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ABSTRACT 

Colorectal and Rectum Cancer (CRC) presents significant global health challenges, necessitating early 

detection and precise diagnosis to achieve effective treatment and better patient outcomes. Transfer 

learning techniques have shown considerable promise, especially in cancer detection. This study presents a 

CRC prevention system based on a fusion of a pre-trained VGG16 model with dense layers for metadata 

processing. Experiments were performed using the CT Colonography dataset from The Cancer Imaging 

Archive (TCIA), applying preprocessing and class weighting to address class imbalance. The system was 

evaluated using accuracy, loss, recall, precision, F1-score, and AUC. This study investigated the impact of 

integrating DICOM patient metadata to enhance the proposed CRC prevention system. The findings 

indicate that the proposed MetaVGGNet model outperformed the standard VGG16, achieving greater 

accuracy (82%) and a marginally lower loss. This successful application has the potential to enhance CRC 

diagnosis and treatment and underscores the importance of incorporating metadata into deep learning 

classification systems, offering avenues for more effective and dependable diagnostic tools in CRC 

management. 
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I. INTRODUCTION  

According to the World Health Organization (WHO), in 
2020, approximately 1.93 million new cases of Colorectal 
Cancer (CRC) were diagnosed worldwide, with projections 
indicating a significant increase to 3.2 million new cases by 
2040, representing a 63% increase, and a 73% increase in 
mortality, with 1.6 million deaths per year [1]. Early detection 

of CRC is crucial, as it improves treatment outcomes and 
increases survival rates. CRC originates from precancerous 
growths in the intestinal lining, spurred by mutations in genes 
that regulate cell growth, activation of cancer-causing genes, 
alterations in immune responses, and possibly influenced by 
changes in the gut microbiome [2]. CRC polyps are critical 
precursors to CRC development that promote cancer 
progression. Although most polyps do not evolve into CRC, 
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their presence enables preventive interventions due to their 
extended transformation period of progression to CRC [3, 4]. 
Ignored polyps can transform into CRC [5]. Screening methods 
include colonoscopy and CT Colonography (CTC) [6, 7]. 

CTC and colonoscopy are widely used methods for 
detecting colorectal polyps. Colonoscopy has a sensitivity of 
95-100% in detecting polyps larger than 6 mm and a specificity 
close to 100%, as it allows direct visualization and polyp 
removal during the procedure. In contrast, CT colonography 
has a sensitivity ranging from 85-93% for polyps greater than 
10 mm and 70-86% for polyps 6-9 mm, with a lower sensitivity 
for smaller polyps (less than 6 mm). Its specificity ranges from 
86-97%. Although colonoscopy is often considered the gold 
standard due to its ability to both detect and remove polyps 
during the procedure, research indicates that CTC is a safe and 
cost-effective substitute for colonoscopy in colorectal screening 
[8-10]. The non-invasive nature of CT colonography reduces 
patient discomfort and avoids the risks associated with 
sedation. When abnormalities are detected, a follow-up 
colonoscopy can be used to remove polyps, making CT 
colonography an excellent initial screening tool. Digital 
Imaging and Communications in Medicine (DICOM) is a 
standard format for medical imaging data, commonly used in 
CT scans [11, 12].  

Deep Learning (DL) methods have exhibited notable 
advances in the classification and diagnosis of CRC, offering 
several advantages over traditional approaches [13]. A variety 
of studies have explored the classification of polyps using 
Convolutional Neural Networks (CNNs), showing promising 
results in accurately identifying different types of colorectal 
polyps. For instance, in [14] EfficientNet-B7 and EfficientNet-
b0 were used to classify polyps with high accuracy. In [15], the 
VGG16 and VGG19 architectures were used to classify colon 
polyps on CT scans, demonstrating the potential of DL 
techniques in helping radiologists with early detection. In [16], 
a CNN achieved 94% accuracy in classifying traditional 
adenomas, sessile serrated adenomas, and hyperplastic polyps. 
These findings collectively highlight the effectiveness of CNN 
in the precise classification of polyps. 

