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ABSTRACT 

Medical image analysis faces a significant challenge in the scarcity of annotated data, which is crucial for 

developing generalizable Deep Learning (DL) models that require extensive training data. Consequently, 

the field of medical image generation has garnered substantial interest and potential for further 

exploration. Besides widely employed data augmentation techniques, such as rotation, reflection, and 

scaling, Generative Adversarial Networks (GANs) have demonstrated the ability to effectively leverage 

additional information from datasets by generating synthetic samples from real images. In the context of 

retinal image synthesis, an image-to-image translation approach is frequently adopted to generate retinal 

images from available vessel maps, which can be scarce and resource-intensive to obtain. Deviating from 

prior work reliant on pre-existing vessel maps, this study proposes a learning-based model that is 

independent of vessel maps, utilizing Progressive Growing GAN (PGGAN) to generate vascular networks 

from random noise. The visual and quantitative evaluations conducted suggest that the majority of the 

images generated by the proposed model are substantially distinct from the training set while maintaining 

a high proportion of true image quality, underscoring the model's potential as a powerful tool for data 

augmentation. 

Keywords-retinal image synthesis; generative adversarial networks; image-to-image translation; medical 

image segmentation  

I. INTRODUCTION  

Retinal blood vessel image segmentation is extensively 
employed in medical and biological domains, underpinning 
applications, such as computer-assisted surgery, diabetic 
retinopathy diagnosis, foveal avascular region detection, vessel 
diameter measurement for hypertension assessment, fovea 
localization, and optic disk identification [1-4]. Typically, 
human experts provide annotations serving as the ground truth 
to validate the efficacy of retinal image analysis algorithms. 
However, manual segmentation of retinal images is a laborious 
and arduous task. Accordingly, computer scientists and 
physicians concur that automated segmentation is crucial for 
viable computer-assisted diagnostic systems [5]. Existing 
research demonstrates that vascular anatomy adheres to distinct 
patterns, leading to the development of early medical image 
segmentation techniques [5]. These include model-based 
methods, tracking-based strategies, matched filtering, and 
pattern recognition approaches. Subsequently, researchers have 
achieved improved outcomes through the utilization of 
advanced Machine Learning (ML) algorithms capable of 
automated feature extraction [6, 7]. 

In the past decade, Convolutional Neural Networks (CNNs) 
have gained widespread popularity within the field of computer 
vision and have been extensively adopted for the purpose of 
semantic segmentation tasks [8, 9]. Compared to traditional 
segmentation algorithms, CNNs have the capability to 
automatically extract features from a comprehensive training 
set, effectively capturing the high-level semantic information of 
the target image. This approach has demonstrated improved 
stability and generalizability across various applications. 
Consequently, the availability of accurately annotated data has 
become increasingly crucial, as conventional deep neural 
network training necessitates large and correctly annotated 
datasets. However, in the domain of medical image analysis, 
annotated images are often scarce and costly. As a result, the 
generation of synthetic images with a high degree of realism 
has garnered significant interest, and researchers are actively 
exploring this challenge [10]. 

The advent of GANs has enabled researchers to leverage 
representation learning-based techniques for medical image 
synthesis [11]. Specifically, researchers have extended 
adversarial networks to the domain of image-to-image 
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translation, which could be potentially utilized to generate 
retinal images from existing vessel maps [12-14]. However, a 
significant limitation of prior work is the reliance on available 
vessel networks, which may not be feasible for datasets lacking 
human-annotated vessel information. To address this challenge, 
a group of researchers proposed an adversarial autoencoder 
approach to generate vessel maps directly from random noise, 
enabling end-to-end synthesis of synthetic retinal images [15]. 
Nonetheless, their model exhibited a decline in performance 
when trained on a combination of real and synthetic data, 
suggesting that the generated images may be of suboptimal 
quality. 

