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ABSTRACT 

As Printed Circuit Boards (PCBs) are critical components in electronic products, their quality inspection is 

crucial. This study focuses on quality inspection to detect PCB defects using deep learning techniques. 

Traditional widely used quality control methods are time-consuming, labor-intensive, and prone to human 

errors, making the manufacturing process inefficient. This study proposes a deep-learning approach using 

YOLOv10. Through the incorporation of architectural improvements such as CSPNet and PANet that 

improve feature extraction and fusion, as well as a dual assignments mechanism that increases localization 

accuracy, YOLOv10 offers significant improvements over earlier versions, such as YOLOv5 and YOLOv8, 

and Faster R-CNN models. These innovations allow YOLOv10 to deliver superior performance in terms of 

both speed and precision. The experiments used a custom dataset consisting of 1,260 PCB samples 

collected from the industry. The dataset was partitioned into 80% for model training and 20% for testing. 

The model was trained for 100 epochs with a batch size of 32 to evaluate its performance in identifying 

various PCB defects. YOLOv10, with its optimized architecture, fully utilized its capabilities while 

requiring less computational power than YOLOv5 and YOLOv8, especially in resource-constrained 

environments. Despite resource constraints, YOLOv10 achieved high accuracy, with a precision of at least 

96% and a recall of 97%, surpassing earlier YOLO models and Faster R-CNN. It also achieved 99% mAP 

and more than 96% F1 score. These improvements in speed and accuracy make YOLOv10 a highly 

efficient solution for automated PCB inspection, reducing manual effort and offering fast and accurate 

classification adaptable to various applications. 

Keywords-Printed Circuit Boards (PCBs); quality inspection; YOLOv10; deep learning 
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I. INTRODUCTION  

Printed Circuit Boards (PCBs) comprise multiple layers of 
substrates embedded with electrical circuits to enable efficient 
interconnection of electronic components. The integrity of a 
PCB is critical to the overall performance of electronic 
products, making the detection and identification of defects 
such as misaligned, damaged, reversed, or missing parts an 
essential process. [1-2] 

Faster R-CNN's great accuracy and capacity to handle 
intricate details have made it a popular choice for PCB defect 
detection. By splitting item detection into two phases, region 
proposal generation and additional analysis, its architecture 
makes accurate detection possible even in difficult-to-reach 
contexts. However, Faster R-CNN is less suitable for real-time 
applications, since its two-step procedure may restrict its speed. 
On the other hand, You Only Look Once (YOLO) provides 
real-time object detection in a single image pass without the 
need for region suggestions. Although YOLO had accuracy 
problems at first, especially when dealing with many or 
different-sized objects, later versions, such as YOLOv2 and 
YOLOv3, greatly increased detection accuracy by 
implementing improvements such as batch normalization, 
Feature Pyramid Networks (FPN), and anchor boxes. These 
revisions brought improved multi-scale object identification 
and accuracy but at a slightly slower pace. By combining 
cutting-edge methods such as Bag of Freebies (BoF) and Bag 
of Specials (BoS) with Cross Stage Partial Networks (CSPNet), 
YOLOv4 improved speed and accuracy even further. The 
model's complexity increased training time and resource needs 
despite these advances. The release of YOLOv5 in 2020 was 
well-liked by developers due to its emphasis on simplicity of 
use, lightweight deployment, and increased speed. With 
advances such as the Extended Efficient Layer Aggregation 
Networks (E-ELAN) to improve complex object detection, 
later versions such as YOLOv6 and YOLOv7 continued to 
optimize the trade-off between speed and accuracy. However, 
when it came to identifying small or complex objects, 
YOLOv7 was still limited. YOLOv8 includes transformer 
layers to further improve detection in intricate scenes, but the 
larger model size requires greater processing power [3-5]. 

