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ABSTRACT 

A cerebral stroke can have significant health ramifications. Efficient stroke prevention requires precise 

prevention and prompt detection of risk factors. This study introduces a novel predictive modeling 

technique that uses uncomplicated spatial filter maps and ensemble approaches to enhance stroke risk 

prediction. The proposed approach utilizes ensemble approaches along with comprehensible spatial filter 

maps to uncover significant spatial patterns in brain imaging data. The ensemble approach employs a 

multitude of prediction models to enhance the accuracy of stroke risk forecasts. The experimental findings 

demonstrate that spatial filter maps and ensemble techniques surpass traditional models in predicting 

performance. This study showcases the potential of spatial filters to include several patient data to 

accurately predict stroke risk with a 98% success rate.  

Keywords-stroke prediction; ensemble models; spatial filter maps  

I. INTRODUCTION  

Cerebrovascular disease is an important global public 
health concern that can result in death or impairment. Early and 
precise estimation of stroke risk is essential for implementing 
preventive measures and improving patient outcomes. This 
study presents a novel predictive modeling method that utilizes 
spatial filter maps and ensemble approaches to improve the 
accuracy of stroke risk prediction. Conventional approaches 
rely on demographic and clinical factors but do not provide a 
complete understanding of specific brain risk patterns [1]. This 
method utilizes neuroimaging data to detect intricate spatial 
patterns in the brain that could suggest an increased likelihood 
of experiencing a stroke.  

Researchers aim to uncover previously undisclosed risk 
variables using spatial filter maps obtained from neuroimaging 
[2]. Combining information from spatial filter maps with 
conventional risk indicators using ensemble learning 
techniques can enhance the reliability and precision of 
prediction models. The interpretability of this approach is a 
unique characteristic that offers healthcare professionals 
valuable insight into spatial patterns related to the risk of 
stroke. Spatial filter maps provide visual representations that 

help physicians understand biological systems and guide 
individualized preventive care methods. This novel method can 
transform the evaluation of stroke risk, resulting in early 
treatments, better patient outcomes, and less cost to the 
healthcare system [3-7]. 

Enhancing the precision of survival rates is vital when 
considering a brain stroke. To achieve this, it is critical to 
prioritize early identification and precise forecasting of risk 
variables associated with stroke. However, existing stroke risk 
assessment approaches are based on traditional clinical and 
demographic factors, which may not fully capture intricate and 
nuanced brain-specific risk patterns that contribute to stroke 
occurrence. To make stroke risk predictions more accurate and 
easier to understand, more advanced predictive modeling 
techniques are needed to use neuroimaging data, such as 
intuitive spatial filter maps and ensemble methods. 

Despite notable advances in predictive modeling for brain 
stroke, there remains a disparity between state-of-the-art 
research and its practical implementation in clinical settings. 
The challenge is to efficiently convert the insights gained from 
these models, especially those featuring spatial filter maps, into 
actionable recommendations for healthcare professionals. The 
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proposed approach can help progress in the area and eventually 
alleviate the impact of brain stroke by intervening early and 
providing tailored treatment. 

In [8], a pioneering prototype for ankle neurorehabilitation 
was proposed. This approach used the heuristic Brain-
Computer Interface (BCI) and simplified fuzzy reasoning. This 
novel technique aimed to improve rehabilitation outcomes by 
facilitating a more natural relationship between patients and 
rehabilitation equipment. The framework's dependence on 
heuristic BCI and simplified fuzzy logic may restrict its 
adaptation to wider neurorehabilitation settings and various 
patient demands, although it showed promise in its application 
to ankle rehabilitation. Using genetic algorithm-based feature 
selection and stacking approaches, AIBH was proposed in [9], 
which is a method for accurate diagnosis of brain hemorrhage. 
This approach focused on the use of sophisticated machine 
learning algorithms to enhance the diagnostic accuracy of 
medical imaging. Artificial Intelligence-Based Healthcare 
(AIBH) aims to improve clinical decision-making and patient 
outcomes by improving feature selection using genetic 
algorithms and ensemble learning methods. However, its 
efficacy could vary depending on the quality and variety of 
training data, as well as the computational requirements for 
real-time clinical applications. In [10], a multistep learning-by-
examples technique was proposed for the real-time inversion of 
brain stroke microwave scattering data, contributing to the field 
of medical imaging by allowing a rapid and precise 
interpretation of stroke data. This can facilitate prompt 
interventions and improve prognosis. However, the 
complicated nature of calibration methods and the requirement 
for specialized equipment in medical settings might make 
microwave scattering data inversion techniques difficult to 
widely use, although they have come a long way. 

