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ABSTRACT 

Innovative agricultural solutions are needed to detect and classify leaf diseases early across crop species 

and environments. This study compares deep learning approaches, focusing on Convolutional Neural 

Networks (CNN) and Vision Transformers (VTs), to identify leaf diseases early and accurately for scalable 

crop management and productivity. Optimizing CNNs, Explainable Transfer Learning (ETPLDNet) using 

ResNet50 architecture, and LEViT leaf disease diagnosis are compared. The CNN model, optimized with 

dynamic hyperparameters, achieved an impressive 99.58% accuracy for leaf disease classification, 

demonstrating its effectiveness in feature extraction and classification precision. On the other hand, the 

VT-based LEViT model, which leverages self-attention mechanisms and Explainable AI (XAI), achieved 

95.22% accuracy but offers enhanced interpretability and generalization capabilities due to its 

transformer-based architecture. This distinction illustrates that while CNNs excel in accuracy, VTs 

provide a more transparent decision-making process and better handle the complex variances in plant leaf 

diseases, making them ideal for precision agriculture. The combined use of CNNs and VTs showcases the 

strengths of each model, with CNN focusing on high classification precision and VTs offering improved 

interpretability and adaptability for various leaf disease conditions. The use of XAI enables the models to 

highlight important areas in plant leaf images that influence the model's decisions, offering a transparent 

and interpretable decision-making process that allows researchers and farmers to understand why a 

particular diagnosis or classification was made. This ability to visualize and explain the reasoning behind 

the model predictions is crucial to increasing trust in AI-driven solutions in agriculture. By combining the 

high precision of CNN and the interpretability of VT with XAI, this study offers a robust approach to 

improving crop disease management and precision agriculture. 

Keywords-leaf diseases; convolutional neural networks; transfer learning; vision transformers; explainable 

artificial intelligence; classification 

I. INTRODUCTION  

Agriculture drives GDP, making crop damage a major issue 
for national productivity and food security [1]. Leaves are the 
most sensitive part of plants and often show early signs of 

disease, highlighting the need for crop management throughout 
its lifecycle. Large land expanses, infectious diseases, multiple 
diseases on one leaf, and a lack of agricultural competence in 
remote areas complicate the diagnosis and management of 
agricultural diseases. These obstacles hinder disease prevention 
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and treatment, reducing production and quality. Global food 
security depends on the diagnosis of infectious plant diseases 
[2]. New deep learning methods, such as Vision Transformer 
(VT) models, improve leaf disease detection and classification. 
This study improves the accuracy of leaf disease classification 
using VTs and transfer learning for agricultural production and 
food security. Machine learning, particularly deep learning, can 
improve crop management and meet food demand [3], with 
applications in insect and crop management, fruit picking, and 
leaf recognition [4]. Transfer learning helps to perform tasks 
with limited data, especially in rare data domains, with large 
image datasets. Plant diseases reduce global grain production, 
emphasizing the importance of disease detection in agriculture.  

Leaf diseases, caused by fungal, bacterial, viral, and 
environmental factors, can damage crop productivity and 
quality [5]. Symptoms include discoloration, spotting, wilting, 
deformation, and defoliation. Detection and classification using 
visual inspection, laboratory analysis, and remote sensing, 
along with machine learning and computer vision, can help 
reduce disease costs. Many studies used deep learning models 
to detect and classify leaf diseases. Deep learning methods can 
detect plant anomalies, such as parasites or diseases, despite 
weak contrast and minor changes, reducing agricultural losses 
and improving precision agriculture [6]. CNNs are 
recommended for early plant disease detection and yield 
prediction. Deep CNN architectures extract images and classify 
leaf diseases using complex convolutional layers, instead of 
metadata analysis and hand-crafted features [7]. Computer 
vision applications have made deep transfer learning popular 
for leaf disease diagnosis, improving automated diagnostic 
systems, increasing crop yield and reducing species losses. 
CNNs reduce agricultural losses and improve management by 
detecting plant parasites and diseases [8]. Pre-trained models, 
such as VGG16 and ResNet50, can recognize plant and leaf 
diseases. These transfer learning-refined models can accurately 
diagnose and classify leaf diseases, improving agriculture and 
crop health [9]. Deep learning architectures trained on curated 
plant disease datasets improve disease diagnosis and 
classification along with farming outcomes. 