Transfer Learning (TL) techniques [17-18], leveraging pre-
trained models such as AlexNet and VGG16 [13, 19], have 
further increased performance, outperforming models trained 
from scratch in CRC, particularly, and in medical tasks, 
generally. Performance comparisons across various tasks 
indicate the superiority of deep TL with AlexNet for CRC 
lymph node metastasis classification [20-22]. VGG16 TL has 
been successfully applied in various medical imaging tasks, 
such as Alzheimer's disease diagnosis [23], lung cancer 
detection [24], and COVID-19 detection on chest CT scans 
[25]. These studies demonstrate the effectiveness of utilizing 
pre-trained VGG16 models for accurate and efficient medical 
classification tasks. The TL approach with VGG16 has 
consistently shown high accuracies ranging from 86% to 
99.54% across different medical imaging applications. 
Therefore, leveraging VGG16 TL for CRC prevention could 
potentially lead to promising outcomes by utilizing the model's 
pre-trained features to enhance the classification of CRC-
related images, aiding in early diagnosis. 

DICOM stores medical images along with descriptive 
metadata, such as patient information, details of the imaging 
technique, and more [26-29]. The use of metadata in DICOM 
images plays a crucial role in various aspects of medical 
imaging. In [30], Modality Mapping and Orchestration MOMO 
was proposed, which is a DL-based approach to automate the 
classification of external DICOM studies based on the Picture 
Archiving and Communication Systems (PACS) archive 
consisting of 11,934 imaging series with anatomical labels. 
This study combined metadata analysis with neural network 
ensembles to automate the mapping process, showcasing the 
potential of DL, including DenseNet-161 and ResNet-152, 
alongside metadata matching in classifying external DICOM 
studies. In [31], the DICOM standard was implemented for 
digital pathology, focusing on extracting pixel data, pixel-
related metadata, patient data, and specimen-related metadata. 
This study evaluated how effectively the DICOM standard 
could be used in a healthcare network involving multiple sites 
and vendors, highlighting both the capabilities and limitations 
of using DICOM metadata in the context of pathology. In [32], 
the focus was on extracting exposure parameters and dose-
relevant indexes of CT examinations from DICOM metadata 
using an automated Matlab-based approach. This study aimed 
to extract information from structured elements in DICOM 
metadata relevant to exposure, showcasing the importance of 
metadata in medical imaging. 

II. METHODOLOGY 

A. Proposed CRC Prevention System 

The proposed CRC prevention system encompasses a series 
of steps aimed at optimizing the detection of colon polyps in 
medical images. Initially, Region of Interest (ROI) and slice 
selection techniques were employed, leveraging polyp 
emplacement data to selectively extract relevant slices for 
analysis. Computational efforts focused solely on pertinent data 
and streamlining subsequent analyses. Resizing and 
normalization procedures were implemented to further refine 
the dataset. Resizing involved reducing the width and height 
dimensions of the initial scans from 512 to 128 pixels. 
Normalization standardized pixel values across images, 
ensuring consistency in image intensity ranges and mitigating 
potential disparities arising from variations in acquisition 
settings or equipment. Metadata integration played a crucial 
role in the classification approach, where features such as 
patient age and sex were selected to enrich contextual insights 
and enhance model interpretability, as clinicians can better 
understand the model output in the context of a patient's 
demographic and clinical characteristics. Moreover, to address 
the class imbalance inherent in the dataset, class weights were 
employed, assigning higher weights to underrepresented 
classes to improve model sensitivity and classification 
accuracy. After the preprocessing steps, TL was used by 
employing the VGG-16 model, leveraging its pre-trained 
features to accelerate training and enhance polyp detection. 
This approach not only reduces computational requirements but 
also facilitates faster convergence and improved performance, 
laying the groundwork for a robust CRC prevention system. 
Figure 1 displays the flow diagram of the proposed system. 
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Fig. 1.  Flowchart of the proposed CRC prevention system. 