YOLOv10, launched in 2024, leverages CSPNet, Feature 
Pyramid Networks (FPN), and Path Aggregation Networks 
(PANet) to facilitate effective multi-scale object detection, 
boosting speed and accuracy over earlier iterations. To provide 
better real-time detection performance, it also combined 
sophisticated post-processing techniques with transformers. 
This makes it ideal for industrial applications that need both 
speed and precision. YOLO is a widely popular deep-learning 
technique for defect detection, particularly in PCB inspection, 
due to its accuracy and processing speed. YOLO has 
continuously developed from YOLOv1 in 2016 to YOLOv10 
in 2024, focusing on improving object detection performance 
in complex environments and supporting devices with limited 
resources. This study selected YOLOv10 [6] to detect PCB 
defections. 

Many artificial intelligence techniques have been studied in 
electronics manufacturing [7-11]. In [12], a comparison of 
YOLOv3 and the Faster Region-based CNN showed that the 

defect detection model based on YOLOv3 identified defects 
with 95% accuracy. Thus, the Incoming Quality Control (IQC) 
random sampling inspection could be replaced by a full 
inspection, and the Surface Mount Technology (SMT) full 
inspection stations could be eliminated to reduce the need for 
inspection personnel. In [13], YOLOv5l and YOLOv8l were 
compared in tomato disease detection, showing that YOLOv8l 
was slightly more accurate than YOLOv5l. In [14], a YOLO-
based deep learning algorithm was proposed to evaluate the 
quality of PCBs. This study recorded and labeled a dataset of 
11,000 images of defective PCBs, and the proposed model 
achieved a defect detection accuracy of 98.79% for a batch size 
of 32. In [15], transfer learning with six pre-trained CNN 
models (DenseNet121, DenseNet169, MobileNetV2, 
ResNet50V2, VGG16, and VGG19) was used for automatic 
cotton plant disease detection, where DenseNet169 and 
ResNet50V2 achieved the highest accuracy at 96%, while 
MobileNetV2 had the lowest accuracy at 52%. In [16], an 
uncoupled-state multimodel approach was presented to identify 
nonlinear PCB soldering systems, achieving high accuracy 
(MSE=0.0727, VAF=99.998%), and demonstrating its 
efficiency in identifying and modeling complex systems into 
manageable linear subsystems. In [17], a semi-supervised 
learning model was developed for PCB defect detection, 
trained using both labeled and unlabeled data with data 
augmentation techniques. The semi-supervised model 
demonstrated higher accuracy and robustness to mislabeled 
data compared to a fully supervised model, with an error rate 
increase of less than 0.5% even when up to 9% of the data was 
incorrectly labeled. In [18], the LW-YOLO model, a 
lightweight deep learning model, was employed for defect 
detection in PCBs, using a bidirectional feature pyramid 
network, partial convolution module, and minimum point 
distance intersection over union loss function. This model 
achieved 96.4% mAP, 97.1% precision, and a detection speed 
of 141.5 fps, outperforming YOLOv8 in accuracy and speed. In 
[19], YOLO-MBBi, an improvement over YOLOv5 for PCB 
surface defect detection, integrated MBConv, CBAM attention, 
BiFPN, and depth-wise convolution, replacing the CIoU loss 
function with SIoU. Experimental results on two public 
datasets showed that YOLO-MBBi achieved a mAP50 of 
95.3% and a recall of 94.6%, surpassing YOLOv5s and 
outperforming YOLOv7 with lower FLOPs and 48.9 fps. This 
makes YOLO-MBBi well-suited for industrial production 
needs.  

In [20], an image quality assessment model was developed, 
using lightweight deep learning (EfficientNetV2) and 
implementing it on FPGA hardware for real-time processing. 
The model demonstrated high accuracy and efficiency, which 
makes it suitable for mobile devices such as smartphones and 
smart cameras. In [21], a comprehensive review and 
comparison of YOLOv5, YOLOv8, and YOLOv10 was 
presented. This review provides insights into the trade-offs 
between model complexity and detection accuracy, providing 
guidance for selecting the most appropriate YOLO version for 
specific edge computing applications. In [22], SolDef_AI, an 
open dataset was presented for defect identification in the 
soldering process of PCBs. To create a thorough database 
containing component location and solder volume that captures 
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flaws occurring during the soldering process, this study 
collected 1,150 photos of SMT component soldering from three 
different viewpoints. Testing with Mask R-CNN showed that 
the SolDef_AI dataset can be used to improve PCB defect 
detection systems in soldering operations, thus increasing the 
accuracy of defect inspections. In [23], an end-to-end deep 
learning system was proposed for fault detection and 
classification in PCB production. This study presented a single-
stage object detection model that combined transformers and 
CNNs. Using images of PCBs with six fault types, including 
missing holes and mouse bites, the model was tested on the 
HRIPCB dataset and its performance was evaluated against 
other models including Faster R-CNN and YOLOv5. With 
low-resolution photos, the proposed model performed well 
with 98.1% mAP. Furthermore, the model was perfect for 
defect detection in manufacturing processes that require high 
speed and accuracy, since it contained almost three times fewer 
parameters than other models. 

