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ABSTRACT 

Soil moisture is a critical determinant of the maize crop health and productivity. With over 60% of India's 

maize cultivation concentrated in South Indian states, accurately forecasting soil moisture is essential for 

optimizing irrigation and enhancing agricultural output. This study introduces an Improved Hybrid 

Machine Learning (IHML) model that integrates and optimizes Machine Learning (ML) models to deliver 

superior predictive performance. By leveraging data from key maize-growing districts in South India, the 

IHML model demonstrates enhanced convergence rates and accuracy compared to traditional ML 

approaches. The research framework is grounded in comprehensive correlation evaluations, which inform 

parameter selection and model architecture. Extensive comparisons reveal that the IHML model 

significantly outperforms individual ML models in forecasting soil moisture with higher precision. These 

findings highlight the potential of IHML models to advance smart farming practices and enable precise 

irrigation management, paving the way for improved crop yield and sustainable agriculture. 

Keywords-ensembe methods; error margin; moisture content; prediction; maize cultivation; temperature; 

rainfall; precipitation 

I. INTRODUCTION  

Soil moisture, defined as the water content in the surface 
layer of the soil, plays a critical role in the interaction between 
the soil and atmosphere, particularly through the process of 
evapotranspiration. This dynamic interaction significantly 
impacts agricultural practices, as soil moisture at different 
depths directly affects the crop growth and water distribution 
within hydrological cycles [1]. Surface moisture provides 
immediate support for crops, while deeper reserves sustain root 
systems during extended dry periods. Effective irrigation 
practices rely on accurate soil moisture monitoring to 
determine when water is needed, as plants draw from both the 
surface and subsoil reserves. Discrepancies in environmental 
factors, such as temperature and rainfall, can disrupt moisture 
levels, accentuating the need for precise management to 
maintain plant health and maximize crop yields [2]. 
Understanding the role of soil moisture in agriculture is 
essential for making informed decisions about water resource 
management, disaster preparedness, and drought mitigation [3]. 
Precise predictions of soil moisture trends can significantly 
enhance farming productivity by addressing the complex 
interactions between the physicochemical properties, ecological 
processes, and climatic conditions. Despite its importance, soil 
moisture is often overlooked in modeling efforts due to its 
intricate and dynamic behavior across time and space [4]. This 

research seeks to assess the effectiveness of various ML 
models in anticipating soil moisture and to enhance the 
accuracy of the factors influencing the moisture content in 
maize crop fields, thereby promoting enhanced agricultural 
practices and sustainability. 

Recent advancements in soil moisture prediction at the soil, 
agricultural, and geographic levels have contributed to a more 
comprehensive understanding of the moisture content [5]. 
Research and technological progress have introduced a 
growing range of approaches for estimating soil moisture. 
Gradually, the scope of soil-scale studies has expanded beyond 
individual farms to encompass larger regional scales. 
Specifically, authors in [6] proposed an extrapolation method 
for forecasting the soil moisture concentration based on infused 
moisture content and evaporative coefficients, successfully 
predicting wetness levels at regional scales. Similarly, authors 
in [7] employed a Bayesian approach alongside artificial neural 
networks to model data retrieval from spatial datasets. These 
methods utilized moisture content as the output variable while 
examining confidence intervals and variances in two directions, 
providing insights into the strengths and limitations of various 
techniques under specific conditions. Indian researchers in [8] 
utilized artificial neural networks integrated with 
electromagnetic data to forecast soil moisture. By employing 
an X-band electromagnetic diffusion meter under diverse soil 
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conditions, they adapted and retrained their neural models for 
various forecasting tasks, including the estimation of soil 
moisture levels. Researchers have compared various training 
techniques to identify the most effective methods for predicting 
soil moisture levels and surface roughness by analyzing 
discrepancies between the observed and predicted values. A 
range of predictive approaches was employed to achieve the 
desired estimates. Building on these efforts, authors in [9] 
developed an improved a micro-strip band resonant device for 
measuring the soil moisture.  This device was tested across 
various soil types, with predictions having been made based on 
the response of incident waves in compost soil and sandy 
gravel at varying water content levels. Additionally, authors in 
[10] conducted research using a pedotransfer function to 
estimate the moisture levels in regional farmlands by analyzing 
the relationship between the fundamental soil parameters and 
their water-holding capacity. Forecasting procedures are 
expected to become more proactive, with many prediction 
activities being automated through frameworks or applications. 
However, current models often fail to autonomously retrieve 
essential data from meteorological frameworks as required for 
accurate predictions [11]. To address these limitations, the 
IHML methodology is proposed, offering a robust solution to 
improve data integration and enhance predictive accuracy. 
Recent advancements in soil moisture prediction highlight 
several methodological limitations. While some studies provide 
insights across diverse scales, they often lack integration at the 
micro-level, leading to gaps in its understanding. Specific 
approaches can successfully predict moisture but may fail to 
account for sudden environmental changes, limiting their real-
world applicability. Many methodologies also rely heavily on 
specific conditions, restricting their generalizability. Although 
improvements in measurement techniques have been achieved, 
predictions often lack adaptability for real-time application. 
Furthermore, conventional methods largely rely on single data 
sources, missing the potential of advanced ML and multi-
source data integration, which are essential for more robust and 
accurate soil moisture predictions. 

