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ABSTRACT 

Infectious Diseases (ID) are a significant global threat due to their epidemic nature and substantial impact 

on mortality rates. COVID-19 has proven this assertion by wreaking havoc on human wellness and 

healthcare resources. This has underscored the need for early ID diagnosis to restrict the spread and 

protect human lives. Recently, Artificial Intelligence (AI)-assisted biosensors have shown great potential to 

assist physicians in making decisions to minimize mortality rates. However, their adoption in clinical 

practice is still in its infancy, primarily due to the challenges faced by physicians to interpret decisions 

derived from these black-box systems. The objective of this study is to earn the trust of physicians to 

promote their acceptance and widespread adoption in healthcare. Against this backdrop, this research is a 

pioneering effort to investigate not only the diagnostic accuracy of several Machine Learning (ML) 

algorithms for ID but more specifically how to leverage the benefits of Shapley values to provide valuable 

insights regarding the contribution of clinical features for early ID diagnosis. This analysis examines four 

ML algorithms that stem from different theories, such as Random Forest Classifier (RFC), Gradient 

Boosting Classifier (GBC), Support Vector Classifier (SVC), and Multilayer Perceptron (MLP). The visual 

analysis results presented for local and global interpretation facilitate the observation of the marginal 

impact of each clinical feature on a patient-by-patient basis. Therefore, the results of this study are 

expected to aid practitioners in better evaluating the diagnostic decisions of the ML models developed and 

boost the use of AI-assisted biosensors for ID diagnoses. 

Keywords-biosensors; machine learning; model agnostic methods; early pandemic diagnosis; SHAP 

framework; global and local explanation 

I. INTRODUCTION  

The emergence and reemergence of ID have historically 
posed a significant threat to human society due to their endemic 
nature and high degree of infection [1]. These phenomena 
provoke socioeconomic challenges that have widespread 
effects on the world. This issue is an escalating concern as it 
puts a substantial number of communities in a vulnerable 
position. The COVID-19 pandemic has confirmed the validity 
of this assertion, not only by spreading rapidly around the 
world with high fatality rates but also by profoundly disrupting 
the global economy [2]. In addition, several recent studies have 
highlighted that the impact of climate change can potentially 
affect and accelerate the spread of ID [3]. The World Health 
Organization (WHO) has acknowledged the critical importance 
of implementing more robust measures to prevent and control 
ID. The significance of research financing has been 
underscored in finding better solutions to combat vectors and 
the diseases they spread [4]. Keeping in mind the stark reality 
of these factors, it is imperative for researchers and 
policymakers to remain attentive and reassess the current 
approaches for predicting and managing new ID and revisit the 

global frameworks for controlling future pandemic diseases. 
The existing diagnostic modalities for ID depend 
predominantly on clinical laboratories, such as polymerase 
chain reaction, microscopy, culture, and enzyme-linked 
immunosorbent assay [5]. Most of these technologies are 
inaccessible to the majority of the global population due to 
their high cost, high complexity, centralization, and reliance on 
qualified technicians. Among these detection modalities, 
biosensors are at the forefront as a powerful alternative 
modality for timely ID diagnosis due to their rapid response, 
high sensitivity and specificity, lower cost, and ability for on-
site detection [6]. Additionally, these devices have the potential 
to serve as point-of-care instruments within medical facilities 
or domestic settings due to their inherent simplicity and cost-
effectiveness. 

