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ABSTRACT 

The Siddha and Ayurveda traditional Indian medicine practices utilize non-invasive diagnostic methods, 

such as Neikuri and Taila Bindu Pariksha, for patient diagnosis through urine analysis. While these 

methods have proven effective for centuries, their accuracy highly depends on the subjective experience of 

practitioners. To address this limitation, this study explores the use of advanced image processing 

techniques and deep learning, specifically Convolutional Neural Networks (CNNs), to automate and 

enhance diagnostic image analysis. This study utilized five pre-trained CNN models, namely DenseNet, 

ResNet, VGG-19, Inception, and EfficientNet, on a dataset of Neikuri images acquired from a Siddha 

medical institute, to standardize and improve the accuracy of patient diagnosis. The comparative 

evaluation revealed DenseNet as the best-performing model, achieving a classification accuracy of 93.33%, 

while Inception v3 followed with 90.5%. This study highlights the potential of integrating modern neural 

networks with traditional diagnostic practices, paving the way for more objective, efficient, and accessible 

healthcare solutions in traditional Indian medicine. 

Keywords-Convolutional Neural Networks (CNNs); deep learning; traditional medicine; Siddha; Ayurveda; 

urine test images; patient diagnosis; medical image analysis; Neikuri; Taila Bindu Pariksha; Mutra Pariksha 

I. INTRODUCTION 

Traditional medical methods such as Siddha and Ayurveda 
employ established noninvasive urine diagnostic practices, 
such as Neikuri and Taila Bindu Pariksha [1, 2]. While these 
methods have proven valuable, particularly during the COVID-
19 pandemic, their accuracy often depends on the experience of 
the practitioners [3]. The lack of standardized image datasets 
for training makes it challenging to ensure consistent diagnostic 
proficiency. This study investigates the use of Convolutional 
Neural Networks (CNNs), a state-of-the-art deep learning 
approach, to enhance these traditional practices. By 
incorporating CNNs, the aim is to enhance the precision, 
efficiency, and objectivity of these diagnostic methods, 
facilitating the training of novice practitioners and potentially 
leading to improved healthcare outcomes. 

II. BACKGROUND AND METHODOLOGY 

This study focuses on the application of CNNs to analyze 
diagnostic images derived from oil droplet observation 
techniques used in Neikuri and Taila Bindu Pariksha. These 
methods, while traditional, provide unique visual patterns that 
are challenging to classify using conventional image analysis 
methods. The goal of this research is to leverage deep learning 
models, specifically CNNs, to standardize and improve the 
classification of these images. A major challenge in this 
endeavor is the lack of standardized image datasets, which 
limits the ability to train machine learning models for accurate, 
reproducible analysis. This study addresses this challenge by 
developing a dataset of categorized images and evaluating 
various CNN architectures to identify the most effective model 
for this type of image classification. 
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A. Foundations of Siddha and Ayurveda Prognosis  

Siddha medicine employs Naadi Parisodhana, a pulse 
diagnosis technique involving the radial artery at 27 points. 
This method assesses the dasa naadis (energy channels) and 
three humors (mukkutram) through variations in pulse strength, 
rhythm, and subtle qualities. These variations are believed to 
indicate imbalances and predict disease progression. 
Additionally, Neerkuri analysis of urine colour, taste, and 
sediment offers insight into digestive, metabolic, and kidney 
function, aiding in prognosis [4-7]. Ayurveda also utilizes 
Naadi Pariksha, with pulse qualities playing a key diagnostic 
role. Mutra Pariksha, the examination of urine colour, 
consistency, and other characteristics, contributes significantly 
to health assessments. Furthermore, Jivha Pariksha (tongue 
examination), Mala Pariksha (stool assessment), and Shabda 
Pariksha (voice examination) contribute to a comprehensive 
diagnostic framework. These traditional practices emphasize a 
holistic approach, combining various methods to provide a 
nuanced understanding of individual health, focusing on both 
prevention and treatment [8-11]. 

Although Neikuri and Taila Bindu Pariksha have historical 
significance, this study focuses purely on the technical aspects 
of analyzing the images they produce. These diagnostic images 
display patterns that can be complex, with subtle variations in 
shape, color, and dispersion. The ambiguity of these visual 
patterns makes them ideal candidates for deep learning 
techniques that can detect intricate features not easily 
discernible by the human eye. This study focuses on using 
CNNs to classify these images, regardless of the traditional 
medical practices from which they originate. 