II. METHODOLOGY 

A. Study Region (SR) 

 

Fig. 1.  Geographical representation of the three SRs. 

This research was conducted in three key maize-growing 
districts, including Salem, Dindigul, and Namakkal, in the 
Indian state of Tamil Nadu [12-14]. Figure 1 depicts the 
geographical depiction of each SR. 

B. Dataset 

The Soil and Water Assessment Tool (SWAT) outputs, 
using the India Dataset are commonly employed to predict the 
soil moisture under various climatic scenarios [15]. This 
dataset is based on 20 days of trial data from 30 unique 
locations across three different SRs. As a result, the dataset 
comprises 600 data points that cover various key attributes, as 
listed in Table I. To prevent computation errors due to missing 
data, the datasets are normalized. The data are then split into 
training and testing sets in a 70:30 ratio to evaluate the 
performance of the ML models. To predict both the short- and 
long-term soil moisture for maize production, the selected ML 
models integrate prediction methodologies with empirical 
formulas. 

TABLE I.  BASE ATTRIBUTES OF THE DATASET 

Attributes Units 

Volumetric Soil Moisture Content (VSMC) m3 water / m3 soil 

Air Temperature K 

Soil Temperature ºC 

Precipitation mm 

Farmland Surface Temperature K 

Soil Depth 5-10 cm 
 

C. Optimal Soil Requirements 

Even though maize can be successfully grown in various 
soil types, the optimal soil conditions for cultivation are deeper, 
nutrient-rich, well-moisturized, and biologically fertile. The 
ideal soil for maize growth has a reasonably high moisture-
holding capacity. However, because maize is highly susceptible 
to waterlogging, it is typically cultivated during the rainy 
monsoon season. Special care must be taken to ensure that 
excess precipitation remains on the surface for no more than 
five hours. Soils with relatively permeable subsoils, such as 
loamy soils, sedimentary loams, and clay-rich soils, are most 
suitable. The ideal soil would have a neutral pH range from 6.5 
to 7.5, a cation-exchange capacity of approximately 20 milli-
equivalents per 100 g, surface absorption from 70% to 90%, a 
density and porosity close to 1.3 g/cm³, and a moisture-holding 
potential of about 16 cm per m of depth. 

D. Optimal Climatic Requirements 

Maize cultivation thrives in temperatures between 9 and 30 
ºC. The number of leaves increases from emergence to 
tasseling as the crop adapts to its environment. The latency 
period for tasseling lengthens as the diurnal temperature range 
increases, when temperatures fluctuate between 0 and 17 ºC. 
Maize grows at its fastest rate when temperatures reach 30 ºC. 
A higher yield is likely if there is no frost during the grain-
filling phase. Additionally, elevated levels of solar irradiance 
enhance maize photosynthesis, contributing to better growth 
and higher productivity. 