Many studies on plant disease detection used high-quality 
datasets, such as aerial and non-aerial images. Effective CNN 
models, including DenseNet, achieved high accuracy on the 
PlantVillage dataset [10]. CNNs improve plant disease 
detection but increase processing requirements. Vision 
Transformers (ViTs) can address CNN limitations with self-
attention in identifying leaf diseases [11]. ViTs and CNNs can 
identify plant diseases [12] but require larger models and more 
processing resources. CvT [13] and PlantViT [14] hybrid 
models improve plant disease diagnosis. In [15], the focus was 
on apple leaf disease detection using computer vision 
techniques. 

The primary motivation for using deep learning models for 
leaf disease detection is based on their ability to provide a 
highly accurate and efficient diagnosis, which is essential for 
early intervention. These models, such as CNNs and ViTs, can 
handle large datasets and complex variations in disease 
symptoms, making them scalable and adaptable across 
different crops and environments. By automating the detection 

process, deep learning models reduce the need for manual 
inspections, reducing operational costs while ensuring 
consistent monitoring. Additionally, the integration of 
Explainable AI (XAI) techniques, such as Grad-CAM, 
enhances transparency, allowing users to understand the 
reasoning behind model predictions, which fosters trust and 
improves decision-making. Ultimately, deep learning models 
help boost agricultural productivity by preventing the spread of 
diseases, ensuring better crop management, and contributing to 
food security. 

This study uses deep learning models to classify leaf 
diseases, reducing detection costs and increasing crop yield on 
large farms. The selection of specific deep learning models, 
such as CNN and ViTs, is driven by their ability to address key 
gaps and meet real-world agricultural needs. CNNs are chosen 
for their proven effectiveness in image-based recognition, 
particularly their ability to automatically extract features from 
leaf images, handle complex patterns, and provide high 
accuracy for leaf disease detection. CNNs' hierarchical 
structure, with convolutional and pooling layers, enables them 
to capture spatial dependencies and subtle disease features in 
large agricultural datasets, making them ideal for early and 
accurate disease diagnosis. However, CNNs can sometimes 
lack transparency in decision-making, leading to the integration 
of ViTs that offer improved interpretability through self-
attention mechanisms and XAI techniques such as Grad-CAM. 
ViTs also excel in processing complex variations in leaf 
diseases and are more robust in handling diverse environmental 
conditions, making them particularly useful for scalable and 
explainable solutions in agriculture. These models bridge the 
gap between the high-accuracy detection of CNNs and the need 
for transparency and better generalization in varying 
agricultural environments through ViTs, ensuring more reliable 
and interpretable disease management practices. 

The main challenges in applying deep learning models to 
diverse plant leaf images include variations in disease 
symptoms, differences in leaf shapes and textures, 
environmental factors, such as lighting and background noise, 
and the limited availability of labeled datasets. These 
challenges are addressed through data augmentation techniques 
(e.g., random flipping, rotation, zooming, resizing) to enhance 
model generalization and preprocessing steps to isolate 
diseased leaves for improved feature extraction. Additionally, 
dynamic hyperparameter tuning in CNN models allows for 
better adaptation to complex data, while ViTs provide 
enhanced interpretability and robustness in handling 
environmental variability. Transfer learning with models such 
as ResNet50 can further mitigate the issue of limited labeled 
data by leveraging pre-trained knowledge, enabling accurate 
and scalable disease detection across different plant species. 
These strategies ensure more effective and reliable 
performance in leaf disease detection. 