This study examined distinct variants of the YOLOv10 
model. To improve the accuracy and efficiency in detecting 
five types of PCB defects, each version was fine-tuned with 
distinct parameters. This approach involved gradually adjusting 
the models by increasing the number of parameters to enhance 
their ability to identify defects across a variety of defect 
categories. 

II. METHOD 

A. Dataset 

The PCB defect detection dataset utilized PCBs from a 
stepper motor driver type A4988 DRV8825 model SKR V1.3 
1.4GTR V1.0 of a 3D printer machine. The dataset contains 
two types of PCB images, as shown in Figure 1: 

 Fully functional PCBs: PCB images that lack any defect 
indications. 

 Defective PCBs: PCBs that have imperfections. 

Approximately 1,260 PCB images were collected, consisting of 
590 images of intact boards and 670 of defective boards. The 
defective images were divided into five classes based on the 
defect type to ensure balanced representation. This study 
focuses only on defective PCB images, which were labeled 
using Roboflow and then preprocessed in Google Colab. 

 

 

Fig. 1.  PCBs: (a) Normal PCBs, (b) wrong component, (c) misdirection, 

(d) component crack, (e) missing component, (f) abnormal. 

B. Preparing PCBs Before Taking Sample Image 

Several critical stages are required to ensure that the images 
acquired are as precise and accurate as possible when preparing 
a PCB for image capture for a testing program. PCBs must be 
clean and clear of impurities to obtain the highest level of 
accuracy in sample imaging. In this procedure, ultrasonic 
cleaning is essential [24]. This study used an ultrasonic cleaner 
that employs high-frequency sound waves to eliminate debris 
and residues to prepare the boards for imaging and testing [25]. 

 

  
(a) (b) 

Fig. 2.  PCB cleaning: (a) Ultrasonic cleaning (b) Air blow after takeout of 

ultrasonic machine. 

C. Image Acquisition 

Installation scenarios were simulated to ensure 
representative sample images for testing. This method 
enhances the accuracy of testing and system evaluation by 
closely mimicking real-world conditions, allowing for 
verification and improvements before actual deployment [26]. 

 

 

Fig. 3.  Image acquisition setup. 

This study focused on the significance of correctly 
establishing a vision system to improve the precision of fault 
identification throughout the manufacturing process. The 
Basler model acA4600-10uc camera was used, with a frame 
rate of 10 Hz and an exposure time of 12,005 ms. It was paired 
with the VL-DR5090RGB white ring light, which ensures 
constant and clear lighting. In addition, a Telecentric lens was 
used to precisely focus on nearby 3D objects. Its characteristics 
minimize picture distortion, enabling an accurate and reliable 
examination of item positions. The whole system was powered 
by the reliable PD3 series (PD3-10024-8-PI) digital power 
supply, ensuring uninterrupted and seamless operation of the 
equipment.  
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D. Data Augmentation  

Image augmentation techniques were used to create altered 
copies of photos, without changing the labels, to artificially 
increase the size and variety of the image dataset. 

 Blurring was applied by setting the kernel size range 
through the variable blur_limit = (3, 7), which randomly 
selects a kernel size between 3×3 and 7×7. The larger the 
kernel size, the blurrier the image becomes. Additionally, 
blur(p = 0.01) sets the probability of an image being 
blurred, where p = 0.01 indicates that each image has a 1% 
chance of being randomly selected for blurring. This 
technique enhances the dataset diversity by making some 
images blurred, helping the model to better learn how to 
handle unclear or blurred images. 