E. IHML Model 

The IHML approach incorporates two levels of predictive 
strategies. The base level consists of three advanced ML 
models, including Bidirectional-Gated Recurrent Unit (B-
GRU), Support Vector Regression (SVR), and Multiple Linear 
Regression (MLR), whose predictions are addressed 
individually. The top level employs an assembling strategy that 
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combines the outcome of the base level and produces the 
predictive result with optimal accuracy [16]. 

1) B-GRU Model 

During training, the conventional Long-Short Term 
Memory (LSTM) model's variables are tuned to minimize loss, 
which represents the gap between the model's predictions and 
the actual soil moisture levels. However, the LSTM model only 
considers the accuracy of the predictions for the immediate 
sampling interval and does not account for the transitional 
temporal data after the feedback sampling interval [17]. As a 
result, it may fail to capture the complexity and uncertainty of 
the data and could potentially overfit the model. Figure 2 
provides a conceptual illustration of the B-GRU model. 

 

 
Fig. 2.  Structure of the B-GRU model. 

Bidirectionally models can integrate insights from both 
historical and future data into their present analysis. The B-
GRU model employs two GRUs oriented in opposite directions 
[18]. The first processes the data sequentially from the 
beginning of the trend line, forward direction, while the other 
processes the data from the end of the sequence, backward 
direction. This bidirectional approach allows both past and 
future data to influence the current state. The B-GRU can be 
described as: ���⃗ � � ���	
�� , ���⃗ ���    (1) �⃖��� � ���	
��, �⃖������    (2) �� � 
���⃗ � ⊕ �⃖����    (3) 

where ���⃗ �  denotes GRU's forward state, �⃖���  represents GRU's 
backwards state, and ⊕ signifies the concatenation of two 
vectors. 

The initial input sequence at time t consists of moisture data 
from n previous and subsequent recorded time points, 
represented as � �  ����� , … , �� , … , �����. The B-GRU model 
processes this input sequence. The second-level B-GRU model 
determines the recurrence pattern based on the length of the 
input sequence. For this study the model performs 2n+1 
iterations over the recurrent time scales. Data transfer across 
these scales is maintained in the hidden unit Ht. The IHML 
linear layer inputs are directly connected to the output layers of 
the B-GRU model. 

2) SVR Medel 

The SVR model is derived from the core concepts of 
Support Vector Machines (SVM) [19, 20]. By employing a 
constant mapping linear model, SVM training enables a 
maximum-margin predictor to project the input parameters into 

high-dimensional data points. SVR extends this principle by 
using a radial-based linear model to generate the optimal 
hyperplane for regression. This approach mitigates issues, such 
as global maxima and local minima that often arise when 
optimizing training samples with limited features. Radial-based 
functions are considered effective because they are 
straightforward to implement and maintain, while also being 
capable of handling high-dimensional spaces with marginal 
isolation factors. 

The SVR constructs its estimation by selecting a subset of 
sample points within a predefined error margin. These subsets, 
known as support vectors, represent the most influential data 
points for prediction. Given a set of samples I = {i1, i2,…,in} 
and corresponding outcomes J = {j1, j2,…,jn}, t he purpose of 
SVR is to determine the flattened version of the periodic 
function f(x) that minimizes the error margin between the 
predicted and actual outputs in the test data. 

3) MLR Model 

The MLR is a widely used tool for predicting an outcome 
variable based on multiple independent predictor variables. The 
following formulation expresses the forecasts of k given the p 
predictor factors: � � �����  �!"#��  �$"%�%  ⋯  ��"'�' (  (4) 

where the regression-based beta coefficients (weights) are 
specified as β. The coefficient βi indicates the average effect on 
k for a one-unit increase in pi, assuming that all other variables 
remain constant. These coefficients enable the model to 
provide interpretable and actionable insights into the influence 
of individual predictors on the outcome. 