This study uses an optimized CNN model for leaf disease 
classification. Dynamic hyperparameters, such as learning rate 
and regularization, improve model accuracy and data 
adaptability. ETPLDNet, an explainable transfer learning 
model based on ResNet50 and modified with dropout 
techniques, dense layers for accuracy enhancement, and Grad-
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CAM for interpretability, outperformed existing models in the 
domain with 92.53% training, 97.33% validation, and 97.58% 
testing accuracy across 38 disease classes and 14 plant types. 
The LEViT model [16] clarified decisions with the ViT_B_32 
transformer with 95.22% training, 96.19% validation, and 
92.33% test accuracy. The proposed method was compared 
with modern leaf disease diagnosis and categorization models, 
showing its superiority. These models demonstrate that 
dynamic hyperparameter tuning, explainability in deep 
learning, and transformer-based architectures improve leaf 
disease identification and classification, promising agricultural 
advances.  

II. METHODS 

Deep learning, transfer learning, and ViTs are extensively 
studied for plant leaf recognition but can provide misdiagnoses 
due to leaf, type, and environmental variations that are 
particularly challenging in rural areas. CNNs are effective for 
image-based recognition but face challenges due to limited-
sized and diverse datasets. Figure 1 illustrates the proposed 
method for evaluating deep learning models in leaf disease 
diagnosis and classification. 

 

 
Fig. 1.  Proposed method. 

A. Preprocessing and Augmentation 

The preprocessing of images from the New Plant Disease 
Dataset [17] enhances feature extraction and classification 
precision. To avoid overfitting and ensure reliable results, the 
CNN model requires multiple iterations and a large image 
dataset. Separating diseased leaves from background 
information in images before feeding them to deep learning 
models improves the identification and classification of leaf 
diseases. The sequential image augmentation model included 
RandomFlip (50% probability), RandomRotation (0.2 radians), 
RandomZoom (0-20%), RandomHeight/RandomWidth (80-
120% resizing), Rescaling ([0, 1] scaling), and Resizing 
(224×224 standardization) to improve model generalization 
[18]. 

B. Error Level Analysis (ELA) 

Error Level Analysis (ELA) is usually performed [19] to 
examine the performance of the model. ELA is a forensic 
image analysis method that detects digital image tampering and 
identifies altered areas. It works by using multiple 
compressions to introduce different error levels in an image. To 
highlight these inconsistencies, the ELA calculates the error 
difference between the original image and a compressed 
version. Cloned, retouched, and superimposed regions have 
higher error rates. ELA, or pixel error level, indicates the 
difference in intensity values between the original and the 
compressed image. I_original represents the pixel's intensity in 
the original picture and I_compressed represents it in the 
compressed form. 

The dataset was split into 80% for training, 10% for 
validation, and 10% for testing. Sequential augmentation 
reduced overfitting. ETPLDNet and LEViT models predicted 
labels with Adam optimization. 

C. Optimized CNN Model for Detecting and Classifying Leaf 
Diseases 

The misdiagnosis of leaf diseases and the challenges of 
disease diversity and environmental factors underscore the 
importance of early detection and treatment. CNNs have 
advanced image-based recognition by enabling built-in feature 
selection and eliminating the need for extensive image 
preprocessing [20]. However, obtaining large datasets for such 
problems remains challenging. 

CNNs typically consist of input, hidden, and output layers, 
including convolution, normalization, pooling, and fully-
connected layers that generate classification feature maps using 
filters [20]. The Rectified Linear Unit (ReLU) activation 
function is commonly used in image processing. An optimized 
CNN model with a modified layered architecture has shown 
accurate leaf disease classification by capturing complex image 
features [9]. This model employs hierarchical levels for 
classification tasks, utilizes multiple optimizers with varied 
learning rates for enhanced performance, and includes max 
pooling, normalization, and three convolutional 2D blocks. 
Hyperparameter optimization is used to analyze learning rate 
and optimizer selections, leading to improved leaf disease 
classification and prediction. 