 The MedianBlur method was applied to blur an image by 
adjusting the target pixel according to the median value of 
its surrounding pixels. There is a 1% chance that blur will 
be applied each time the technique is used (p=0.01), and the 
kernel size is randomly selected between 3×3 and 7×7 
(blur_limit = (3,7)). This process involves examining the 
pixels around the target pixel within the chosen kernel size 
and replacing the target pixel with the median value of the 
surrounding pixels. This method effectively reduces noise 
in the image without significantly compromising important 
edges or details. 

 The ToGray method converts color images (RGB) into 
grayscale images. In each processing instance, there is only 
a 1% chance (p = 0.01) that the image will be converted to 
grayscale. Despite this conversion, the image still retains 3 
output channels (num_output_channels=3) to conform to 
the RGB standard required by most models. This method 
employs a weighted average approach, which ensures that 
the contribution of each color channel (red, green, and blue) 
is captured accurately. This allows the grayscale image to 
maintain important data while remaining in an RGB-
compatible format, making it suitable for deep learning 
models that require RGB images for processing. 

 The Contrast Limited Adaptive Histogram Equalization 
(CLAHE) technique was used, which enhances image 
contrast by dividing the image into smaller sections to 
adjust the contrast individually for each part. Setting p = 
0.01 indicates a 1% chance that CLAHE will be applied, 
meaning that the adjustment will only occur in a small 
portion of the image. The clip_limit = (1, 4.0) defines the 
threshold for contrast enhancement to prevent 
overamplification of light, thereby minimizing the 
introduction of noise. A higher clip limit allows for greater 
contrast enhancement. For the tile_grid_size = (8, 8) 
setting, the image is divided into an 8×8 grid, and CLAHE 
adjusts the contrast separately for each section, ensuring 
that the contrast improvement is precise and suitable for 
each part of the image. 

E. YOLOv10 Description 

YOLOv10, debuted in 2024, is the most recent 
development in the YOLO series and is intended to greatly 
increase object identification accuracy and speed in challenging 

conditions. Several cutting-edge methods, such as PANet and 
CSPNet, which improve feature extraction and fusion while 
preserving efficiency, are integrated into the model. YOLOv10 
is perfect for resource-constrained applications, such as 
embedded devices and IoT systems, without sacrificing 
detection accuracy, since it uses parallel processing and 
optimized learning models to provide great performance with a 
smaller model size.  

YOLOv10, which builds on the achievements of previous 
iterations such as YOLOv8 and YOLOv5, utilizes a dual 
assignment mechanism to improve localization accuracy and 
shorten inference time. It also adds NMS-free training, which 
eliminates the necessity for conventional non-maximum 
suppression during training. Furthermore, robust performance 
across a range of object scales is ensured by the use of spatial-
channel decoupled downsampling, which reduces processing 
costs while maintaining detection precision. In addition, it uses 
a partial self-attention module to enhance the recognition of 
complicated objects and large-kernel convolutions to gather 
more contextual information for larger items. Due to these 
advances, YOLOv10 performs more accurately and efficiently 
than its predecessors, making it an effective tool for real-time 
object detection in difficult conditions [27].  

This study used YOLOv10 to create a model that can 
identify particular PCB faults. The first step involved marking 
the PCBs' problem locations, which were subsequently utilized 
to set up the detecting algorithm. Five categories of flaws were 
identified and categorized in all collected samples. Figure 4 
shows the detection concept. 

 

 
Fig. 4.  Detection concept. 

III. EXPERIMENTAL RESULTS ANALYSIS 

A. Evaluation Metrics 

Performance metrics are essential for evaluating the 
accuracy and efficiency of object detection models, providing 
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insights into how effectively a model identifies and localizes 
objects within images. They also clarify the model's ability to 
manage false positives and false negatives, providing critical 
information to assess and improve overall performance [28, 
29]. 
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    (1) 

Recall =  
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��
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    (2) 

Accuracy =  
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��

��
��
��
��
   (3) 

where TP represents True Positives, TN represents True 
Negatives, FP represents False Positives, and FN represents 
False Negatives. The F1 score is a more effective method to 
evaluate performance on imbalanced data, being the harmonic 
average of the precision and recall rates [30]. 