All biosensors, inevitably, exhibit inherent signal noise. 
Some biosensors have limited lifespans and unstable 
performance because they rely heavily on antibodies or 
aptamers as bioreceptors. The commercialization of most 
modern biosensors is hindered by their limited accuracy and 
dependability [7]. Therefore, researchers are actively seeking 
new ways to make biosensors more effective. Fortunately, the 
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AI revolution over the past decade has narrowed this gap [8]. 
Integration of AI with biosensors has resulted in the emergence 
of a novel class known as AI biosensors, instigating a 
transformative revolution. ML is a significant component of AI 
and has been utilized as a potent instrument for efficiently 
analyzing extensive datasets acquired from biosensors and 
subsequently extracting vital information. ML can offer 
innovative approaches to address the obstacles encountered by 
biosensors. Additionally, ML can facilitate the transformation 
of conventional biosensors into intelligent ones that can 
autonomously predict the species or concentration of analytes 
using a decision-making system [8]. The primary focus of this 
study is the analysis of sensing data using ML techniques. 
Several studies have explored various ML techniques for 
diagnosing diseases such as tuberculosis, malaria, and most 
recently, COVID-19. These models have shown promising 
results in terms of sensitivity and specificity, contributing to 
more precise diagnoses and the potential to reduce diagnostic 
delays [6, 9]. Research has also explored the application of 
deep learning for image-based diagnostics, particularly in 
interpreting medical imaging data such as chest X-rays and CT 
scans for ID detection [10, 11]. Despite these advances, one of 
the persistent challenges is the "black-box" nature of many ML 
models, which limits their interpretability and, consequently, 
their acceptance in clinical practice. Although prior studies 
have successfully implemented ML for ID diagnosis, there is a 
critical research gap regarding the application of explainable AI 
(XAI) techniques. To date, no studies have comprehensively 
investigated how XAI methods, such as Shapley values, can 
provide transparent and interpretable insights into the 
contributions of clinical features for ID diagnosis. 

In recent years, XAI has gained traction in various 
healthcare fields, addressing the critical need for transparency 
in AI-driven decision-making [2, 12, 13]. Several successful 
XAI applications have been reported. For instance, in 
oncology, XAI methods have been employed to explain the 
predictive factors influencing cancer recurrence, helping 
physicians tailor personalized treatment plans [14]. Similarly, 
in cardiovascular disease, XAI models have provided 
transparency on the contribution of risk factors, such as 
cholesterol levels and blood pressure, to enhance trust and 
facilitate clinical decision-making [15]. In diabetic retinopathy 
detection, XAI has been used to visualize the areas of retinal 
images most relevant to disease classification, improving the 
interpretability of complex deep-learning models [16]. 
Impressed by the success of these studies in enhancing model 
transparency and clinical trust, this study aims to fill the 
literature gap by investigating the application of explainable 
ML techniques for the diagnosis of ID, an area where such 
approaches have yet to be comprehensively explored. 

 

 

Fig. 1.  A biosensor device schematic flow control within its modules. 

II. MATERIALS AND METHODS  

A. Biosensors and AI  

The rapid growth of the global population and the rise in 
chronic lifestyle diseases have created an urgent need for 
timely therapeutic interventions. Experts highlight the critical 
role of biosensors in clinical management, noting their prompt 
responsiveness and specificity, which enable early diagnosis 
and treatment [5]. Advances in biomarker identification and 
technologies such as nanotechnology and microfluids have 
further expanded the potential of biosensors to improve 
healthcare. Since their introduction half a century ago, 
biosensors have revolutionized the treatment of various 
diseases. A biosensor is an analytical device designed to detect 
and measure biological changes, converting them into electrical 
signals for analysis [17]. It consists of several key components 
that work together to achieve accurate detection and diagnosis, 
as shown in Figure 1. The analyte is the target substance, such 
as glucose, urea, or drugs, whose concentration is measured. 
The bioreceptor is a molecule that specifically recognizes the 
analyte, including antibodies, enzymes, or DNA, which 
generate a measurable signal upon interaction. The transducer 
converts the biorecognition event into an electrical or optical 
signal, which is then processed by the processor. This unit 
amplifies and digitizes the signal for easier interpretation. Data 
are often transmitted through wireless communication systems, 
such as Bluetooth or 5G, to external devices for further 
analysis. Finally, the display unit presents the processed results, 
allowing real-time monitoring. Together, these components 
enable biosensors to provide precise, non-invasive, and timely 
detection of various biomarkers for disease diagnosis and 
monitoring [17]. Biosensors and AI are revolutionizing disease 
diagnosis by offering non-invasive, real-time monitoring of 
biomarkers and advanced data analysis. Biosensors track 
biomarkers with precision, while AI processes the data to 
identify disease patterns. Their integration enhances timely 
disease detection, improving treatment effectiveness and 
potentially saving lives. 

