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ABSTRACT 

Identifying potent inhibitors against the Hepatitis C Virus (HCV) is crucial due to the continuous 

emergence of drug-resistant strains. Traditional drug discovery methods, including high-throughput 

screening, are often resource-intensive and time-consuming. Machine Learning (ML) approaches, 

particularly Quantitative Structure-Activity Relationship modeling, have been increasingly adopted to 

address this. This study utilized LightGBM, an efficient gradient-boosting framework, to predict the 

activity of potential HCV inhibitors. Additionally, the Tree-structured Parzen Estimator (TPE) was 

employed for hyperparameter optimization to enhance model performance. The optimized LightGBM-

TPE model outperformed other ML models, including standard LightGBM, XGBoost, Random Forest, K-

Nearest Neighbors, and Support Vector Machines, achieving an accuracy of 86.27%, a precision of 

85.47%, a recall of 87.50%, a specificity of 85.03%, and an F1-score of 86.47%. Feature importance 

analysis identified critical molecular descriptors contributing to the model's predictive power. The results 

underscore the potential of advanced ML techniques and robust optimization methods to accelerate drug 

discovery, particularly for challenging targets such as HCV. 

Keywords-classification; drug discovery; machine learning; QSAR modeling; supervised learning 
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I. INTRODUCTION  

Hepatitis C Virus (HCV) is a major global health threat, 
affecting approximately 58 million people worldwide, with 
nearly 1.5 million new infections annually [1, 2]. Unlike other 
types of Hepatitis (such as Hepatitis A or B), Hepatitis C is 
unique in its ability to lead to chronic infection in most infected 
individuals, significantly increasing the risk of severe liver 
diseases, including cirrhosis and hepatocellular carcinoma [3]. 
Chronic HCV infections account for a substantial proportion of 
liver transplants and liver-related mortality globally [4]. 
Although other forms of hepatitis may have vaccines or a less 
frequent progression to chronic disease, the global burden of 
HCV, combined with the lack of a vaccine, makes it an urgent 
target for drug discovery efforts [5]. Despite the development 
of Direct-Acting Antivirals (DAAs), drug-resistant HCV 
strains continue to emerge, compromising treatment 
effectiveness [6]. This ongoing challenge requires the 
discovery and development of new inhibitors to maintain 
effective treatment options for patients. 

Traditional High-Throughput Screening (HTS) has been a 
valuable method in drug discovery, but it is often resource-
intensive, time-consuming, and costly [7]. Given the vast 
chemical space that needs to be explored to identify potential 
drug candidates, HTS presents significant limitations in 
efficiency. Consequently, researchers are increasingly seeking 
more efficient alternatives, with Machine Learning (ML) 
emerging as a promising solution to accelerate and enhance the 
drug discovery process [8, 9]. 

Quantitative Structure-Activity Relationship (QSAR) 
modeling is a widely used approach in drug discovery that has 
advanced significantly with the integration of ML. QSAR aims 
to establish correlations between chemical structures and their 
biological activities, and although traditional methods rely on 
statistical techniques, modern QSAR increasingly incorporates 
ML algorithms to enhance predictive power [10, 11]. The 
availability of large-scale biological and chemical datasets, 
along with advances in computational power, has propelled the 
adoption of ML in drug discovery. Early QSAR models were 
linear, but modern approaches now incorporate sophisticated, 
nonlinear ML techniques, greatly improving predictive 
capabilities. ML algorithms such as Random Forests (RF) [12], 
Support Vector Machines (SVM) [13], and deep neural 
networks [14] have proven effective, while recent works, such 
as [15, 16], using gradient-boosting algorithms have further 
improved accuracy and robustness. These innovations have 
enhanced the prediction of compound efficacy and accelerated 
the identification of promising drug candidates, highlighting 
the growing impact of ML-driven QSAR models. 

The application of ML in QSAR modeling offers several 
advantages over conventional approaches. First, prioritizing 
compounds for experimental testing can significantly reduce 
the time and cost associated with early-stage drug discovery 
[17]. Second, ML-based QSAR models can handle complex, 
non-linear relationships between molecular structures and 
biological activities, potentially uncovering novel structure-
activity patterns that traditional analytical methods might miss 
[18]. Finally, since these models are continuously refined with 

new data, their predictive power tends to improve over time, 
making them increasingly valuable tools in the drug discovery 
pipeline [19]. 

LightGBM, a gradient-boosting framework, has gained 
significant popularity due to its efficiency, scalability, and 
accuracy [20-22], particularly in domains such as drug 
discovery [23, 24], where its ability to handle large datasets and 
capture complex patterns in chemical-biological activity 
relationships has been demonstrated by studies such as [25, 
26]. Compared to deep neural networks and other gradient-
boosting frameworks, such as XGBoost [27] and CatBoost, 
which often require substantial computational resources for 
optimal performance, LightGBM provides a faster and more 
efficient approach [28], making it suitable for drug discovery 
tasks where rapid iteration is critical. 

