques. 

 
Fig. 10.  UCIQUE comparison of UWIE techniques. 

The DCNN has 669,505 trainable parameters. The proposed 
method required an average enhancing time of 5 seconds.  

IV. CONCLUSION AND FUTURE SCOPE 

The proposed method enhances UWIs by combining 
DCNN and blind convolution. DCNN focuses on improving 
the image's contrast, color, and texture. The blind convolution 
is used in parallel to help in minimizing the noise and 
irregularities in the image texture. The proposed hybrid DL-
based denoising framework provided superior generalization 
capability that deals with different issues in UWIs, such as 
color distortion, noise, scattering, color imbalance, absorption, 
etc. It is a lightweight DL-based framework that helps preserve 
the structural, perceptual, and visual quality of UWIs. This 
enhancement method helps to learn the local characteristics of 
UWIs to minimize abnormalities. The proposed method 
provided superior image quality compared to previous ML-

based schemes, achieving overall overall MSE of 23.5, PSNR 
of 34.42, AG of 13.56, PCQI of 1.23, and UCIQE of 0.81 on 
the UIEB dataset. The proposed UWIE-Net provides an 
imperative boost of 23-73% in MSE, 3-26% in PSNR, 3-28% 
in AG, 3-31% in PCQI, and 2-24% in UCIQE over traditional 
UWIE methods. 

In the future, the proposed scheme can be improved to 
provide a generalized framework for all types of UWI 
enhancement. The complexity of the DL frameworks can be 
minimized by utilizing hyperparameter tuning and learning 
optimization of the DL frameworks. In addition, the system can 
be extended for underwater image and object segmentation. 
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