B. Explainable AI (XAI)  

Recent advances in AI and ML hold great promise for 
enhancing healthcare by improving clinical decision-making, 
reducing errors, and expanding access [18]. However, the 
adoption of ML in clinical practice remains limited due to the 
opaque nature of "black-box" models, which are difficult to 
understand and interpret. This lack of transparency, where 
models are not inherently understandable, creates challenges 
for both healthcare providers and developers [12, 19]. To 
overcome these issues, XAI has emerged as a key solution, 
aiming to enhance the interpretability of AI models by 
providing explanations that are understandable to humans, 
allowing users to grasp how decisions are made in these 
complex systems. 

XAI focuses on improving explainability, the ability to 
assess a model's internal workings by human standards. By 
transforming black-box models into more transparent "glass-
box" systems, XAI highlights the importance of specific 
features and uncovers the relationships between variables, 
making the decision-making process clearer [2, 15, 20]. Post-
hoc explanation techniques offer instance-specific insights 
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without needing full knowledge of the model's internal 
mechanics. This combination of transparency, interpretability, 
and explainability is crucial to building trust in AI-driven 
healthcare, ensuring that both physicians and patients can rely 
on the accuracy and clarity of diagnoses and predictions 
generated by these systems. 

C. Shapley Additive Explanation (SHAP)  

Several techniques have been devised to assess the 
significance of variables within a model to enhance 
interpretability [21]. These techniques encompass correlation 
coefficients, hypothesis testing, and variance-based approaches. 
The SHAP approach has garnered significant attention among 
many methodologies due to its recent incorporation of game 
theory principles [16, 22]. 

The SHAP framework presents a comprehensive approach 
to diagnosis interpretation. The process involves calculating the 
contribution of each feature to the prediction to explain the 
prediction of a given instance � . Figure 2 provides a 
comprehensive overview of the process for utilizing SHAP to 
interpret the predictions generated by any given model. The 
SHAP method can be utilized in both global and local contexts. 
In the global context, it may provide explanations of the 
average impact of features on outputs. On the other hand, in the 
local context, it can estimate the contribution made by each 
feature toward specific predictions. The application of Shapley 
values provides two fundamental advantages. First, Shapley 
values can be computed for a wide range of models, extending 
beyond simple linear models. Additionally, each record 
possesses its own unique set of Shapley values [21]. 

 

 

Fig. 2.  SHAP integration for model explainability. 

Given a predictive model � that uses a subset � of features 
from the total � input features to predict an output, Shapley 
values can be used to determine the contribution of each feature 
�� to the model's output as follows [22]: 

Θ� � ∑
|�|!��|�|���!

�!�⊆��� ��∪ ���� � ���� (1) 

The above-computed values �i can then be used to provide 
an explanation for an instance �  using the additive feature 
attribution as follows: 

��� � Θ� � ∑ ��
�
��� Θ�   (2) 

Here � is the linear explanation model defined to replace 
the original model � and �� represents no inputs scenario. The 
SHAP method was utilized in this investigation to provide an 
interpretation of the model that exhibited the highest 
performance. Three distinct SHAP plot variants, namely 
summary, Force, and Waterfall plots, were employed to 

visually represent the impact and significance of each input 
parameter on the associated output. These visualizations have 
the potential to yield valuable insights regarding the behavior 
of the model, facilitating an improved understanding of the 
correlations between the independent input clinical features and 
the predicted diagnosis results. 