B. Dataset Description 

This study utilized the CT Colonography dataset generously 
provided by the American College of Radiology Imaging 
Network (ACRIN), which offers access to a subset of the CTC 
trial data hosted on TCIA under CT Colonography (ACRIN 
6664) [33]. This dataset, which consists of DICOM-formatted 
files, comprises a substantial collection of 825 cases, 3451 
series, and 941,771 images, totaling 462.6 GB in size. The 
inclusion of spreadsheets further facilitates the identification of 
positive and negative polyp cases within the dataset. CT scans, 
renowned for their ability to produce three-dimensional 
representations of scanned objects, yield a series of 2D image 
slices, each encapsulated within a DICOM file enriched with 
vital metadata. These metadata include comprehensive patient 
information, crucial imaging parameters, and precise spatial 
orientation details. 

C. Preprocessing 

The polyp emplacement information provided in the xls 
sheet was utilized to selectively extract only the slices 
containing polyps, minimizing the required computational 
resources. Images lacking polyp placement information were 
excluded from the selection process. Additionally, for images 
classified as polyp-free by professionals, the central slice was 
extracted. This approach ensured that computational efforts 
focused solely on relevant data, optimizing efficiency and 
streamlining subsequent analyses. Additionally, the width and 
height of the initial scans were resized from 512 to 128 pixels. 
This resizing operation reduced the computational burden 
associated with handling large-scale data and also optimized 
the data representation for subsequent analysis. Scaling down 
the dimensions condensed the information while preserving 
essential features. 

D. Class Weights 

Class weights were employed to address the inherent class 
imbalance in the dataset. The number of instances belonging to 
the class without polyps significantly outweighed those of 
images with polyps, potentially leading to biased model 
performance. Higher weights were assigned to the 
underrepresented classes (polyp-positive scans) during model 
training. Assigning appropriate weights ensured that the 
model's learning process was more sensitive to minority 
classes, improving its ability to accurately classify both polyp 
and polyp-free scans. Weights were assigned to each class 
based on the following equation: 

����ℎ���	

� �

�

����
    (1) 

where �∈ {Polyp_free, polyp}, �� denotes the total number of 
samples of the dataset, and ��  represents the number of 
samples in class �. 

E. Transfer Learning with VGG16 

The VGG-16 model is a widely recognized CNN 
architecture pre-trained on ImageNet that offers a robust 
framework to capitalize on the learned features from a diverse 
range of images, accelerate the training process, and enhance 
the accuracy of polyp detection. This approach not only 
reduces the need for extensive computational resources and 
labeled data but also facilitates faster convergence and 
improved performance on this specific medical imaging task. 
Figure 2 illustrates the architecture of the proposed model, 
named MetaVggNet. It comprises two inputs: an image input 
and a textual input. These inputs are fed into a feature 
extraction block that incorporates the VGG16 model alongside 
dense and dropout layers. The final output layer consists of a 
single neuron that utilizes the sigmoid activation function. This 
study utilized the VGG16 architecture as a base model, 
leveraging its pre-trained weights from ImageNet while 
excluding its top layers. All layers are frozen to retain these 
pre-trained weights. The image features are extracted from the 
VGG16 model and flattened, while the metadata is processed 
through dense layers. The resulting features are concatenated, 
and a dropout layer is incorporated to mitigate overfitting. 