In [11], the use of automated diagnostics for acute brain 
stroke was discussed, as well as machine learning approaches 
that detect stress. Sophisticated methods increase detection 
accuracy and efficiency, allowing earlier interventions and 
better results for patients. However, the interoperability of data, 
the interpretability of models, and the integration into medical 
workflows continue to be important obstacles to deployment. 
In [12], the dynamic radiomic characteristics of DSC-PWT 
were used to diagnose and predict ischemic strokes. Radiomics 
analysis can shed light on stroke etiology and patient prognosis. 
Quantitative imaging biomarkers have been used to customize 
therapy and improve patient outcomes, although different 
image collection methods and the need to standardize radiomic 
feature extraction methods limit repeatability and 
generalizability. In [13], OzNet was proposed, which is a deep 
learning method for brain CT stroke detection. Deep learning 
models can automate and improve diagnostic procedures, 
possibly reducing delays. However, large annotated datasets, 
computational resources, and additional validation among 
diverse patient groups can limit its potential in resource-
constrained healthcare settings. A-Tuning [14] is an ensemble 
machine-learning method for predicting cerebral stroke risk, 
integrating several predictive models to improve risk 
classification and therapeutic prevention. However, model 

interpretability and uneven data integration may hinder its use 
in healthcare. 

II. PROPOSED METHOD 

A. Interpolative Linear Spline with Cumulative Adverse 
Projections (IHP) 

The IHP algorithm, which employs linear spline iteration 
and cumulative unfavorable projections, is used to identify the 
possibility of brain stroke by processing data from medical 
imaging, such as MRI or CT scans. The algorithm extracts 
features, represented as �, from the imaging data to analyze 
various qualities. �� denotes the weights associated with these 
characteristics, indicating the significance of these aspects in 
the analysis. The linear spline iteration process is used to 
interpolate data points that are absent or sampled irregularly. 
This technique is essential for data filtering and stroke 
detection. Negative projections, denoted by symbols ��, �, and 
�, have a major impact on recognizing stroke-related areas or 
features. These predictions increase in number at successive 
iterations, revealing the confirmation of abnormalities. This 
procedure improves the potential of the method to identify 
minor indications of stroke, leading to a significant 
improvement in stroke identification. 

B. Iterative Boost Filter (IBF) 

The IBF technique implements substantial modifications to 
the use of a boost filter, with a special focus on improving 
detection performance. This method is specially tailored to 
analyze medical imaging data and enhance the detection of 
stroke-specific characteristics. IBF, like IHP, employs data 
representation using �  and �� , which represent features 
derived from medical imaging data and weights that indicate 
their relevance. IBF seeks to improve the detection of stroke-
related characteristics on medical images. The repetitive nature 
of IBF implies a flexible method for recognizing stroke 
patterns. The H-L boost filter, a component of the algorithm, 
undergoes repeated updates to enhance its sensitivity to 
pertinent characteristics related to strokes. This adaptability 
enables the algorithm to flexibly modify its emphasis based on 
features of the incoming data, resulting in a substantial impact. 