Algorithm 1. Interpretability analysis of 

XAI models using SHAP 

Input: 

  Biosensor dataset (BD): X(features),  

  y (target labels) 

Output:  

  Tuned hyperparameters for RFC, GBC, SVC, 

  and MLP, SHAP, summary and waterfall 

  plots for interpretability comparison 

Procedure CompareXAI {BD, ML (RFC, GBC,  

  SVC, MLP)} 

1: Load the biosensor dataset and split  

   into (train, test) 

2: Initialize hyperparameters for ML  

   models as in Table I 

3: for each model M in {RFC, GBC, SVC, 

   MLP} do 

     Apply BO and max CV accuracy for M 

     Train M with hyperparameters  

     optimized using BO 

   end 

4: Compute SHAP values on the test set  

     Use shap.TreeExplainer for RFC, GBC 

     Use shap.KernelExplainer for SVC, MLP  

5: For interpretability analysis  

     Generate summary plots for global  

     explanations 

     Generate waterfall plots for global  

     explanations 

6: Compare models on accuracy and  

   interpretability 

End procedure 

 

D. Proposed Conceptual Framework  

Figure 3 shows the conceptual framework of the developed 
diagnosis model, highlighting the complete process involved in 
developing the prediction model. In general, the data collected 
and preprocessed by the biosensor are stored in nearby servers 
or the cloud. Then, the candidate ML model is trained with the 
preprocessed data using Algorithm 1. Next, to better assist 
clinicians in making informed diagnostic decisions, the model 
is designed to integrate both global and local explanations. The 
developed model utilizes Shapley values to boost both model 
explainability and feature selection, which have been 
recognized to enhance the acceptability of medical diagnoses. 
The presence of irrelevant and redundant features within 
medical datasets has posed major barriers to current AI-based 
models, resulting in compromised diagnostic accuracy. The 
primary rationale behind this is that the inclusion of irrelevant 
and redundant features significantly increases the likelihood of 
overfitting and amplifies the complexity of the computational 
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process. Consequently, this model incorporates feature 
selection into the primary prediction phase to remove features 
that are deemed unnecessary or irrelevant. Once the model has 

been refined using the selected features, the diagnosis decision 
with a model-provided explanation can be shared with medical 
professionals for further verification. 

 

 

Fig. 3.  Evaluation framework adopted for Interpretability comparison of ML models for ID diagnosis. 

E. Model Selection 

As there is no single optimal ML classifier method that 
applies to all applications, it is advisable to evaluate a variety 
of classifiers based on their performance, complexity, 
characteristics, and previous literature. In this context, four 
distinct ML algorithms, each rooted in different theoretical 
frameworks, were examined for their potential to improve 
diagnostic and interpretative capabilities in ID. These include 
Random Forest (RFC) from ensemble learning, Gradient 
Boosting (GBC), Support Vector machine derived from 
statistical learning theory (SVC), and neural networks (MLP). 
In conjunction with this, the impact of feature selection on 
diagnostic accuracy is examined, utilizing the advantages of 
their interpretative capabilities [9, 23, 24]. Moreover, the 
selection of these four ML algorithms is based on their 
demonstrated efficacy in medical diagnosis, as evidenced in the 
earlier literature [23, 25, 26]. 

TABLE I.  BO OPTIMIZED HYPERPARAMETERS OF ML 
MODELS 

ML 
model 

Hyperparameter Search Range 
Optimal 

value  

RFC 
Max-depth {3, 6, 9} 5 

n-estimators  {25, 50, 100} 87 

GBC 
Max-depth {5, 15, 20} 15 

n-estimators  {25, 50, 100} 50 

SVC 

Kernel {'rgf', 'linear'} 'rbf' 

C {5, 10, 15, 20} 11 

Gamma {5, 10, 15, 20} 10 

MLP 

Activation 

function  
{'logistic', 'tanh','relu'} 'relu' 

Learning rate  
{'constant', 'invscaling', 

'adaptive'} 
'invscaling' 

 

F. Bayesian Optimization-based Hyperparameter Tuning 

Hyperparameters are values that can significantly influence 
the learning process. When appropriately adjusted, these 
parameters can enhance both the accuracy and the 
generalizability of the model [25]. Hyperparameter 
optimization plays a crucial role in ML algorithms, as it seeks 

to refine hyperparameters to ensure optimal performance 
throughout the training process. To ensure equitable 
comparison, the hyperparameters of all the ML algorithms 
under investigation were meticulously optimized using 
Bayesian Optimization (BO). This method is unique in that it 
achieves the highest scores in the shortest number of iterations, 
making it an intelligent choice for complex models. In contrast 
to other hyperparameter tuning methods, BO allows one to 
choose a broad range for the search space as opposed to a 
limited number of hyperparameters. The method optimizes the 
search space at each iteration using the findings of previous 
iterations. Table I shows the hyperparameters tuned using BO 
for the ML models developed. 