B. Image Acquisition from Siddha Institute 

To acquire a comprehensive dataset for the Neikuri process 
in Siddha medicine, permission was obtained from the 
Government College of Siddha in Arumbakkam, Chennai, 
India. The dataset includes images representing various health 
conditions and their respective prognoses. To enhance the 
dataset's diversity, each image underwent careful preprocessing 
to preserve distinctive characteristics while being converted to 
grayscale and optimized for size. Given the initial dataset's 
limitations, an augmentation technique was implemented by 
rotating the images in increments of 10° up to a full 360° 
rotation. Then, each rotated image was saved as a distinct 
entry, effectively expanding the dataset. Subsequently, a 
Python code randomly divided the augmented dataset into 
training and test sets, maintaining a 70:30 ratio. This 
meticulous process ensures that the machine learning models 
are trained on a diverse range of images, enhancing their ability 
to accurately classify and diagnose different health conditions 
in alignment with the Neikuri process within the Siddha 
System.  

C. Inference 

Using CNNs to analyze Neikuri and Taila Bindu Pariksha 
images helps improve diagnostic accuracy by detecting subtle 
patterns that are hard to spot manually. By creating a diverse 
dataset and applying deep learning, this method can better 
classify health conditions and offer a modern, reliable approach 
to traditional diagnostic practices. This research bridges 

traditional medicine with advanced technology, making 
diagnoses more consistent and effective. 

III. DEEP LEARNING ON THE NEIKURI IMAGES 

Leveraging pre-trained CNN models is a well-established 
approach for accelerating the development process. This study 
employed five pre-trained CNN architectures, each 
meticulously chosen after a thorough examination of their 
design and operational principles. To ensure consistency, a 
standardized evaluation process was applied to each pre-trained 
model. 

 

 
Fig. 1.  The process flow of this research. 

A. Selecting the Right Algorithm for the Neikuri images 

The inherent ambiguity of the Neikuri images, 
characterized by their lack of well-defined shapes, low contrast, 
and subtle color variations, poses significant challenges for 
traditional machine learning models [12-16]. These images 
often display indistinct oil droplet dispersions, where subtle 
variations in texture and tonal shifts are critical for diagnostic 
interpretation. To address this challenge and achieve optimal 
performance, a comparative analysis of five pre-trained CNN 
models, namely DenseNet, ResNet, VGG-19, Inception, and 
EfficientNet, was carried out, focusing on their architectural 
strengths and weaknesses for handling these unique medical 
images. CNNs excel in hierarchical feature extraction, making 
them well-suited for Neikuri images, where small but important 
pixel-level variations must be detected. Each CNN model 
offers distinct advantages tailored to processing these 
ambiguous images. 

1) DenseNet 

DenseNet introduces dense connections between layers, 
where each layer receives inputs from all preceding layers, 
allowing maximum feature reuse. This feature is particularly 
effective for Neikuri images, which require retaining subtle 
changes in image features across the network to determine the 
diagnostic outcome. DenseNet leverages L2 normalization and 
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batch normalization to maintain feature consistency, reducing 
the vanishing gradient problem by creating direct pathways 
between early and later layers. This study used the DenseNet-
121 variant due to its manageable computational load and 
superior feature extraction capabilities. Although DenseNet 
proved effective at capturing intricate details, it required longer 
training times due to the high number of interlayer connections, 
resulting in extended backpropagation cycles during 
optimization [17]. 

2) ResNet 

ResNet (Residual Networks) addresses the vanishing 
gradient problem through residual connections that allow 
gradients to bypass intermediate layers. This structure is 
particularly effective for Neikuri images, which lack clear 
boundaries, as it enables the model to capture detailed 
hierarchical representations of the oil patterns. This study 
employed ResNet-50, which uses bottleneck layers for 
dimensionality reduction before applying convolutions. This 
compression is advantageous in Neikuri analysis, where much 
of the spatial information can be redundant. The bottleneck 
layers help the model focus on the relevant diagnostic features. 
ResNet's use of 3×3 convolutions enables fine-grained feature 
extraction essential for the pixel-level variations seen in 
Neikuri images [18-22]. 