F. Evaluation Metrics 

The performance of the model was evaluated by generating 
a Confusion Matrix (CM), effectively summarizing the model's 
performance by comparing the predicted with actual labels 
[34]. The CM includes counts for various classifications: True 
Positives (TP), indicating correctly identified abnormal scans, 
False Positives (FP), representing normal scans incorrectly 
classified as abnormal, True Negatives (TN), where normal 
scans are correctly identified, and False Negatives (FN), 
denoting abnormal scans incorrectly classified as normal. 
Various metrics were used to evaluate the model, including 
Accuracy (Acc), Precision (Pre), Recall (Rec), and F1-score 
(F1). The following equations define the metrics used: 

Accuracy �
�����

��� ����� �
   (2) 

Precision �
��

��� �
    (2) 
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Recall � TP/+TP , FN/   (3) 

F1 �
���

���� �� �
    (4) 

The Receiver Operating Characteristic (ROC) is a crucial 
tool in DL. ROC curves illustrate a model's ability to correctly 
identify positive cases while minimizing the misclassification 
of negative cases. The horizontal axis of the ROC curve depicts 
the FP rate, while the vertical axis represents the TP rate. A 
model is considered more effective if its ROC curve is placed 
closer to the y-axis [35]. 

III. RESULTS AND DISCUSSION 

This study investigated the impact of metadata on the 
performance of the CTC prevention system by comparing 
VGG16 with MetaVGGNet. TensorFlow 1.5.2 was used, with 
an Intel Xeon CPU and 14 GB of RAM. The dataset was 
divided into training/testing with an 80:20 ratio. The validation 
set used 20% of the training set. 

 

 
Fig. 2.  The proposed MetaVggNet model. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3.  Training and validation performance curves: (a) Vgg16 accuracy, (b) VGG16 loss, (c) MetaVGGNet accuracy, (d) MetaVGGNet loss. 

A. Training and Validation Results 

During model training, the number of epochs was set to 10, 
determining the number of times that the entire dataset would 
pass through the model. The batch size, set to 32, determines 
the number of samples propagated through the network at each 

step. The class weight parameter was used to adjust the 
contribution of different classes to the loss function during 
training, which is especially useful for imbalanced datasets. 
The validation split parameter was set to 0.2, indicating that 
20% of the training data was reserved for validation, allowing 
to monitor the model performance on unseen data after each 
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epoch, helping to prevent overfitting and improve 
generalization. The Adam optimizer was used with the loss 
function set to binary_crossentropy, which is suitable for 
binary classification problems, making the model capable of 
efficiently updating the weights to minimize the loss during 
training. 

Table I presents the performance comparison between 
VGG16 and VGG16 with metadata (MetaVGGNet). The 
standard VGG16 model achieved an accuracy of 91.2% on the 
training set with a loss of 0.36, and 75% accuracy on the 
validation set with a loss of 0.49. Performance improved 
significantly with the addition of metadata. The VGG16 model 
with metadata achieved an impressive accuracy of 95.6% on 
the training set with a loss of 0.29 and 80% accuracy on the 
validation set with a loss of 0.45. This improvement indicates 
the importance and effectiveness of incorporating metadata, 
which resulted in a notable enhancement in the model's ability 
to generalize. 

TABLE I.  VGG16 ACCURACY AND LOSS FOR TRAINING 
AND VALIDATION WITH AND WITHOUT METADATA 

Models Training Validation 

Acc Loss Acc Loss 

VGG16 91.2% 0.36 75% 0.49 
MetaVGGNet 95.6% 0.29 80% 0.45 

 

B. Testing Results 

Figure 6 shows the CM for the testing phase, including 50 
samples, which was used to calculate accuracy, loss, precision, 
recall, F1-score, and the ROC curve to further evaluate the 
models' performance on the CT colonography dataset. 

 

(a) 

 

(b) 

 

Fig. 4.  CMs for (a) VGG16, (b) MetaVGGNet. 

As shown in these CMs, the inclusion of metadata in the 
VGG16 model resulted in a reduction in FP, enhancing the 
model's ability to accurately classify instances. This 
improvement is indicated by the decrease in FP from 9 to 8, 
while other metrics remain constant. 