4) Heterogeneous Ensemble 

The heterogenous ensemble approach combines multiple 
ML models, each trained on the same dataset. This strategy is 
effective for datasets with limited size. The ensemble outcome 
is generated through a stacking process, where a meta-learner 
aggregates predictions from the integrated models. A meta-
learner model is trained to synthesize the results of several 
predictive and regression methods. The training relies on the 
outputs of Base Learners (BLs), which are themselves trained 
using the entire training dataset. 

Unlike boosting strategies, where models are trained 
sequentially to correct previous errors, the heterogeneous 
ensemble employs a concurrent training process for all BLs. 
For more complex models, the output from one layer serves as 
an input for the subsequent layers, creating a stacked 
architecture. This architecture builds an advanced, refined 
model by progressively leveraging simpler models as 
foundational components. The prediction error of such 
ensembles is consistently low, as each level enhances the 
predictive accuracy of the previous layer. The stacking process 
continues iteratively until an optimal forecast with minimal 
error is achieved. This hybrid approach, often referred to as a 
meta-model, generates predictions by aggregating the outputs 
of simpler models. By reducing both bias and variance, the 
method aims to develop a robust predictive model. The 
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algorithmic procedures of this heterogeneous ensemble strategy 
are based on [21]. 

III. PERFORMANCE ANALYSIS AND DISCUSSIONS 

The IHML model was trained on a standardized dataset 
generated via SWAT for around 20 input days. The predictions 
were made at two scales: a short-term scale of six hours and a 
long-term scale of two days. This setup enabled the model to 
predict the soil moisture with accuracy, two hours (short-term) 
and one day (long-term), in advance. The simulations were 
conducted using Python 3.6.5 on a PC with the following 
specifications: Intel i5-8600k processor, 16GB RAM, 250GB 
SSD, GeForce 1050Ti 4GB GPU, and 1TB HDD. The 
parameter settings for the IHML model were a learning rate of 
0.01, ReLU activation function, 50 epochs, a dropout rate of 
0.5, and a batch size of 5. 

The primary objective of this investigation was to 
determine if the input time window could be reduced without 
compromising the predictive accuracy. The model was first 
trained using the generated datasets, and its performance was 
evaluated utilizing a testing dataset. The model effectiveness 
was assessed using three metrics:  Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and correlation 
coefficient (R

2
). These metrics are mathematically defined as 

[22]: 

)*+, � -∑ �/0 − 2̂0�$405! 67    (5) 

*8, � !4 9∑ |/0 − 2̂0|405!    (6) 

)$ � 1 − <∑ �/0 − 2̂0�$405! ∑ �/0 − 2̅0�$405!> ? (7) 

where O denotes the observation count, p  represents the 
estimated values, pA  represents the predicted values, and pB 
denotes the mean of the estimated value. 

In this study, soil moisture levels in maize cultivation fields 
were treated as dependent variables, with the environmental, 
weather, soil composition, and depth factors acting as 
independent predictive variables. The IHML model, 
particularly effective for short-term forecasts, minimizes 
discrepancies between ther forecast and input times, enhancing 
soil moisture prediction capabilities across varying timeframes. 
The performance of multiple models was evaluated, with a 
focus on short-term predictions. The results, depicted in Figure 
3, illustrate the superior accuracy of the IHML model in 
forecasting the soil moisture levels. Notably, MLR 
underperformed at a depth of 5–10 cm, while B-GRU and SVR 
demonstrated minimal error in their predictions following 
IHML integration. 