F1 score =  
�∗�������� ∗!��"##

�������� 
!��"##
   (4) 

B. Model Training 

After labeling and preprocessing the dataset, it was split 
into an 80:20 ratio for training and testing. Training and testing 
were carried out on the experimental environment detailed in 
Table I, using the training parameters listed in Table II [31-32]. 

TABLE I.  EXPERIMENTAL ENVIRONMENT 

Category Configuration 

CPU Intel(R) Core (TM) Ultra 9 185H 

GPU NVIDIA A100 GPU 

Operation system Window 11 

Framework Python3 

Programming environment Google Colab 

TABLE II.  TRAINING PARAMETERS 

Parameter Value 

Image Size 640×640 

Batch Size 32 

Epochs 100 

 

C. Performance Evaluation and Class-Wise Validation 
Performance 

YOLOv10 was compared with YOLOv5, YOLOv8, and 
Faster R-CNN in finding defects in PCBs. Five different kinds 
of flaws were evaluated under identical conditions. Table III 
shows the general performance and the individual flaw 
detection capability of each model. Table IV shows 
comprehensive performance measures for every fault type. The 
experiments were carried out on an NVIDIA A100 GPU on 
Google Colab. The A100 GPU's main benefit is its ability to 
handle tensor cores, facilitating faster model training and 
testing. The A100 can effectively manage vast datasets with its 
40-80 GB VRAM. It also offers mixed precision computation, 
accelerating processing without sacrificing result quality, and 
uses Multi-Instance GPU (MIG) technology to let the GPU be 
split into several instances for more flexibility, making it ideal 
for sophisticated data science jobs and high-performance 
computing [33-35]. 

 

TABLE III.  PERFORMANCE COMPARISON OF DEEP 
LEARNING MODELS 

Model Precision Recall mAP50 F1-score 

Faster R-CNN 0.39 0.75 0.61 0.51 

YOLOv5 0.99 0.99 0.99 0.86 

YOLOv8 0.99 0.99 0.99 0.86 

YOLOv10 0.98 0.98 0.99 0.86 

 
The results show that YOLOv5, YOLOv8, and YOLOv10 

significantly outperformed Faster R-CNN. With mAP50 scores 
of 0.99, all three models attained high precision and recall 
values of 0.98-0.99, proving their accuracy and near-perfect 
flaw detection capacity. Despite a recall of 0.75, Faster R-CNN 
displayed much lower precision (0.39) and mAP50 (0.61), 
indicating a higher error rate in defect detection. Reflecting a 
well-balanced trade-off between precision and recall, the F1 
scores of YOLOv5, YOLOv8, and YOLOv10 were 0.86. 
Among them, YOLOv10 performed closely to YOLOv5 and 
YOLOv8 across all measures. Furthermore, unlike YOLOv5, 
YOLOv8, and Faster R-CNN, which demand more resources, 
YOLOv10 has the advantage of running in resource-
constrained environments. This makes YOLOv10 a perfect fit 
for situations with hardware restrictions, particularly when 
processing on less capable GPUs, especially while still 
producing results equivalent to models that demand more 
computational resources. 