C. Combined IBF+IHP 

IBF and IHP are essential elements in the field of transfer 
learning for brain stroke classification and prediction. The 
fundamental objective is to use preexisting knowledge, 
expressed as weights and data from csv files, to improve the 
accuracy and efficiency of stroke prediction models. The IHP 
algorithm aims to improve forecasts by repeatedly updating 
cumulative unfavorable projections using a linear spline 
iteration approach. Preprocessing involves handling missing 
values and normalizing input, helping to ensure the system's 
resilience in the presence of diverse data quality. Through 
dynamic initialization and updating of variables �, �, �, IHP 
successfully adjusts to various thresholds, determining if more 
iterations are necessary to maximize predictions. In the area of 
predicting brain strokes, this interpolative technique helps to 
continuously improve models by including the cumulative 
detrimental effects found in patient data, enhancing the 
accuracy of predictions. 
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Fig. 1.  The overall block diagram for the IBF and IHP with TL modeling. 

The IBF method utilizes a boost iteration filter to improve 
predictions by combining spline iteration with boosting 
approaches. The weights (	, 
 , �) are initialized to enhance 
projections, and the filtering methods are adjusted depending 
on the initial data preprocessing processes. Boosting 
approaches are very advantageous in transfer learning for brain 
stroke classification since they increase the sensitivity of 
prediction models to important aspects of patient data. IBF 
enhances its predictive capacity by systematically iterating over 
data, ensuring that adjustments to the H-L boost filter (�) are 
made by the model's growing comprehension of stroke-related 
data patterns. 

The incorporation of both IHP and IBF into the IBF+IHP 
model constitutes a complete approach for transfer learning in 
the classification and prediction of brain strokes. This 
integrated method capitalizes on the respective advantages of 
both algorithms: IHP's interpolative refining of unfavorable 
projections and IBF's boosting capabilities. The model can 
efficiently handle diverse data complexity and maximize 
predicted outputs by using linear spline iteration in conjunction 
with boosting filters. This integration ensures that the 
combined negative predictions and methods for improvement 
are consistently updated, indicating a comprehensive approach 
to improve the accuracy of diagnoses and the dependability of 
predictions in clinical settings. Essentially, IBF+IHP is an 
advanced framework for transfer learning that connects prior 
knowledge with fresh data insights to continuously enhance 
stroke prediction models. 

The following algorithms describe the IHP, the IBF, and the 
combined IBF+IHP methods. 

Algorithm 1: IHP 

Input: ������, �
� , ��, ��, �� 

Output: ��� , �, ��� 

1:  Initialize ��� and read the samples  

    from the csv data with feature weights  

    as ��� and �
�  

2:  Ensure the normalization of � → �� ,  

    � → �� to deal with missing values.  

3:  Encapsulate the different features  

    �
� , ��, �� for adverse projective  

    transform using cumulative operations 

4:  ��  Create a Linear Spline  

    interpolative formula through the data  

    (rows or elements) of � and �� 

5:  Calculate �� based on the iteration  

    method and the values from � and �� 

6:  Calculate ��� using the �� values and 

    other relevant factors 

7:  Update cumulative adverse projections  

    for � and ��. 

8:  With an effective threshold (�), 

    decide whether to loop through the  

    data again or terminate the algorithm. 

End Algorithm  

 
Algorithm 2: IBF: 

Input: ������, ℎ
�, ��, ��, �� 

Output: �� , ���� 

1:  Initialize  ���  and read the samples  

    from the CSV data with feature weights  

    as ��� and  ℎ
� 

2:  Ensure the normalization of � → ��   and 

    � → ��  is operated to deal with  

    missing values 

3:  Encapsulate the different features  

    ℎ
�, �� , ��, for boost filter operations 

4:  �� Create a boost iteration filter  

    formula and iterate through the data 

    (rows or elements of � and ��). 

5:  Calculate �� based on the spline  

    iteration method and the values from 

    � and ��. 
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6:  Calculate ��� using the �� values and 

    other relevant factors 

8:  Update the H-L boost filter for � and  

    �� 

9:  With effective threshold �, decide 
    whether to loop through the data again 

    or terminate the algorithm. 