Table II presents the results of an experiment comparing the 
performance of several ML methods based on three evaluation 
metrics: MEA, RMSE, and R

2
. Among the tested models, the 

IHML and B-GRU approaches achieved optimal outcomes, 
with MAE values being under 4%. The RMSE for the predicted 
soil moisture levels across the four ML techniques ranged from 

0.042 to 0.072 m
3
m

-3
. The IHML model demonstrated superior 

performance, achieving the highest R² value of 0.88 and the 
lowest RMSE value of 0.042. Following closely, the B-GRU 
and SVR models also performed commendably. Their 
respective RMSE values were 0.063 and 0.072, MAE values 
were 0.039 and 0.042, and R

2
 were 0.82 and 0.71. 

 

 

Fig. 3.  Short-Term prediction of soil moisture. 

TABLE II.  PERFORMANCE COMPARISON OF SVR, MLR, B-
GRU, AND IHML 

Models RMSE R2 MAE 

SVR 0.072 0.71 0.042 

MLR 0.052 0.65 0.062 

B-GRU 0.063 0.82 0.039 

IHML 0.042 0.88 0.033 

 
The predictive models were evaluated over a 20-day period, 

with their predictions being daily assessed, as summarized in 
Table III. The IHML model consistently outperformed the 
other three models, exhibiting minimal error deviations. Given 
the significant variations in soil moisture across different 
climatic zones, the proposed model effectively mitigates these 
discrepancies by reanalyzing the output data of the base 
learners and adjusting the moisture content inputs for 
subsequent computations. For example, on day 5, the observed 
moisture was 31.91%. The IHML model had predicted a value 
of 29.69%, which was close enough to the observed value. 
Similarly, on Day 10, with an observed moisture of 16.45%, 
IHML had predicted 14.01% (close enough), while the 
remaining models had predicted: SVR (14.36%), MLR 
(16.78%), and B-GRU (13.28%). On Day 15, IHML’s 
prediction of 19.09% aligned closely with the observed 
moisture of 19.19%, and was significantly better than the 
predictions of SVR (13.88%), MLR (13.23%), and B-GRU 
(16.04%). Finally, on Day 20, with an observed moisture of 
32.72%, IHML had predicted 31.29%, again surpassing SVR 
(26.11%), MLR (26.44%), and B-GRU (26.35%). This 
adaptive approach improves the capability of the model to 
handle the soil moisture dynamics more efficiently. 
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TABLE III.  DAILY OBSERVATIONS AND PREDICTIONS OF 
PRETICTIVE MODELS 

Soil Moisture (%) 

Days Observed SVR MLR B-GRU IHML 

5 31.91 29.82 30.46 27.80 29.69 

10 16.45 14.36 16.78 13.28 14.01 

15 19.19 13.88 13.23 16.04 19.09 

20 32.72 26.11 26.44 26.35 31.29 

IV. CONCLUSION 

This study successfully developed and evaluated predictive 
models for estimating the soil moisture in maize cultivation 
regions using climatic and vegetation indicators. Among the 
tested methods, the proposed Improved Hybrid Machine 
Learning (IHML) model demonstrated exceptional accuracy 
and reliability, outperforming traditional approaches, like 
Bidirectional-Gated Recurrent Unit (B-GRU), Support Vector 
Regression (SVR), and Multiple Linear Regression (MLR). Its 
ability to integrate short- and long-term predictions proved 
particularly valuable, making it a valuable tool for applications 
in agriculture and hydrology. The findings underscore the 
importance of the advanced machine learning techniques in 
addressing the complexities of soil moisture prediction, where 
temporal and environmental variability present significant 
challenges. 

The study's outcomes hold practical significance for 
optimizing irrigation practices, improving fertilization 
strategies, and enhancing crop yield forecasting, thereby 
benefiting both farmers and environmental researchers. 
However, limitations remain, including reliance on historical 
datasets that may not capture sudden climatic anomalies and 
the potential variability of model performance across diverse 
regions. 

Future research should address these gaps by incorporating 
real-time data inputs, exploring hybrid models for greater 
resilience, and expanding applications to broader agricultural 
and ecological contexts. Advanced methodologies for 
spatiotemporal mapping of soil moisture will further refine 
predictions, providing actionable insights for sustainable 
agriculture in diverse environments. 
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