The preprocessed input image with a resolution of 256×256 
is fed into this model. The optimized CNN model consists of 
three convolutional (Conv2D) layers, each followed by max 
pooling and batch normalization layers. The first Conv2D layer 
has 128 filters, while the second and third have 256 filters each. 
After these layers, the output is flattened into a 1D array using 
a flattened layer, which is then passed through two fully 
connected (dense) layers: one with 512 neurons and the other 
with 256 neurons, both followed by dropout layers to prevent 
overfitting. The final output layer is a dense layer with 38 
neurons for classification. Additionally, dynamic 
hyperparameter tuning, such as learning rate at 0.0001 and the 
Adam optimizer, enhance the model's ability to adapt and 
improve performance, setting it apart from standard CNN 
models with fixed architectures and static hyperparameter 
settings. 
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D. Multi-Class Accuracy in Leaf Disease Classification Using 
the ETPLDNET Model 

The ETPLDNet model is a potent deep transfer learning 
XAI system that is specifically engineered to accurately 
identify and diagnose diseases in plant leaves. Grad-CAM is 
employed to produce it following the merge of ResNet50 with 
extra thick and dropout layers. Figure 2 illustrates the 
fundamental design of ETPLDNet. 

 

 
Fig. 2.  ETPLDNet architecture. 

Transfer learning in leaf disease classification addresses 
challenges such as limited labeled data and the complexity of 
diverse plant diseases. Transfer learning leverages pre-trained 
models, such as ResNet50, to improve performance, reduce 
manual labeling, and accelerate training, while maintaining 
high accuracy. This approach enables efficient, scalable 
solutions for real-world agricultural applications with minimal 
data and computational effort. 

The 55-layer ETPLDNet model, based on ResNet50, 
predicts and classifies leaf diseases [21]. ResNet50, a Residual 
Network with 50 layers, revolutionized deep neural network 
training by addressing gradient drops and accuracy loss with 
skip connections that improve gradient flow and facilitate 
learning complex structures [21]. ETPLDNet leverages 
ResNet50 by using its deep residual learning architecture, 
which includes skip connections to overcome vanishing 
gradients and efficiently learn complex features. To enhance its 
performance for leaf disease detection, ETPLDNet incorporates 
additional dense layers (128 and 256 units) and a dropout layer 
(45% dropout rate) to prevent overfitting and improve the 
model's capacity to capture intricate patterns. It also integrates 
Grad-CAM, an XAI technique, to provide visual explanations 
of the model's decisions, making the classification process 
more transparent and interpretable.  

Furthermore, the model employs hyperparameter 
optimization, adjusting learning rates and batch sizes to 
maximize its performance, achieving superior accuracy across 
38 disease classes and 14 plant species compared to the 
standard ResNet50 model. These enhancements make 
ETPLDNet more accurate, interpretable, and suitable for 
practical agricultural use. The model is trained using mini-
batch stochastic gradient descent. ETPLDNet's dense layers 
combine features non-linearly to handle 38 classes and capture 
complex leaf disease identification and categorization patterns 
[21]. 

E. Multi-Class Accuracy in Leaf Disease Classification and 
Detection Using LEViT 

Transformers are used mainly for NLP [11]. ViTs were 
created to classify images with transformers. Language 
transformers extract words from sentences, whereas ViTs 
create patches [22]. A misaligned patch would distort the 
image, so its position matters. A 224×224 image dimension 
was chosen, which can be divided into 16×16 patches, resulting 
in 256 patches. Each patch corresponds to a grid of 14×14 
pixels within the original image. The advanced vision 
transformer LEViT detects and classifies plant leaf diseases 
using XAI, based on Grad-CAM, dense layers, and 
ViT_ImageNet-21k. Figure 3 illustrates the architecture of the 
LEViT model. 

 

 
Fig. 3.  LEViT architecture with added layers. 

Training, validation, and testing data are provided to the 
Transformation-based data augmentation module to be altered. 
Then, the extra data are examined by an already trained ViT 
model, called ViT_ImageNet-21k, using the large ImageNet-
21k dataset. Batch normalization stabilizes activation patterns, 
average pooling condenses feature maps, and 0.5 probability 
dropout stops overfitting. A layer of 38 units predicts classes. 
Finally, Grad-CAM uses gradient-weighted class activation 
mapping to explain the model's output. The output is separated 
into 38 classes using the 12-segment LEViT model encoding. 
In this LEViT model, images are converted into segments and 
processed using transformer blocks to take advantage of the 
vision transformer mechanism. 