TABLE IV.  CLASS-WISE PERFORMANCE OF DEEP 
LEARNING MODELS 

Defect Model Precision Recall mAP50 F1 

Abnormal 

Faster R-

CNN 
0.75 0.82 0.91 0.78 

YOLOv5 0.99 1 0.99 0.86 

YOLOv8 0.99 1 0.99 0.86 

YOLOv10 0.99 0.99 0.99 0.85 

Misdirection 

IC 

Faster R-

CNN 
0.89 1 1.00 0.94 

YOLOv5 0.99 1 0.99 0.96 

YOLOv8 0.98 1 0.99 0.96 

YOLOv10 0.97 1 0.99 0.96 

No 

component 

Faster R-

CNN 
0.93 1 1 0.96 

YOLOv5 0.99 1 0.99 0.85 

YOLOv8 0.99 1 0.99 0.85 

YOLOv10 0.98 0.98 0.99 0.85 

Crack 

Faster R-

CNN 
1 0.95 0.85 0.97 

YOLOv5 0.99 0.99 0.99 0.82 

YOLOv8 0.99 0.99 0.99 0.82 

YOLOv10 0.97 0.96 0.99 0.81 

Wrong 

Component 

Faster R-

CNN 
1 0.96 0.79 0.96 

YOLOv5 0.99 1 0.99 0.8 

YOLOv8 0.99 1 0.99 0.8 

YOLOv10 0.99 0.99 0.99 0.8 

 
YOLOv5, YOLOv8, and YOLOv10 consistently showed 

high precision and recall across all defect types. Their mAP50 
reached 0.99, suggesting an almost flawless detection accuracy. 
Their F1 scores, which ranged from 0.81 to 0.97, demonstrated 
a reasonable mix between recall and precision. Though their 
performance is outstanding, YOLOv5 and YOLOv8 have 
restrictions in resource-limited contexts because of their more 
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complicated designs and greater model sizes, which require 
more GPU memory and processing capability. YOLOv10 
effectively solves these restrictions. YOLOv10 needs only 16-
24 GB of GPU RAM even in its more sophisticated forms, far 
less than Faster R-CNN's 30.5 GB, YOLOv5's 30.4 GB, and 
YOLOv8's 25.2 GB. Table IV shows that although it used far 
fewer resources, YOLOv10 performed exactly as YOLOv5 and 
YOLOv8. This makes YOLOv10 perfect for pragmatic uses in 
settings with limited resources since it provides exceptional 
accuracy with fewer resources. 

D. Confusion Matrices 

The confusion matrices for each subversion of the 
YOLOv10 model highlight the accuracy and errors of 
YOLOv10 in classifying data by displaying the number of 
correct and incorrect predictions for each class. These graphs 
reflect the model's performance across various categories and 
pinpoint the areas where errors occur, helping to identify where 
YOLOv10 might face challenges in detecting certain types of 
defects. Moreover, the graphs aid in analyzing how the model 
handles imbalanced data, emphasizing its ability to maintain 
accuracy even in difficult scenarios. This is particularly crucial 
for detecting defects on PCBs, where some types of defects 
may appear less frequently. Figures 5 through 9 demonstrate 
YOLOv10's performance in detecting defects across five 
experimental cases, showcasing the model's results and 
revealing areas that may benefit from further optimization. 

By predicting in the background, the YOLO model 
improves its focus on actual objects, reducing detection errors. 
Background predictions are necessary to display False 
Positives (FP) and True Negatives (TN), aiding in assessing the 
model's accuracy in distinguishing objects from the 
background. This comprehensive evaluation allows accurate 
calculations of metrics such as accuracy, precision, recall, and 
F1 score, reducing FPs caused by background confusion and 
increasing the model's robustness against irrelevant data.  

 

  
Fig. 5.  Confusion matrix from YOLOv10-n. 

YOLOv10-n demonstrated high accuracy across several 
categories, including Abnormal, No Component, Crack, and 
Wrong Component. However, some misclassifications were 
observed, such as the confusion between No Component and 
Crack, possibly due to similarities in the characteristics of these 
defects. This confusion led the model to incorrectly classify 
these defects as background. The model's prediction of 
Background occurs when it struggles to differentiate between 
defects or when the background in the image shares similar 
features with certain defects, such as Abnormal or Wrong 
Component. This similarity causes the model to misclassify 
these defects as background instead of their actual categories. 
Frequent Background predictions often happen when the 
background in the images has textures or patterns similar to the 
actual defects, indicating that the model still faces challenges in 
distinguishing complex image features. 

The confusion matrix of YOLOv10-s demonstrates the 
model's classification performance. Diagonal cells represent 
correct predictions. In contrast, the off-diagonal cells indicate 
incorrect predictions, such as misclassifying No Component as 
Wrong Component in 3 instances. The model shows confusion 
in the Background class, with several misclassifications, such 
as predicting Background instead of Abnormal in 1 instance 
and misclassifying Crack as Background in 2 instances. These 
errors suggest challenges in differentiating the Background 
class, probably due to similarities between background 
elements and other categories. This analysis highlights key 
areas where the model struggles, particularly with background-
related misclassifications, providing valuable insights for 
improving model accuracy in the future. 