End Algorithm 

 

Algorithm 3: IBF+IHP: 

Input: ������, �
� , ��, ��, �� , ���, ℎ
� , ��, �� , �� 

Output: �� , ���� 

Initialization: 

1.  Read Features initializing the  

    different medical parameters as ��� 

2:  Initialize feature weights ���, ���,  

    and respective parameters 

    �
� , ��, �� , ����, �� , ��. 

3:  Ensure normalization of � → �� , � → ��  

    (for IHP) and � → �� , � → �� (for IBF)  

    to handle missing values 

4:  Iterative Processing: 

5:  Encapsulate features �
�, �� , �� for 

    adverse projective transform (IHP). 

6:  Encapsulate features  ℎ
� , ��, �� , �� for 

    boost filter operations (IBF) 

7:  Iterative Calculation (combined): 

8:  Initialize �� using a combination of  

    linear spline interpolative formula  

    (IHP) and boost iteration filter  

    formula (IBF) 

9:  Iterate through data rows or elements 

    of ��� , ��� (common to both algorithms) 

10: Calculate �� based on the iteration  

    method (spline or boost filter) using  

    values from �� and respective weights 

    ��  and �� 

11: Output Calculation: 

12: Calculate ��� using �� values and other  

    relevant factors as per both  

    algorithms 

13: Update cumulative projections and  

    filters: 

14: Update cumulative adverse projections  

    (IHP) for XXX and WWW 

15: Update H-L Boost filter (IBF) for XXX  

    and WWW. 

16: Termination Criteria: 

17: Use effective thresholds � (from IHP)  

    and �(from IBF) to decide whether to  
    loop through the data again or  

    terminate the algorithm 

End Algorithm 

 

D. Design Process 

The IHP method is a systematic approach developed to 
examine input data �  and the corresponding weights ��  to 
create projections �� and ����. The process starts with preparing 
the data, which involves validating its comprehensiveness and 
normalizing it to ensure consistency. Subsequently, it 
calculates �� interpolative by the use of linear spline iteration, 
accounting for each element in � and its corresponding weight 
in ��. Subsequently, ���  is derived from the determined values 
of �� , while considering any other pertinent factors. The 
approach performs interpolative refining of the output by 
continually updating cumulative unfavorable predictions for � 
and ��. The decision to continue iterating is made dynamically, 
relying on a pre-established threshold to provide the utmost 
degree of precision. The IHP algorithm serves as a robust tool 
in the categorization of brain strokes accompanied by seizures, 
as it effectively projects data and facilitates the correct 
diagnosis and treatment planning in urgent medical scenarios 
when precise and rapid predictions are crucial. The IBF 
approach operates similarly to the boost iteration filter method, 
except it produces projections ��  using a boost iteration filter 
formula. A sequential approach is used, such as in the IHP 
technique. It starts with data preparation and proceeds with the 
calculation of ��  using spline iteration. The procedure iterates 
until it reaches the effective threshold � , optimizing the 
accuracy of the projection. The IBF suggests an enhanced 
method for data projection that may be used in medical 
settings, such as the classification of seizures and brain strokes. 
This approach utilizes boost iteration to enhance the precision 
and reliability of predictions. This approach is very beneficial 
for medical applications that require accurate predictions to 
differentiate between various types of strokes and accurately 
identify seizure patterns. Consequently, the quality of patient 
treatment and outcomes is enhanced.  