F. Explainability and Interpretability using Grad-CAM 

CNN researchers propose deeper topologies for higher-
level visuals. Convolutional layers save spatial data, 
reconciling spatial and semantic features. Grad-CAM [5] uses 
sinuous gradients for localization maps, prioritizing the choice 
of the output layer based on class score gradients [5]. The 
expanded Grad-CAM process uses the dataset to train the leaf 
disease classification deep learning model. The last 
convolutional layer outputs and projects class scores from the 
training model. Gradients and weight feature maps are updated 
to generate relevance ratings, creating a heatmap that 
showcases the model's decision-making process for the 
predicted classes. 

G. Optimizers 

Three optimizers were used to compare the results of the 
models [16]. Adam updates weights using AdaGrad, managing 
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per-parameter learning rates, RMSProp adjusts learning rates 
based on running averages, and SGD optimizes loss functions 
iteratively, minimizing the objective function by updating 
weights iteratively based on the learning rate �, as described in 
(1)-(4). The RMSProp optimizer is defined by:  

��, ��  ≔  ��, � 	  1�  �  �1 	  ��
�������
�
 (1) 

The learning parameters are updated as follows:  

� ≔  � 	 �
����,��

������   (2) 

The SGD optimizer is defined as: 

���� � �
�

∑ ������
���    (3) 

� ≔  � 	  �� ����    (4) 

where � is the learning rate. 

H. Evaluation Metrics  

The evaluation metrics used for the models are presented in 
(5)-(8) [16]: 
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III. RESULTS AND ANALYSIS 

Python was used to implement the proposed models along 
with TensorFlow [17] and Keras for the transfer learning 
models. The Adam optimizer was used for training. The 
experimental analysis was carried out on a GPU-enabled P-100 
server with an i5 processor and 8 GB RAM. 

A. Error Level Analysis (ELA) 

ELA is used to detect image tampering in forensic analysis, 
identifying compressed or altered image regions. Comparing 
error levels across picture portions helps ELA find significant 
changes. Plant disease images were evaluated using ELA. ELA 
provides images with different A compression values. Visually 
evaluating photos at different compression settings helps find 
the best image processing setting and how compression affects 
quality. ELA analysis adjusts training compression for 
damaged dataset images, ensuring image processing and data 
integrity. Figure 4 shows ELA analysis on the 
Apple___Apple_scab leaf image. 

B. Evaluation of the Optimized CNN on the New Plant 
Disease Dataset 

Multiple methods with early stopping were used to train the 
plant disease model. The proposed method uses CNN to 
classify diseased and healthy leaves. CNN's accuracy was 
99.02%. The CNN model was best at distinguishing between 
healthy and bacterial leaves. Figure 5 shows the performance of 
the optimized CNN model. Since dynamic drift was 
implemented in the learning rate through the reduced learning 

rate feature, there is a variation in performance accuracy and 
loss at epoch 5. This improves the accuracy of the model and 
makes it perform better than competing models. The average 
multiclass accuracy achieved was 99.02% on the 38 classes of 
the dataset. 

 

 

Fig. 4.  ELA analysis on the Apple___Apple_scab leaf image. 

(a) 

 

(b) 

 

Fig. 5.  The effectiveness of the fine-tuned CNN model. 
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TABLE I.  PERFORMANCE COMPARISON OF CNN MODELS 

Model Accuracy (%) 

CNN model with size 224×224  95.33 
CNN model with size 210×210 91.09 
CNN model with size 256×256 98.27 

Optimized CNN model with 62×62  99.58 

 
Table I compares the sequential CNN performance. 

Comparing model architectures and settings shows large 
multiclass accuracy differences. CNN model accuracy depends 
on input size: 224×224, 210×210, and 256×256 achieved 
95.33%, 91.09%, and 98.27%, respectively. The optimized 
CNN model with 62×62 outperformed the others with 99.58% 
multiclass accuracy. 