To deal with the challenge of data scarcity in the medical 
domain, GANs can be used to derive additional information 
from the available training data by generating realistic outputs 
[16]. Unlike traditional data augmentation techniques, such as 
flipping, shifting, zooming, shearing, and scaling, GANs learn 
the underlying distribution from discrete training samples, and 
subsequently augment the training data with all potential 
variations after sufficient training. The adoption of GAN-based 
data augmentation has been found to enhance the model's 
generalizability and performance, and has been successfully 
employed in the generation of medical images, including CT 
and MRI scans [17-19]. Within the GAN framework, the 
generator (G) aims to fool the discriminator (D) by producing 
realistic images that are indistinguishable from the real ones, 
while the D is trained to identify the G-generated images as 
accurately as possible. This training process essentially 
represents a min-max game between the G and the D. 

min ��� ��	, �� = ��~������������	���� +
 ��~������log !1 − 	$��%�&'�   (1) 

However, the outputs of standard GANs often suffer from 
limited realism and mode collapse, with the model's training 
process being inherently unstable. Over time, researchers have 
proposed various GAN variants to enhance the synthetic image 
representations and stabilize the training process. Deep 
Convolutional GANs (DCGANs), demonstrate improved 
training stability by replacing fully connected layers with fully 
convolutional layers [20]. A cascading strategy was employed 
to integrate the GAN architecture, enabling the generation of 
images in a coarse-to-fine manner [21]. Similarly, a training 
method that progressively grows the G and D by symmetrically 
adding new layers to the model, with each layer contributing 
finer details to the generated images, was deployed [22]. 

In addition to generating images, researchers utilize 
adversarial networks to address the image-to-image translation 
challenge, aiming to transform images from one domain to 
another. A conditional GAN was developed that exerts 
increased control over the generated data by incorporating 
additional information into the G and D [16]. Although 
standard GANs for image generation learn the mapping from 
the random noise z to the output image y, conditional GANs 
learn the mapping from the input image x and the random noise 
z to the target image y'. The generalizability of conditional 
GANs was evaluated across various tasks and their 
applicability to numerous image-to-image translation problems, 
such as super-resolution, style transfer, image inpainting, and 

future state prediction, was demonstrated [23-27]. In the past 
five years, researchers have proposed numerous improvements 
to conditional GANs to enhance the accuracy and flexibility of 
the translation process. Specifically, CycleGAN enables 
mapping between different image domains without relying on 
paired training data, StarGAN applies the same model to 
translate images across multiple domains, and Pix2PixHD 
builds upon Pix2Pix to generate high-resolution images with 
realistic textures [17, 23, 28, 29]. 

In retinal image synthesis, conditional GANs have proven 
to be a useful technique for generating retinal images from 
existing vessel maps. A model was trained on pairs of vessel 
maps and the corresponding retinal images, enabling the model 
to learn the mapping between the two data modalities [12]. 
Building upon this, style transfer was incorporated into the 
GAN architecture, allowing the model to learn from a relatively 
small training set and increasing the variability of the generated 
outputs [13]. Furthermore, these models were improved upon 
by employing an adversarial auto-encoder to generate vessel 
maps from random noise, thus removing the dependency on 
pre-existing vessel maps [12, 15]. However, the performance of 
their model decreased when the training set included a mix of 
synthetic and real data, indicating the low quality of the 
generated images. 

Semantic segmentation is a pixel-wise prediction task 
where each pixel is classified into a corresponding category. 
With the advancement of DL techniques, automated image 
segmentation has experienced substantial progress in recent 
years. Introducing a Fully Convolutional Network (FCN) 
architecture that removes the fully connected layers from 
traditional CNNs, enables predictions on images of arbitrary 
size [30]. Furthermore, a skip architecture was employed to 
combine low-level visual information with high-level semantic 
knowledge. Inspired by the FCN, the UNet architecture was 
developed, which has become the standard method for medical 
imaging segmentation [31]. To mitigate the vanishing gradient 
problem, the U-Net integrates feature maps across different 
image scales to facilitate signal propagation. Over the past two 
years, researchers have proposed numerous variations on the 
classic UNet, including Residual U-Net, Attention U-Net, 
R2U-Net, and IterNet, all of which improve model 
segmentation performance through techniques, such as residual 
learning, attention mechanisms, and recurrent network 
structures [32-35]. More recently, the concept of deformable 
convolution was incorporated into the U-Net architecture [36]. 
In Deformable U-Net, the sampling locations are adaptively 
trained to the scale and shape of vessels, enabling more precise 
segmentation. 