III. EXPERIMENTAL SETUP 

A. Dataset Description  

The dataset used in this study is a recent, publicly available 
dataset, making it an ideal choice for investigating and 
comparing ML models for interpretability in ID diagnosis [27]. 
It offers a valuable foundation for the application of XAI 
models in healthcare, particularly for diagnosing vector-borne 
ID such as dengue. Collected from 77 patients with dengue 
between 2009 and 2010, the dataset includes detailed 
information such as age, gender, length of hospital stays, 
clinical symptoms, laboratory test results, and patient 
diagnoses. Diagnoses are classified into three severity levels 
(mild, intermediate, and severe), allowing a comprehensive 
evaluation of model performance across different stages of the 
disease. This dataset, obtained from the Department of 
Microbiology, Universitas Indonesia, offers a practical basis to 
compare the interpretability of ML models in ID diagnosis. 

B. Model Development and Implementation Details  

The selected models were implemented using Python, 
leveraging a range of libraries, including scikit-learn for model 
building, skopt for hyperparameter tuning, and shap for 
interpretability assessment. Hyperparameter optimization was 
performed using the BayesSearchCV method from the skopt 
library, ensuring that each model was fine-tuned for optimal 
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performance [28]. To allow a fair comparison of model 
interpretability, SHAP values were employed to explain the 
contribution of individual features to model predictions at both 
global and local levels. For tree-based models (RFC, GBC), the 
TreeExplainer from SHAP was utilized, while the 
KernelExplainer was applied for non-tree models (SVC, MLP). 
SHAP summary plots were used to illustrate global feature 
importance, and SHAP waterfall plots provided detailed local 
explanations for specific instances. 

IV. RESULTS AND DISCUSSION  

A. Model Performance Analysis  

To evaluate the performance of the ML models for ID 
diagnosis, the dataset was partitioned into training and testing 
in a 75:25 ratio. For a fair comparison, the same training set 
was adopted to train all the ML models using k-fold cross-
validation. After training, all models were validated on the 
unseen test set. The investigation focuses on evaluating the 
effectiveness of the models for diagnosing ID across three 
aspects, as follows. 

 

1) Quantitative Analysis  

Table II presents the performance metrics derived from the 
confusion matrix for the four ML models, both with and 
without hyperparameter optimization. These results are also 
shown in Figure 4. The results clearly show that the optimized 
models outperformed the non-optimized ones across all 
performance measures. This improvement can be attributed to 
the role of hyperparameter optimization in fine-tuning key 
parameters such as learning rate, number of estimators, and 
maximum depth, which directly influence the model's ability to 
learn from the data. In non-optimized models, default settings 
may not capture the complexity of the dataset, leading to 
suboptimal performance. 

The slight performance advantage observed in ensemble 
methods (RFC and GBC) compared to MLP and SVC can be 
justified by the inherent ability of ensemble techniques to 
reduce overfitting and improve robustness by combining 
multiple decision trees or learners. This allows them to better 
capture complex relationships in the data, making them more 
effective. Despite this, MLP and SVC also performed well, but 
the results indicate that ensemble learning approaches may be 
more suitable for this type of biosensor data. 

TABLE II.  QUANTITATIVE PERFORMANCE MEASURE FOR THE DEVELOPED ID DIAGNOSTIC MODELS 

Selected 

XAI 

models  

Diagnostic performance without hyperparameter 

optimization  

Diagnostic performance with hyperparameter 

optimization 

Accuracy  Sensitivity  Specificity  F1-Score Accuracy  Sensitivity  Specificity  F1-Score 

RFC  0.736  0.872 0.609  0.711 0.847  0.992 0.726  0.841 

GBC 0.689 0.826 0.624  0.694 0.806 1.0 0.673  0.809 

SVC 0.544 0.655 0.489  0.551 0.753  0.987 0.560  0.756 

MLP 0.413 0.445  0.406 0.436 0.659 0.626  0.514 0.723 

 

 
(a) (b) 

Fig. 4.  Performance analysis graphs for the developed ID diagnostic models: (a) without hyperparameter optimization, (b) with hyperparameter optimization. 