C. ETPLDNet Performance on New Plant Disease Dataset 

Figure 6 shows that the ETPLDNet model classified leaf 
diseases well on the New Plant Disease Dataset. The 
ETPLDNet model performed well, with 92.53% training 
accuracy and 0.2294% loss after 100 epochs. The model had an 
average multiclass accuracy of 97.33% and a loss of 0.0814. 
These impressive results demonstrate the ETPLDNet model's 
capacity to reliably classify leaf diseases across classes. The 
model's accuracy and low loss values show its ability to capture 
rich characteristics and patterns in leaf disease images for 
accurate predictions. Through automated leaf disease 
identification and categorization, the ETPLDNet model can 
improve plant health management and agricultural 
productivity. 

 

(a) 

 

(b) 

 

Fig. 6.  Analysis of ETPLDNet's performance on the dataset. 

Figure 6 shows that the differences in training and 
validation datasets result in lower accuracy and higher loss. 
The model may overfit the training data after many epochs and 
iterations. More than 100 training epochs reduce the 
discrepancy between the training and validation metrics, 
indicating better model generalization. For fewer epochs, tiny 
data changes and overfitting may explain the training-
validation parameter discrepancy, including larger training than 
validation loss. The prevalence of this problem in machine 
learning highlights validation accuracy as a generalization 
indicator. The proposed ETPLDNet model surpassed previous 
studies with 92.53% accuracy. These results show that the 
ETPLDNet model can effectively diagnose plant diseases and 
can help farmers detect them more accurately. However, more 
evaluation measures and comparative research on diverse 
datasets are needed to fully establish its advantage. 

D. LEViT Performance on the New Plant Disease Dataset 

The performance of the LEViT model was evaluated over 
50 training epochs, as shown in Figure 7. The model has a 
validation accuracy of 96.19% and a training accuracy of 
95.22% after 50 epochs. The validation loss is substantially 
smaller at 0.1023 than the training loss of 0.1023. These results 
demonstrate the model's capacity to generalize knowledge from 
training to unseen data. To reduce overfitting and improve 
model generalizability, hyperparameters such as learning rate 
and regularization techniques should be adjusted to obtain an 
ideal loss-to-training accuracy trade-off. 

 

(a) 

 

(b) 

 

Fig. 7.  Performance of the LEViT model.  
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LEViT, a revolutionary model for the diagnosis and 
classification of leaf diseases, surpasses the competition with 
an accuracy of 95.22% as a result of its enhanced vision 
transformer architecture. LEViT beat ResNet50 [24], VGG-16 
[25], InceptionV3 [25], CNN, and ETPLDNet [23] in the 
detection of plant diseases. LEViT is a promising new 
instrument for precision agriculture and plant pathology disease 
management due to its high efficacy. 

TABLE II.  PERFORMANCE ANALYSIS OF DEEP LEARNING 
MODELS ON NEW PLANT DISEASE DATASET. 

Model Accuracy(%) 

ResNet50 [24] 91.81 
VGG-16 [25]  90.40 

InceptionV3 [25] 87.84 
CNN 91.09 

ETPLDNet 92.53 
LEViT [16] 95.22 

 

E. Grad-CAM Analysis  

Grad-CAM visualized ETPLDNet and LEViT neural 
networks for leaf disease classification. Model projections were 
strengthened by heat maps of ETPLDNet's decision-making 
and LEViT's diseased region identification. The ETPLDNet 
Grad-CAM model can accurately detect plant disease zones, 
improving plant health and agricultural productivity through 
targeted treatments and management, as shown in Figure 8. 
Grad-CAM with LEViT identifies critical regions in the leaf 
image for accurate prediction. Discriminative properties aid 
accurate predictions. Figure 9 shows that a fine-tuned LEViT 
model with Grad-CAM can detect leaf disease locations. 