In this work, the following contributions to fundus image 
vasculature segmentation are made:  

 This study proposes employing a combination of two 
GANs to generate retinal fundus images without reliance on 
pre-existing vessel maps. Furthermore, it demonstrates that 
the utilization of synthetic data can enhance the 
performance of neural networks in retinal image 
segmentation tasks. 
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 Once trained, the model can generate vessel maps and the 
corresponding retinal images with 512×512 resolution.  

 The proposed vessel-map agnostic fundus images retain a 
high proportion of the true images’ quality, and the model 
is a powerful tool for data augmentation.  

II. G ENERATING VESSEL MAPS AND RETINAL 

IMAGES  

A. Overview  

Retinal fundus images independent of pre-existing vascular 
networks were developed while maintaining relatively high 
resolution. This was achieved by introducing a model 
comprising two GANs: PGGAN for generating vessel maps 
from random noise inputs, and a Pix2PixHD for translating the 
generated vessel maps into retinal fundus images [22, 29]. 
PGGAN is renowned for its ability to generate high-resolution 
images, exhibiting high training stability and robustness to 
hyperparameter selection. In contrast, the conditional GAN 
requires additional information to guide the data generation 
process and has been utilized for translating from vessel maps 
to fundus images [16]. The proposed approach involves the 
application of the Pix2PixHD model, which employs a coarse-
to-fine generator and a multi-scale discriminator architecture, 
making it well-suited for generating high-resolution images 
with finer details. The overview of the specific approach is 
depicted in Figure 1. A trained PGGAN can generate synthetic 
vessel maps by sampling from a latent space. In Pix2PixHD, 
the generator maps the input label to the corresponding retinal 
image and the discriminator learns to distinguish between 
synthetic and real pairs. Once trained, the model will infinitely 
generate new retinal images with the corresponding vessel 
maps. 

 

 

Fig. 1.  Overview of the approach of the current study. 

B. Generation of Vessel Maps  

This stage seeks to generate vessel images from the latent 
space. PGGAN is trained in a gradual approach to provide 
enhanced training stability and variability [22]. The current 
research, initially trains PGGAN to produce realistic images at 
a 4×4 scale. It then iteratively adds pairs of convolutional 
layers and up-sampling/down-sampling layers to the generator 
and discriminator. The model can generate images at 
resolutions of 2n×2n, with the maximum resolution being 
512×512. An overview of the PGGAN approach is depicted in 
Figure 2. First, the generator and discriminator start with a low 
resolution of 4×4 and grow synchronously with the training 
progresses. With more and more layers being added to the 
generator and discriminator, the model is able to generate 
images with higher resolution and better details. 

 

 
Fig. 2.  The training process of PGGAN. 

 
Fig. 3.  Example of vessel maps generated by PGGAN. The resolution is 

set to 512×512, the nearest power-of-two resolution of DRIVE dataset.  

Initially, the model learns the global distribution of the 
vascular structure. As training progresses, the generator and 
discriminator develop synchronously, incorporating finer 
details into the generated images. A specific scheme is 
followed to avoid abrupt transitions when new layers are added 
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to the G and D [22]. Additionally, minibatch standard deviation 
is employed to enhance variation, and the model is trained with 
a batch size of four. The Wasserstein loss function is utilized 
during training [37]. Once the training is complete, the model 
can generate a virtually unlimited number of vessel maps 
exhibiting diverse vascular structures, and some of these 
generated samples are presented in Figure 3. 

C.  Translation from Vessel Maps to Retinal Images  

After generating vessel maps, they are converted into 
corresponding retinal images exhibiting realistic colors and 
structures. This objective is achieved by leveraging 
Pix2PixHD, an enhanced version of Pix2Pix [23, 29]. Within 
the supervised image-to-image translation framework, the 
model is trained in pairs of samples to learn the mapping from 
the source domain to the target domain. In this study, vessel 
maps are fed into both the G and the D. The D is tasked with 
distinguishing between a genuine retinal image and a synthetic 
one generated from the input vessel map.  