Table II shows the results in terms of precision, recall, and 
F1-score on the test data. The VGG16 model with metadata 
demonstrated an improvement in the identification of both 
cases. For polyp_free cases, the addition of metadata resulted 
in a 3% increase in recall and an improved F1-score (0.86). 
Similarly, for cases with a polyp, the MetaVGGNet model 
achieved a 3% increase in accuracy and a notable improvement 
in the F1-score, reaching 0.76. These results emphasize the 
importance of metadata in enhancing the model's performance 
and its ability to identify polyps. 

TABLE II.  TESTING RESULTS FOR EACH MODEL 

Models Classes Prec Rec FS 

VGG16 
Polyp free 96% 74% 0.84 
with polyp 61% 93% 0.74 

MetaVGGNet 
Polyp free 96% 77% 0.86 
With polyp 64% 93% 0.76 

 
The VGG16 model with metadata shows an improvement 

in test accuracy compared to the standard VGG16 model. 
While the VGG16 model achieved an accuracy of 80%, the 
MetaVGGNet model achieved an accuracy of 82%, 
showcasing the effectiveness of incorporating metadata to 
enhance the model's performance. Additionally, the test loss 
decreased from 0.46 for the VGG16 model to 0.45 for the 
VGG16 model with metadata, further emphasizing the 
advantages of including metadata.  

Figure 7 shows a ROC curve comparison between the 
VGG16 model and the VGG16 model with metadata, 
indicating a slightly higher AUC for the latter. This indicates 
that the VGG16 model with metadata has a slightly better 
ability to distinguish between positive and negative cases 
compared to the standard VGG16. 

 

 
Fig. 5.  ROC curves of the models. 
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C. Comparative Study 

Making a direct comparison between different studies can 
be challenging due to the use of different datasets and 
architectures. VGG16 was used to detect Alzheimer's in [23] 
and for COVID-19 in [25]. In [36], 3DCNN is used for the 
prediction of tuberculosis on CT scans. These studies showed 
accuracies ranging from 67.5% to 99.54% across different 
diseases. The results of this study fall in this range, with an 
accuracy of 82%, recall of 93% for cases with polyps, and an 
AUC of 0.85, although the dataset is limited. In general, 
including metadata can be a promising approach to enhance 
model performance.  

IV. CONCLUSION 

This study introduced MetaVggNet, a model based on 
VGG16, designed to take advantage of both images and 
associated metadata to improve the task of CT scan 
classification on the absence or presence of polyps. 
Experiments were carried out using the CT Colonography 
dataset, subjecting it to preprocessing from selection through 
resizing until normalization. Class weighting was used to 
address class imbalance. TL was exploited, integrating 
additional layers to process metadata along with image 
features. The results showed that the MetaVggNet model 
outperformed the standard VGG16 model in all metrics 
evaluated. Including metadata enhanced the model 
performance in terms of accuracy, precision, recall, and the 
area under the ROC curve. In particular, the model with 
metadata demonstrated a reduction in false positives, indicating 
improved classification accuracy. Therefore, incorporating 
metadata into a TL model improves its performance. These 
findings underscore the importance of including metadata to 
enhance the performance of DL models in medical imaging 
tasks. 

Despite the improved performance of MetaVggNet, certain 
limitations are present. As the CT Colonography dataset used 
for training was relatively limited in size, larger and more 
diverse datasets could further validate the model's 
generalizability. The performance of MetaVggNet is highly 
dependent on the quality of the metadata. In clinical practice, 
metadata can sometimes be incomplete or inconsistently 
recorded, which could impact the model's real-world 
performance. The additional layers for metadata processing 
increase the model's complexity, requiring more computational 
resources and training time compared to standard VGG16. To 
further improve MetaVggNet and extend its applicability, the 
integration of additional modalities with image and metadata 
information can be explored. Future research could also focus 
on fine-tuning the model. Also, incorporating Explainable AI 
(XAI) would help clinicians understand the model's decision-
making process. 
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