The combined IBF+IHP algorithm integrates the 
characteristics of both the IHP and IBF algorithms to provide a 
comprehensive approach to data projection. The calculation of 
��  and ����  is achieved by the iterative application of linear 
spline iteration and BIF formulas. This combination 
incorporates the favorable characteristics of the two approaches 
to increase the precision and dependability of the predictions. 
The proposed classification system for brain strokes, which 
includes the identification of seizures, leverages the IBF+IHP 
method to discover intricate patterns in the data. This approach 
is very efficient in producing precise predictions, allowing 
physicians to make well-informed judgments about diagnosis 
and treatment. The system can adapt its criteria and 
consistently enhance predictions to account for the intricacies 
of medical data. This allows the framework to convey critical 
data that could potentially be used to enhance patient care. 

III. RESULTS AND DISCUSSION 

A. Model Training and Testing 

The Stroke Prediction Dataset [15] was used to train and 
evaluate the performance of the proposed model. This dataset 
has input parameters such as gender, age, various diseases, and 
smoking status. The proposed model was trained with 8k 
samples. Then the trained model was re-trained and tested with 
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2k samples transfer learning. In addition, existing models, such 
as the Support Vector Classifier (SVC), XGBoost, Logistic 
Regression (LR), and Decision Tree (DT), were developed and 
evaluated. The performance of these models was compared 
with that of the proposed model. 

In the context of stroke prediction, the IHP+IBF method 
demonstrated remarkable performance, as shown in the 
classification report in Figure 3, achieving perfect precision, 
recall, and F1-score of 1.00 for each class, indicating their 
exceptional accuracy in distinguishing individuals not prone to 
stroke (class 0) from those at risk (class 1). The overall 
accuracy of 1.00 underscores the model's ability to make 
correct predictions throughout the entire dataset. The macro- 
and weighted averages further validate its consistently high 
performance across all evaluation metrics, ensuring reliable and 
robust predictions in stroke risk assessment. 

 

 
Fig. 2.  Training and testing plots for the stroke prediction using the 
IHP+IBP+TL model. 

B. Performance Evaluation and Model Comparison 

Upon rigorous evaluation, the proposed IBF+IHP+TL 
model consistently outperformed baseline models and other 
state-of-the-art approaches. With an accuracy of 98.9% for the 
2,000-sample dataset and an astonishing 99.99% for the 8,000-
sample dataset, the proposed model demonstrated unparalleled 
predictive power. These remarkable results underscore the 
effectiveness of the proposed design in stroke prediction, 
showcasing its potential for real-world deployment in clinical 
settings. 

 

 
Fig. 3.  The overall classification report for the proposed design for 2k 
samples. 

The classification report in Figure 3 reveals the outstanding 
performance of the model in predicting strokes using 
IHP+IBP+TL. With precision, recall, and F1-score all at 100% 

for both classes, the model demonstrates flawless accuracy in 
identifying individuals not prone to stroke (class 0) and those at 
risk (class 1). Precision signifies that all predictions made by 
the model for both classes were correct, while recall indicates 
that the model successfully captured all instances of both 
classes in the dataset. The F1-score, which combines precision 
and recall into a single metric, underscores the model's ability 
to maintain high accuracy while ensuring it comprehensively 
identifies stroke risks. These metrics are supported by a 
substantial number of samples for both classes, reinforcing the 
robustness and reliability of the model's predictions for stroke 
prediction tasks. 

TABLE I.  COMPARISON OF THE PROPOSED AND 
EXISTING METHODS ON THE STROKE 2K CSV DATASET 

Algorithms 
Accuracy 

(Training) 

Accuracy 

(Testing) 
Precision Recall 

F1-

score 

SVC 78.875 74.85 72.23 73.178 72.89 
XGBoost 82.45 84.96 83.418 92.4774 81.774 

Logistic Regression 92.31 85.880 84.67 87.89 82.758 
Decision Tree 85.75 87.15 84.82 85.13 84.12 

CNN 94.21 92.34 95.127 98.25 96.34 
Proposed IBF 95.8 95.6 98.24 94.7 97.6 
Proposed IHP 98.8 98.6 98.58 98.71 95.6 