The present study employs the established Pix2PixHD 
architecture: The G is partitioned into two sub-networks that 
operate at different resolutions, and multi-scale discriminators 
with varying receptive fields are utilized to consolidate global 
and local information [29]. Additionally, feature-matching loss 
is incorporated into the objective function to stabilize the 
training process and enhance the model's performance. The 
output resolution is set to 512×512 to ensure that the generated 
images match the input resolution. Following the training 
phase, the model can transform the vessel maps produced in the 
preceding step into realistic retinal images, featuring enhanced 
details and photorealism. 

III. EXPERIMENTS 

A. Implementation  

The experiments are conducted on an NVIDIA GeForce 
RTX 2080 GPU and the implementations are mainly based on 
the Keras library using a Tensorflow backend.  

B. The Data  

The DRIVE dataset contains twenty 586×565 training 
samples and twenty 586×565 testing samples, along with 
annotations from human experts as ground truth [38]. The 
initial UNet is trained on the DRIVE dataset, which is later 
applied to obtain vessel segmentation from the Messidor-1 
dataset [39].  

The Messidor-1 dataset consists of 1200 retinal images with 
varying degrees of diabetic retinopathy, enabling the evaluation 
of the model's cross-domain robustness. The U-Net trained on 
the DRIVE dataset is applied to the Messidor-1 dataset to 
generate vessel maps from the existing retinal images. 
However, the DRIVE dataset contains only seven retinal 
images with mild diabetic retinopathy. To ensure a fair 
comparison, images with level three retinopathy from the 
Messidor-1 dataset are excluded, resulting in a sample size of 
952. Furthermore, the remaining vessel maps and annotations 
from the DRIVE training set are utilized to train the GANs. 

All the images are resized using the nearest to 512×512 
neighbor interpolation before training, and the model’s outputs 
are also constrained to 512×512 resolution.  

C.  Segmenting Synthetic Images  

The quantitative assessment of the generated images poses 
a significant challenge. Generative models should be evaluated 
based on their intended application, while it is not advisable to 
extrapolate from one evaluation criterion to another [40]. In 
this study, the model functions as a tool for data augmentation, 
hence the evaluation should focus on the performance of 
subsequent segmentation networks. Accordingly, a U-Net is 
trained on three distinct training sets: 

 A real dataset containing 20 images from the DRIVE’s 
training set. 

 A synthetic dataset containing 20 images generated from 
the proposed GANs.  

 A combined dataset containing all the images in the 
previous two datasets. 

 The current study subsequently assesses the segmentation 
network's performance on the DRIVE test dataset. 

D. Different Backbones  

In addition to the standard U-Net structure, to test model 
generalizability, the evaluation of the performance of different 
U-Net backbones was completed:  

 Residual U-Net is built on the U-Net architecture with two 
main differences: Plain neural units are replaced with 
residual units, and unnecessary cropping operations are 
removed from the network [32].  

 Attention U-Net introduces the attention gate mechanism 
from natural language processing, which emphasizes salient 
information and suppresses irrelevant information [33].  

 In the Bi-directional ConvLSTM U-Net with Densely 
connected convolutions (BCDU-Net), the authors combine 
the advantages of bi-directional ConvLSTM with those of 
U-Net [41]. The densely connected convolutions in the 
encoding path facilitate feature propagation and reuse.  

The present study provides real training sets from the 
DRIVE dataset and synthetic training sets from the prior stages 
for the segmentation models. The quality of the synthetic 
images is assessed through the model's precision and Area 
Under Curve for the Receiver Operating Characteristic 
(ROCAUC) metrics.  