3) VGG-19 

The architecture of VGG-19 is characterized by its simple 
and homogeneous design, with multiple stacked 3×3 
convolutional filters and max-pooling layers. These create deep 
feature maps, enabling the model to capture fine details in 
images with complex textures, such as Neikuri oil droplets. 
However, the simplicity of VGG-19's design comes at the cost 
of a substantial memory footprint and longer inference times. 
The implementation of VGG-19, with approximately 144 
million parameters, required significant computational 
resources during training and inference. This makes it less 
suitable for low-resource environments, although it provides a 
strong baseline for performance. While VGG-19 excelled at 
extracting dense features, it struggled with overfitting due to 
the limited size of the dataset, despite the inclusion of dropout 
regularization [23-26]. 

4) Inception 

Inception, also known as GoogLeNet, utilizes a multiscale 
architecture, employing 1×1, 3×3, and 5×5 convolutions within 
the same layer to capture image features at various scales. This 
is particularly beneficial for Neikuri images, where oil droplet 
patterns may vary in size and distribution. This study used 
Inception v3, which employs factorized convolutions to reduce 
computational complexity. Additionally, the auxiliary classifier 
was activated to combat the complexity and ambiguity of the 
Neikuri images by improving gradient propagation through 
intermediate layers. However, mixed-precision training was 
necessary to balance computational resource usage and 
accuracy, given the model's high data demands. Despite these 
optimizations, Inception required extensive data for optimal 
performance, limiting its applicability to small datasets such as 
the one used in this study [27]. 

5) EfficientNet 

EfficientNet employs a compound scaling method that 
scales depth, width, and resolution in a balanced way to 
achieve superior performance with fewer parameters. This 
model is particularly effective for Neikuri images, where 
efficient feature extraction is critical due to the limited dataset 
size. This study used the EfficientNet-B0 variant, which 
provided an optimal trade-off between accuracy and 
computational demands. A key innovation in EfficientNet is 
the use of Squeeze-and-Excitation (SE) blocks, which reweight 
channel-wise feature maps adaptively to amplify relevant 
features during training. This feature is especially useful in 
Neikuri image analysis, where subtle intensity shifts and 
texture differences must be emphasized. EfficientNet also 
incorporates swish activation functions, which improve 
gradient flow during training, enabling more effective learning 
of nuanced features [28-30]. 

B. Technical Suitability for Neikuri Image Analysis 

The comparative analysis of these five architectures 
revealed that each model has unique technical strengths when 
applied to Neikuri images: 

 DenseNet is ideal for tasks that require retaining intricate 
details, due to its dense feature reuse. However, it suffers 
from long training times due to the connected layers. 

 ResNet provides deep, gradient-efficient learning, making it 
robust for subtle, complex feature extraction, particularly in 
deeper networks. 

 VGG-19 offers a strong performance baseline but has high 
computational demands and parameter count, making it less 
suitable for low-resource environments. 

 Inception excels at multiscale processing but requires 
extensive data and computational power, limiting its 
practical deployment for small datasets. 

 EfficientNet stands out for its resource-efficient 
architecture, delivering high accuracy on limited datasets 
with fewer computational resources, making it highly 
applicable for real-world Neikuri analysis settings. 

This study demonstrates that while performance metrics 
such as accuracy and loss are important, architectural nuances 
must also be considered when handling ambiguous medical 
images such as those found in Neikuri analysis. Each model's 
trade-offs need to be balanced depending on the deployment 
environment, dataset size, and hardware availability. 

IV. RESULTS 

The evaluation process revealed variations in performance 
across the different pre-trained CNN models employed during 
the training and testing phases. This highlights the importance 
of selecting the appropriate model architecture, suitable for the 
specific characteristics of the dataset. The ResNet architecture 
achieved a notable test accuracy of 88.57% on the 15-class 
classification task. Furthermore, most classes exhibited 
precision, recall, and F1-score values that exceeded 80%. 
These results demonstrate the model's strong capability for 
accurate classification within the Neikuri image dataset. 
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However, it is important to note that a small subset of classes 
yielded lower performance metrics. This observation suggests 
potential areas for improvement and highlights the need for 
further investigation. Future research efforts may focus on 
techniques to enhance the model's performance for these 
specific classes. Figure 4 shows the performance metrics of the 
ResNet model. 

 

 
Fig. 2.  Accuracy graph of the ResNet model. 

 
Fig. 3.  Loss graph of the ResNet model. 

 
Fig. 4.  Performance metrics of the ResNet model. 

The DenseNet architecture yielded a remarkable test 
accuracy of 93.33% on the Neikuri image dataset, 
outperforming the other models. Although the model achieved 
excellent performance in most classes, a challenge was 
observed with a select few. This suggests potential avenues for 
targeted improvement strategies. The detailed performance 
measures for all classes are presented in Figures 5, 6, and 7, 
respectively. These figures provide a visual representation of 
the model's effectiveness in classifying various Neikuri image 
categories. 