2) Sensitivity-Specificity Curve (ROC curve)  

The ROC curve is crucial to understanding the trade-offs 
between false positives and false negatives, offering a 
comprehensive view of a model's performance across various 
decision boundaries. This is particularly important in the 
medical domain, where accurate classification decisions are 
essential. To evaluate the four ML models developed in this 
study, their performance was compared using ROC curves, as 
shown in Figure 5(a). The curves confirm the superior 
performance of the ensemble models, which outperformed the 
other models in terms of classification accuracy. Additionally, 

the Area Under the ROC curve (AUC), displayed in the figure's 
legend, quantifies the generalization ability of each model. 
However, the overall results suggest that the diagnostic 
performance of all models was affected by the limited size of 
the training dataset. Despite this, in real-world applications, the 
models are expected to perform better when provided with 
larger datasets, as training sample constraints will no longer be 
a limitation. In particular, the ROC results are consistent with 
the performance measures presented in Table II, further 
reinforcing the conclusion that the ensemble models are more 
effective in this context. 
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(a) (b) 

Fig. 5.  ROC (a) and Precision-Recall (b) curve analysis for the ID diagnostic models developed. 

3) Precision-Recall Curve (PR Curve)  

The PR curve is particularly valuable when evaluating ML 
models on imbalanced datasets, where the positive class is the 
primary focus. Unlike the ROC curve, the PR curve offers a 
more insightful perspective in such cases, as it emphasizes a 
model's ability to balance precision (minimizing false 
positives) and recall (maximizing true positives). This makes 
the PR curve especially useful in medical diagnoses, where 
datasets are often skewed, with a limited number of infected 
patient samples compared to a larger number of normal cases. 
Together, the PR and ROC curves provide a more 
comprehensive evaluation of model performance. 

Figure 5(b) provides a comparison of the four ML models 
using the PR curve, offering deeper insights into how well the 
models handle the imbalanced dataset. The curve shows that, 
despite the dataset's imbalance, all models maintain consistent 
levels of precision and recall. This consistency indicates that 
the models are adept at identifying positive cases without 
generating an excessive number of false positives. The 
ensemble models, in particular, stand out as the superior 
choice, demonstrating better PR trade-offs compared to the 
MLP and SVC models. Their higher precision and recall values 
suggest that ensemble models, such as RFC and GBC, are more 
robust in capturing the complex patterns within the data, 
making them well-suited for building effective ID diagnosis 
models. This superior performance is likely due to ensemble 
models' ability to aggregate multiple learners, enhancing their 
discriminative power even in challenging scenarios such as 
imbalanced medical datasets. 

B. Model Interpretability Analysis  

It is essential to determine the primary clinical 
characteristics that influence diagnostic decision-making and 
establish their associations with patient infection to compare 
the diagnostic efficacy of the ML models developed. By 
utilizing the SHAP framework, it is possible to effectively 
attain the aforementioned objectives. These models offer 
interpretability, allowing for a clear understanding of the 
relationship between input features and output objectives. 

1) Shapley Global Explanation 

The evaluation of global interpretation in the ML models 
involves a qualitative analysis of the SHAP summary plot, 

which effectively illustrates the relative significance assigned 
by the model to different clinical features throughout the 
process of diagnosing ID. Shapley values explain the extent to 
which different clinical features of patients contribute, either 
positively or negatively, to the diagnosis of ID. Figure 6 
visually represents this information. Upon careful examination 
of the results, it is evident that the primary two clinical features 
remain consistent across the two ensemble models, affirming 
their substantial contribution to ID diagnosis. In addition, 
Figure 6(a) reveals that the top three clinical features, namely 
hemoglobin, hematocrit, and platelet count, have the most 
variable Shapley values. Here, the low values of these clinical 
features correspond to patients with low red blood cells and are 
awarded positive Shapley values, which have a greater impact 
on the diagnosis probability of ID.  