IV. RESULTS 

In this study, the generated images are assessed both 
qualitatively and quantitatively. For qualitative visual 
assessments, some of the model outputs are portrayed in Figure 
4. The first row of Figure 4 presents original retinal images 
from the Messidor-1 dataset. The second and third rows show 
the obtained segmentation map through U-Net and the 
synthetic retinal images, respectively. The generated retinal 
images can maintain the vascular structure based on a given 
vessel map. However, failure cases in the last two columns 
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indicate that the translation process may not work as expected 
due to the limitations of the segmentation network. A retinal 
image could be poorly segmented due to the missing details of 
vessel maps or advanced diabetic retinopathy. In such cases, 
the model cannot produce a realistic synthetic image since the 
input vessel map contains insufficient or misleading 
information. To evaluate the model's ability to generalize, 
Pix2PixHD was employed to produce multiple retinal images 
from a single vessel map, and the outcomes are displayed in 
Figure 5. The generated images exhibit diverse coloration, 
illumination, and textural characteristics, indicating that the 
model does not merely memorize the training data but can 
create images with specific variations based on high-level 
features. 

 

 
Fig. 4.  Example of vessel maps generated by PGGAN. The resolution is 

set to 512×512, the nearest power-of-two resolution of DRIVE dataset. 

Comparison between true retinal images and synthetic retinal images based on 

the same vessel map. Rows from top to bottom are: a) True retinal images 

from Messidor-1, b) Obtained vessel maps after a segmentation network is 

applied to row A, c) Retinal images generated by the model.  

 

Fig. 5.  Rows A and  B are two examples demonstrating how Pix2PixHD 

generate retinal images from different vessel maps. Vessel maps and the 

corresponding retinal images in DRIVE’s test set are shown in the first and the 

second columns respectively. The rest of the columns illustrate images 

generated by Pix2PixHD from the corresponding vessel maps.  

The evaluation metric encompasses both accuracy and the 
ROCAUC analysis. Given that the performance of semantic 
segmentation is impacted by data augmentation, the findings 
for scenarios involving and excluding data augmentation are 
presented in Table I and Table II, respectively. 

TABLE I.  PERFORMANCE OF U-NET TRAINED ON 
DIFFERENT TRAINING SET WITHOUT DATA 

AUGMENTATION  

Approach Accuracy  ROC/AUC 

Real Data (20)  0.9650  0.9705  

Synthetic Data (20)  0.9370  0.8787  

Real+Synthetic (20+20)  0.9652  0.9714  
 

The findings in Tables I and II suggest that integrating 
conventional data augmentation techniques with the proposed 
GAN-based approach can further enhance the performance of 
the segmentation network. To assess the effectiveness of the 
proposed method, the segmentation capabilities of additional 
network architectures are evaluated, including the Residual U-

Net, Attention U-Net, and BCDU-Net, as presented in Table III 
and Figure 6 [32, 33, 41]. These experiments were conducted 
using the same data augmentation strategies as in Table I. 

TABLE II.  PERFORMANCE OF U-NET TRAINED ON 
DIFFERENT TRAINING SET WITH DATA AUGMENTATION  

Approach Accuracy  ROC/AUC 

Real Data (20)  0.9651  0.9670  

Synthetic Data (20)  0.9353  0.9086  

Real+Synthetic (20+20)  0.9652  0.9747  
 

Figure 6 depicts Receiver Operating Characteristic (ROC) 
curves for models trained using synthetic images. These curves 
are significantly higher than the random guess baseline, 
suggesting that the generated samples maintain a substantial 
proportion of the true image quality. Notably, the two ROC 
curves for the BCDU-Net model are closely aligned, indicating 
that the model can achieve a comparable level of performance 
using solely synthetic data. However, across different 
experimental settings, a gap in performance was observed 
between models trained on synthetic images and those trained 
on real data. This discrepancy may be attributed to visual 
artifacts introduced by GANs, such as local inconsistencies and 
vessel interruptions. 

 

 
Fig. 6.  ROC curves for models trained with 20 real images (blue) or 20 

synthetic images (red). True Positive means that a vessel pixel is correctly 

classified as a vessel, and False Positive represents a background pixel being 

misclassified as a vessel.  