 

 

Fig. 6.  Confusion matrix from YOLOv10-s. 

Figure 8 shows the confusion matrix of YOLOv10-m. Off-
diagonal cells show incorrect predictions, such as 
misclassifying Background as Abnormal once and as Crack 
once, highlighting noticeable confusion in the Background 
category. These errors suggest that the Background category 
shares certain similarities with other categories, making it 
harder for the model to distinguish. Although the model 
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performed well in categories such as Crack and Abnormal, the 
confusion in the Background category clearly requires 
improvement to enhance the model's accuracy. 

 

 

Fig. 7.  Confusion matrix from YOLOv10-m. 

Figure 8 shows the confusion matrix of YOLOv10-l. The 
off-diagonal cells indicate misclassifications, such as predicting 
Background as Abnormal once and Background as crack once. 
The confusion in the background category is a critical area of 
concern, as the model struggles to differentiate this class. 
While the model performs well in certain categories such as 
Abnormal and Crack, the misclassification in the Background 
class indicates a weakness that needs improvement to enhance 
the model's accuracy in future predictions.  

 

 

Fig. 8.  Confusion Matrix from YOLOv10-l. 

Figure 9 shows the confusion matrix of YOLOv10-xl. The 
off-diagonal cells indicate misclassifications, such as predicting 
Background as Abnormal twice and Background as Wrong 
Component once. 

 

Fig. 9.  Confusion matrix from YOLOv10-xl. 

The confusion in the Background class is significant, as the 
model struggles to differentiate this category from others, 
possibly due to similarities between Βackground and classes 
such as Abnormal and Wrong Component. The color shading 
in the graph provides a clear view of the prediction frequencies, 
with darker shades indicating higher correct predictions and 
lighter shades representing errors. Although the model 
performs well in certain categories, such as Abnormal and 
Crack, the confusion in the Background category remains a 
critical weakness. Addressing this issue is crucial to improving 
the model's accuracy in future classifications. 

Predictions for the Background category, as shown in the 
confusion matrix, suggest that the model can differentiate 
objects from empty space. Reducing detection errors requires 
this skill. The graph also shows the performance of the model 
over several classes, where for most of them it has great 
accuracy. However, there are potential misclassifications in 
circumstances where some groups exhibit similar traits. 

IV. CONCLUSION 

This study demonstrated the effectiveness of YOLOv10 in 
detecting defects on PCBs. PCB integrity is vital for product 
performance, and accurate, real-time defect detection is 
essential. YOLOv10 offers significant improvements over 
previous versions, including YOLOv5 and YOLOv8, as it 
incorporates advanced techniques such as CSPNet, PANet, and 
dual assignments that enhance both speed and accuracy, 
making it particularly suitable for real-time applications. 
YOLOv10 surpasses both its predecessors by offering a better 
balance between speed, accuracy, and computational 
efficiency. The model integrates NMS-free training and spatial-
channel decoupled downsampling, reducing the need for 
computational power while maintaining high detection 
precision. YOLOv10's partial self-attention module also 
improves the detection of complex objects by focusing more 
effectively on key areas of an image. This study used a dataset 
of 1,260 PCB samples, with 80% allocated for training and 
20% for testing. YOLOv10 showed superior performance, with 
precision reaching 99% and recall above 97%, achieving the 
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highest mAP and F1 scores among all variants tested. In 
contrast, YOLOv5 and YOLOv8 require more resources, 
particularly in constrained environments. YOLOv10's 
enhancements in computational efficiency enable it to deliver 
similar accuracy under lower-spec hardware, making it crucial 
for real-world manufacturing scenarios where high-end GPUs 
are often unavailable. Although this study offers a 
comprehensive approach to PCB defect detection, it may not 
account for all potential variations in actual production settings. 
Future research should focus on expanding the dataset with 
diverse PCB types and defect patterns to enhance the model 
robustness for broader applications.  
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