In accordance with [19, 27], the ensemble ML models 
developed have identified these three clinical features as the 
most essential on average for ID diagnosis. As a result, the 
RFC model is more likely to consider patient infection as 
values of these features decrease. Therefore, the use of SHAP 
facilitates medical professionals in examining the role of 
features within the developed model, as well as in the decision-
making process. 

2) Shapley Local Explanation  

As stated previously, the use of local explanations can 
provide valuable support to healthcare providers in their 
decision-making processes about potentially contaminated 
patients. However, they play a crucial role even in the context 
of research. An illustrative example is the comparison between 
the explanation of a patient correctly identified as infected and 
a patient falsely identified as infected, thus facilitating the 
comprehension of factors that could potentially lead to 
confusion within the models. This study aims to showcase the 
application of the Shapley force and waterfall plots as a visual 
tool to interpret local explanations of Shapley values in the 
context of COVID-19 diagnoses. Column II in Figure 7 depicts 
the rationales that resulted in an accurate positive diagnosis for 
a given patient, whereas column I illustrates the justifications 
for a correct negative diagnosis. The SHAP force plots visually 
represent the features in a left-to-right manner, where the left 
side represents positive contributions highlighted in red, and 
the right side represents negative contributions highlighted in 
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blue. Similarly, waterfall plots depict features in a vertical 
layout, with positive contributions displayed at the top and 
negative contributions displayed at the bottom. 

This study's findings align with [19, 27], demonstrating that 
decreased levels of white blood cells significantly influence the 
favorable prognosis of this particular patient, whereas, for non-
infection, the increased levels of white blood cells and 
hemoglobin are significantly considered. The individual force 

and waterfall plots provide insights into the features that the 
models deem significant in predicting outcomes for specific 
patients. However, while it is possible to visually perceive the 
significant features that the models deem vital for certain 
patients, it is crucial to note that these models are not 
specifically designed for individual patients. Consequently, 
only the average risk for patients with comparable risk factors 
will be reflected in the diagnosis. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6.  Shap summary plot for the developed ID diagnostic models: (a) RFC, (b) GBC, (c) SVC, (d) MLP. 

  

 

Fig. 7.  SHAP force and corresponding waterfall plots for uninfected (column I) and infected patients (column II) of the developed GBC model. 

Upon summarizing the findings, it becomes evident that a 
more effective model regarding AUC does not always imply a 
more precise model in terms of medical theory, and vice versa. 
A model may exhibit proficiency in one particular aspect while 
also demonstrating deficiencies in other areas. An example is 
the MLP, which had the lowest AUC. However, the MLP 

model aligns more closely with medical theory in terms of 
White Blood Corpuscles (WBC) and platelet count, since 
deviations from normal levels indicate problems with the 
immune system. 
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C. Comparison with Related Works  

Most of the existing literature comparing the interpretability 
of ML models for vector-borne ID lacks a comprehensive and 
in-depth analysis. For example, the study in [29] compares the 
accuracy and interpretability of tree-based ensemble models for 
COVID-19 prognosis without hyperparameter tuning, leading 
to suboptimal model performance. In contrast, the study in [13] 
provides a more thorough analysis by evaluating both the 
accuracy and interpretability of tree-based ensembles with 
hyperparameter tuning on a COVID-19 dataset, successfully 
identifying key biomarkers critical for prognosis. Similarly, in 
[19], clinical, laboratory, and radiomics features are integrated 
to perform a detailed comparison between the SVC and RFC 
models in terms of performance and interpretability. The study 
in [12] expands the scope by exploring a variety of ML models, 
excluding SVC and RFC, to assess their performance and 
interpretability for COVID-19 prognosis. 