The findings in Table III substantiate that combining 
synthetic and real-world data during training yields a consistent 
boost in performance, indicating the generative model's ability 
to produce high-quality images with subtle variations, rather 
than merely memorizing the training set. By augmenting the 
dataset with the proposed technique, improvements in 
segmentation across multiple algorithms are observed. 

Despite the positive outcomes obtained from the proposed 
model, certain limitations can be identified, including: 

1. The generated images sometimes suffer from artefacts like 

local inconsistencies and vessel interruptions, which can 
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negatively impact the quality of the synthetic images, and 

thus reduce their usefulness in segmentation tasks. 

2. Although the model attempts to generate synthetic images 

independent of pre-existing vessel maps, the quality of the 

generated images still heavily depends on the input vessel 

maps. Poorly segmented or inaccurate vessel maps, 

particularly in cases of severe pathologies, such as high-

level diabetic retinopathy, can lead to unrealistic synthetic 

retinal images. 

3. The approach involves training two separate GANs, 

PGGAN and Pix2PixHD, which adds computational 

overhead. 

TABLE III.  PERFORMANCE OF RESIDUAL U-NET, 
ATTENTION U-NET AND BCDU-NET TRAINED ON 

DIFFERENT TRAINING SET 

Residual U-Net Accuracy ROC/AUC 

Real Data (20)  0.9661 0.9739 

Synthetic Data (20)  0.9499 0.9336 

Real+Synthetic (20+20)  0.9670 0.9795 

Attention U-Net Accuracy ROC/AUC 

Real Data (20)  0.9653 0.9706 

Synthetic Data (20)  0.9432 0.9137 

Real+Synthetic (20+20)  0.9654 0.9774 

BCDU-Net Accuracy ROC/AUC 

Real Data (20)  0.9652 0.9727 

Synthetic Data (20)  0.9418 0.9414 

Real+Synthetic (20+20)  0.9671 0.9767 

 

V. CONCLUSIONS AND FUTURE WORK  

This study proposes a data-driven approach to synthesize 
retinal images and their corresponding vessel maps. The model 
consists of two Generative Adversarial Networks (GANs): a 
Progressive Growing GA (PGGAN) for vessel map generation, 
and a Pix2PixHD for image-to-image translation. Once trained, 
the model can generate realistic retinal images without the need 
for pre-existing vessel maps. Researchers can simply sample 
from a predefined Gaussian distribution as the input to the 
model. This is significant because, in many real-world medical 
scenarios, obtaining annotated data is both time-consuming and 
expensive. The ability of the model to generate synthetic retinal 
images without the need for these annotations makes it a 
practical and valuable tool, particularly in settings where 
annotated medical images are scarce. The previous 
experimental results demonstrate that the model could also 
serve as a powerful tool for data augmentation in medical 
image segmentation tasks. By generating additional training 
data encompassing all potential variances, the model provides a 
more extensive training set for the segmentation network, 
which can ultimately improve the network's performance and 
generalizability for unseen cases. 

The natural progression of the current research is to 
investigate more sophisticated segmentation models and 
address the segmentation limitations observed in the prior 
experiments. This study is presently examining whether 
employing alternative GAN architectures would impact model 
performance. The former’s aim is to apply the proposed 
technique to additional datasets and domains in the future.  

Within the context of retinal image augmentation using 
composed GANs, there are several promising directions for 
future research that could significantly enhance and build upon 
the existing work. These include: 

 Improving GAN Architectures with more advanced GAN 
variants, such as StyleGAN or attention GANs [42]. 

 Exploring other medical imaging modalities, such as MRI, 
CT, or ultrasound [43]. 

 Combining the GANs with more sophisticated 
augmentation strategies [44]. 

 Exploring different learning techniques, such as semi-
supervised or unsupervised learning approaches [45]. 

 Improving the Generalization of Synthetic Data [46]. 

Adopting these future research avenues could enhance the 
clinical utility of the work, leading to improved quality of 
synthetically generated medical images, and bolstering 
downstream applications, like disease identification, diagnosis, 
and treatment planning. 
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