 

 
Fig. 8.  ETPLDNet model with Grad-CAM for accurately predicting 
disease regions on leaves (correct predictions): (a) Apple_healthy,  
(b) Tomato Leaf Mold, (c) Tomato Septoria leaf spot, (d) Grape Esca (Black 
Measles), (e) Strawberry Leaf scorch, (f) Apple Black rot, (g) Strawberry 
healthy, (h) Tomato Bacterial spot, (i) Soybean_healthy, (j) Soybean_healthy, 
(k) Grape healthy, (l) Corn (maize) Northern Leaf blight, (m) Potato Late 
blight, (n) Potato healthy, (o) Cherry (including sour) healthy. 

 
Fig. 9.  LEViT model with Grad-CAM for accurately predicting disease 
regions on leaves (correct predictions if not mentioned otherwise: 
(a): Corn (maize) healthy, (b) Corn (maize) healthy, (c) Tomato Spider Mites 
(Two-Spotted Spider Mite), (d) True: Corn_(maize) Northern Leaf Blight - 
Predicted: Corn (maize) Cercospora leaf spot Greay leaf spot, (e) Peach 
healthy, (f) Raspberry healthy, (g) Blueberry healthy, (h) Peach healthy, (i) 
Raspberry healthy, (j) True: Pepper bell Bacterial spot - Predicted: Pepper bell 
healthy, (k) Grape healthy, (l) Grape Leaf blight (isariopsis_Leaf_Spot), (m) 
True: Peach healthy - Predicted: Apple healthy, (n) Grape Leaf blight 
(isariopsis Leaf Spot), (o) Pepper bell healthy. 

IV. DISCUSSION 

The ETPLDNet model achieved 92.53% training accuracy 
and a loss of 0.2294% after 100 iterations, with a multiclass 
accuracy of 97.33% and a loss of 0.0814, indicating its ability 
to capture rich characteristics for accurate predictions [23]. 
Compared to ResNet50 [24], VGG-16 [25], and InceptionV3 
[25], ETPLDNet shows superiority, albeit marginally less 
accurate than DenseNet121. This study compared the 
performance of the LEViT model with ResNet50 [24], VGG-
16 [25], and InceptionV3 [25], showing that LEViT achieved 
superior accuracy at 95.22%, outperforming ResNet50 
(91.81%), VGG-16 (87.99%), and InceptionV3 (91.84%). 
LEViT's ViT architecture with self-attention mechanisms 
enhances feature extraction and generalization, while XAI 
integration improves interpretability. These attributes make 
LEViT the most effective model for leaf disease classification. 
The LEViT model achieved 95.22% training accuracy with 
0.1038% loss after 50 iterations, and a 92.33% test accuracy on 
the same dataset, showcasing its potential for reliable plant 
disease detection and management beyond models such as 
ResNet50 [24], VGG-16 [25], InceptionV3 [25], CNN, and 
ETPLDNet. LEViT consistently outperformed these 
architectures, positioning itself as a superior method for precise 
plant disease identification in agriculture. 

The ETPLDNet, LEViT, and CNN models can be 
implemented on different datasets for leaf disease detection 
using data augmentation, preprocessing, and transfer learning. 
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A comparison study across datasets can reveal insights into 
their generalization and robustness for real-world agricultural 
use. 

V. CONCLUSION AND SUMMARY 

This study showcased significant advances in plant disease 
detection using deep learning models, particularly CNN- and 
ViT-based approaches. These models, such as ETPLDNet and 
LEViT, demonstrated impressive accuracy rates, outperforming 
traditional sequential CNNs and transfer learning models while 
also offering interpretability through XAI Grad-CAM. These 
models improved leaf disease detection accuracy and 
interpretability compared to previous works. Previous models 
such as VGG-16 and InceptionV3 achieved accuracies of 
87.99% and 91.84%, respectively, but lacked transparency in 
decision-making and struggled with generalization across 
diverse datasets. The optimized CNN model achieved 
exceptional performance with ResNet50 and VGG-16. 
ETPLDNet excelled in leaf disease identification, surpassing 
ResNet50 and VGG-16, while LEViT showed substantial 
improvements with accuracy reaching 95.22%, 96.19%, and 
92.33%. Future research should explore XAI transfer learning 
on diverse datasets to improve generalization and use ensemble 
learning and ViT to improve model performance and 
transparency. 
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