 

 
Fig. 5.  Accuracy graph of the DenseNet model. 

 
Fig. 6.  Loss graph of the DenseNet model. 

 
Fig. 7.  Performance metrics of the DenseNet model. 
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Fig. 8.  Accuracy graph of the Inception v3 model. 

 
Fig. 9.  Loss of the Inception v3 model. 

 
Fig. 10.  Performance metrics of the Inception v3 model. 

The Inception v3 model achieved an overall test accuracy 
of 90.5% on the Neikuri image dataset. Although achieving 
strong performance in most classes, the model encountered 
challenges in some classes. This observation suggests 
opportunities for targeted improvement strategies. Figures 8-10 
provide a visual representation of the Inception v3 model's 
performance. Figure 9 shows the data loss graph, visualizing 
the model's learning process and convergence behavior. Figure 
10 presents the performance scores for each class, including 
precision, recall, F1-score, and support. These metrics offer a 

detailed breakdown of the model's effectiveness in classifying 
various Neikuri image categories. 

The VGG-19 model achieved an overall test accuracy of 
89.5% on the Neikuri image dataset. Similar to other models, it 
excelled in most classes but encountered difficulties with a few, 
suggesting the potential for targeted improvements. Figures 11-
13 depict the performance of the VGG-19 model. Figure 13 
showcases the performance achieved for different classes. 
These visualizations aid in understanding the model's behavior 
and potential areas for optimization. 

 

 
Fig. 11.  Accuracy graph of the VGG-19 model. 

 
Fig. 12.  Loss graph of the VGG-19 model. 

 
Fig. 13.  Performance metrics of the VGG-19 model. 
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The EfficientNet model exhibited the lowest overall 
performance among the models evaluated, achieving only 
6.67% accuracy. This suggests significant limitations in its 
ability to accurately classify Neikuri images. High data loss and 
low precision, recall, and F1-score metrics across most classes 
highlight the need for comprehensive model adjustments. A 
detailed breakdown of EfficientNet's performance is presented 
in Figures 14-16. 

 

 
Fig. 14.  Accuracy graph of EfficientNet. 

 
Fig. 15.  Loss graph of the EfficientNet model. 

 
Fig. 16.  Performance metrics of the EfficientNet model. 

Table I presents the consolidated results of the five CNN 
models. This table summarizes the performance metrics, 
including accuracy, precision, recall, F1-score, and training 
time, for each model. DenseNet exhibited the highest accuracy, 
while EfficientNet struggled with both classification and 
accuracy. 

TABLE I.  PERFORMANCE COMPARISON OF ALL FIVE 
CNN MODELS 

Model Acc (%) Precision Recall F1-score 
Training 

time (s) 

ResNet 88.57  High (0.86) 
High 
(0.89) 

High 
(0.86) 

307.69 

DenseNet 93.33 
Excellent 

(0.90) 
Excellent 

(0.93) 
Excellent 

(0.91) 
362.59 

Inception v3 90.48 
High  
(0.89) 

Excellent 
(0.90) 

Excellent 
(0.90) 

358.82 

VGG-19 89.52 
High  
(0.89) 

Excellent 
(0.90) 

High 
 (0.89) 

477.44 

EfficientNet 6.67 
Very Low 

(0.0) 
Very Low 

(0.07) 
Very Low 

(0.01) 
211.53 

 

V. CONCLUSION 

This study explored the efficacy of deep learning models in 
classifying Neikuri images, a diagnostic tool used in Siddha 
medicine. The results demonstrated an encouraging potential 
for these models in analyzing such medical imagery. However, 
performance varied across different models, and DenseNet 
achieved the highest accuracy (93.33%). Although most 
models exhibited strong performance in most classes, they 
showed limitations in classifying specific categories. This 
observation highlights the need for further research to refine 
these models and address these class-specific weaknesses. In 
particular, EfficientNet exhibited significantly lower accuracy 
(6.67%), suggesting a requirement for a more tailored approach 
to this particular architecture. Overall, the findings support the 
continued exploration of deep learning for Neikuri image 
analysis in Siddha medicine. Future efforts should focus on 
optimizing models to address identified weaknesses and 
develop a reliable tool for accurate Neikuri image 
classification.  
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