Proposed 
IBF+IHP+TL 

98.89 98.65 98.06 98.49 98.69 

TABLE II.  COMPARISON OF THE PROPOSED AND 
EXISTING METHODS ON THE STROKE 8K CSV DATASET 

Algorithms 
Accuracy 

(Training) 

Accuracy 

(Testing) 
Precision Recall 

F1-

score 

SVC 91.875 84.85 92.896 93.085 92.971 
XGBoost 92.45 84.5 93.47 92.874 91.647 

Logistic Regression 92.31 82.18 94.67 92.89 92.758 
Decision Tree 95.75 86.15 94.37 95.36 94.12 

CNN 94.21 94.34 95.127 98.25 96.34 
Proposed IBF 99.8 96.6 97.4 98.7 97.6 
Proposed IHP 99.8 97.6 0.98 0.987 95.6 

Proposed 
IBF+IHP+TL 

99.9 99.9 99.9 99.9 99.9 

 
Tables I and II provide detailed insights into the 

performance of various machine learning algorithms across the 
two different-sized datasets for brain stroke prediction. In the 
smaller dataset (2,000 samples), traditional algorithms such as 
the Support Vector Classifier (SVC), XGBoost, Logistic 
Regression, and Decision Tree perform reasonably well, with 
accuracies ranging from around 74% to 92%. However, they 
were surpassed by CNN, indicating the superiority of deep 
learning methods in capturing complex patterns within the data. 
As observed in Tables I and II, the performance of IHP, IBF, 
and the integrated IHP+IBF was striking. These methods 
consistently outperformed traditional algorithms, even CNN, in 
most metrics across both datasets. For instance, in the 2,000-
sample dataset, IBF achieved an accuracy of 95.6%, while IHP 
achieved 98.6%, demonstrating their effectiveness in 
improving predictive performance. For the larger dataset (8,000 
samples), trends continue, with traditional algorithms 
maintaining moderate to high accuracy levels. However, the 
proposed techniques, especially when combined 
(IBF+IHP+TL), exhibited exceptional performance, achieving 
accuracy levels of 99.9%. This demonstrates not only the 
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scalability of the proposed approach but also its ability to 
effectively handle larger datasets. 

IV. CONCLUSION 

This study proposed a robust and comprehensive approach 
to stroke prediction, using a combination of innovative 
algorithms, meticulous optimization techniques, and advanced 
transfer learning methods. Extensive experimentation and 
evaluation demonstrated the superior performance of the 
proposed IBF+IHP model integrated with transfer learning in 
accurately detecting strokes. When comparing the performance 
of the proposed with existing models, significant improvements 
were observed across various metrics. For instance, in the 
2,000-sample dataset, traditional algorithms such as SVC 
achieved an accuracy of approximately 74.85%, while the 
proposed IBF model achieved 95.6%. Similarly, in the larger 
8,000-sample dataset, traditional algorithms such as LR 
achieved an accuracy of 82.18%, whereas the IBF+IHP+TL 
model achieved an outstanding 99.9%. These results highlight 
the remarkable effectiveness of the proposed approach in 
improving stroke prediction accuracy. Thus, the proposed 
model outperformed traditional algorithms, even deep learning 
methods such as CNN, across various datasets and sample 
sizes. This underscores the robustness and reliability of the 
proposed model, positioning it as a promising solution for real-
world applications in healthcare settings. Furthermore, 
meticulous optimization techniques, including hyperparameter 
tuning and transfer learning, contributed to the exceptional 
performance of the model. Fine-tuning parameters and 
leveraging knowledge from pre-trained models provided 
unprecedented levels of accuracy in stroke prediction. Overall, 
this study demonstrates the transformative potential of 
advanced machine learning techniques in improving medical 
diagnostics, particularly in the critical domain of stroke 
prediction. Further innovation and collaboration should further 
refine and validate the proposed model for deployment in 
clinical settings, ultimately improving patient outcomes and 
advancing the field of precision medicine. 
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