Additionally, two recent studies [2, 30] focus on comparing 
the diagnostic accuracy and interpretability of various ML 
models but rely exclusively on global explanations, without 
providing insights into individual predictions and localized 
feature impacts. From this comparative analysis, it becomes 
evident that a significant portion of existing research tends to 
rely on basic interpretability techniques, such as SHAP and 
LIME, without fully exploring their broader implications for 
clinical decision-making and real-world applications. 
Moreover, most recent research has focused on identifying 
biomarkers for COVID-19, driven by the global urgency of the 
pandemic, while other critical IDs, such as dengue and malaria, 
that continue to affect millions worldwide have been 
overlooked. Notably, none of the existing studies have 
thoroughly examined the interpretability of different ML model 
categories on small datasets. 

In summary, the combination of experimental findings and 
comparative analysis with related studies underscores the 
unique contributions of this research. It highlights both the 
strengths and limitations of the ML models developed for the 
early diagnosis of vector-borne ID, demonstrating their 
performance in terms of accuracy and interpretability. By 
focusing on both aspects, this study not only enhances 
diagnostic capabilities and supports physicians in making more 
informed and precise clinical decisions but also provides 
valuable guidance for CAD developers. This establishes a clear 
pathway to select the most appropriate ML models to design 
efficient CAD tools, tailored to the specific needs of vector-
borne ID diagnosis. 

V. KEY FINDINGS AND CONTRIBUTIONS  

The key contributions of this study are summarized below, 
emphasizing the novel advancements it brings to the field of ID 
diagnosis by utilizing XAI techniques to interpret data from 
AI-assisted biosensors. These contributions address significant 
gaps in the current literature and provide valuable insights into 
improving the interpretability of AI-driven models, with the 
potential to enhance clinical decision-making and foster greater 
trust in AI tools among healthcare professionals. 

 This study sets a new precedent by applying XAI 
techniques, specifically Shapley values, on small datasets to 

enhance transparency in AI-assisted ID diagnosis, 
particularly for the interpretation of biosensor data. 

 This research pioneers the assessment of the interpretability 
of four distinct ML algorithms, RFC, GBC, SVC, and 
MLP, for the early detection of ID, providing insights 
through both local and global explanations. 

 Analysis of both local and global explanations provides 
valuable insights into how specific clinical features 
influence the diagnosis both overall and on a patient-by-
patient basis, thus improving the interpretability of the 
models. 

 These findings are expected to assist healthcare 
professionals in evaluating AI-driven diagnostic tools more 
effectively and promote the adoption of AI-assisted 
biosensors in the early diagnosis of IDs. 

VI. CONCLUSION  

This study investigated the precision and interpretive 
capacity of ML models in improving the transparency and 
reliability of predictions made for ID diagnosis. The findings 
indicate that there is variation in accuracy among the developed 
ML models. This suggests that organizations should make 
thoughtful decisions while selecting the most suitable model 
for each specific problem. However, this work substantiates 
that ML models, specifically RFC and GBC, are robust and 
interpretable when confronted with complicated clinical data 
derived from real-world scenarios. Furthermore, the potential 
of these models to enhance diagnostic performance is evident 
even when trained using a small dataset. 

The SHAP charts presented enhance the diagnostic models, 
making them more understandable by revealing their inner 
operations. Specifically, SHAP force and waterfall plots offer 
in-depth insights into clinical features that affect ID diagnosis, 
allowing physicians to quickly comprehend these factors. 
These results highlight the potential of integrating the SHAP 
framework to better understand the role of ML in ID diagnosis. 
Consequently, by establishing the diagnosis and interpretation 
through the developed models, healthcare providers can 
promptly identify patients at risk and administer suitable 
treatment in a promising manner. The results of this study 
make a valuable contribution to the continuous advancement of 
ML in the context of data-driven ID diagnosis. Additionally, 
these findings offer a clear direction for future research in this 
field. Moving forward, substantial prospects remain for further 
research using these methods. The ongoing advancement of 
ML techniques offers an opportunity to enhance the 
interpretability of predictions in healthcare by integrating 
supplementary or alternative explainable techniques. 
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