Despite its advantages, the performance of LightGBM 
models is highly dependent on the selection of optimal 
hyperparameters [29]. Traditional tuning methods, such as 
random and grid search, often struggle with computational 
efficiency and fail to explore the hyperparameter space 
effectively [30, 31], posing challenges in achieving optimal 
results. To address this, the Tree-structured Parzen Estimator 
(TPE), a sequential model-based optimization technique, has 
emerged as a robust alternative for hyperparameter 
optimization [32]. Introduced as an efficient method for 
modeling complex high-dimensional hyperparameter spaces 
[33], TPE has been shown to significantly improve the 
predictive accuracy and robustness of LightGBM models [34-
35], making it especially valuable for identifying potent HCV 
inhibitors. Compared to other methods, such as Gaussian 
processes, TPE is better suited for complex, high-dimensional 
spaces due to its approach of separately modeling the 
distributions of good and poor configurations. 

This study aims to develop a reliable and efficient QSAR 
model using LightGBM to predict the activity of potential 
HCV inhibitors based on their chemical structures. The key 
innovation is the use of LightGBM combined with the TPE for 
hyperparameter tuning, which improves the model's predictive 
accuracy and efficiency compared to traditional methods such 
as grid or random search. Using LightGBM's speed and 
accuracy, this study aims to enhance QSAR modeling in drug 
discovery. Additionally, the study focuses on optimizing the 
model's hyperparameters with the TPE method, which 
efficiently explores the hyperparameter space to further boost 
LightGBM's performance. This approach is expected to speed 
up the identification of effective HCV inhibitors and streamline 
the drug discovery process. 

II. METHODS 

A. Data Collection and Preprocessing 

This study employed a dataset from [36], which focuses on 
bioactive compounds targeting the HCV NS5B protein, a 
critical enzyme in the RNA genome replication of the HCV. 
The dataset comprises 1,671 chemical compounds and includes 
the pIC50 values as the target variable. The pIC50 is the negative 
logarithm of the half-maximal inhibitory concentration, 
representing the potency of a compound in inhibiting a specific 
biological or biochemical function [37, 38]. 
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As features for the proposed model, the molecular 
descriptors were calculated using AlvaDesc [39] within the 
Online Chemical Modelling Environment (OCHEM) [40], 
generating a total of 5,668 descriptors for each compound. To 
ensure the robustness of the model, multicollinearity was 
addressed by removing descriptors with a Pearson correlation 
coefficient greater than 0.95. This process resulted in a refined 
set of 2,468 descriptors. Subsequently, the data were 
normalized using a standard scaler [41]. Finally, the dataset 
was split into training and test sets, with 80% of the data 
allocated to training and the remaining 20% for testing [42]. 
Table I shows the distribution of active and inactive 
compounds in each subset [43]. The training set consists of 
1336 compounds, with 671 active and 665 inactive compounds, 
while the testing set includes 335 compounds, of which 168 are 
active and 167 are inactive. This relatively balanced 
distribution ensures that the model is adequately trained and 
evaluated on both active and inactive compounds. 

TABLE I.  DISTRIBUTION OF ACTIVE AND INACTIVE 
COMPOUNDS IN TRAINING AND TESTING SETS 

Subset Active Inactive Total 

Training Set 671 665 1336 

Testing Set 168 167 335 

Total 1671 

 

B. QSAR Modeling with LightGBM and Tree-structured 
Parzen Estimator (TSE) 

To model the relationship between molecular descriptors 
and pIC50 values, LightGBM was used, which is a gradient-
boosting framework that has proven to be highly effective for a 
variety of ML tasks [22]. LightGBM is particularly well-suited 
to handle large-scale data and offers excellent performance and 
speed due to its histogram-based learning algorithm [44]. The 
LightGBM algorithm is designed to minimize a specified loss 
function by constructing an ensemble of decision trees, where 
each tree corrects the errors of the preceding ones [45]. The 
fundamental concept behind the LightGBM boosting 
mechanism is shown in: 

�� = ∑ �����	


��� ,    �� ∈ ℱ   (1) 

where ��  is the predicted output for the ���  sample, �  is the 
number of boosting rounds, �� represents each tree in the 
ensemble, �� is the input feature vector, and ℱ is the space of 
decision trees. 

The TPE approach was employed for hyperparameter 
optimization to ensure that the LightGBM model is optimally 
tuned for the data. The TPE optimization process involves 
finding the set of hyperparameters that minimize the model 
prediction error on a validation set [46]. The TPE algorithm 
evaluates hyperparameters by modeling the probability of a 
good hyperparameter configuration. Compared to traditional 
hyperparameter tuning methods such as grid search and 
random search, TPE offers several advantages. Grid search 
exhaustively searches through all hyperparameter 
combinations, which can be computationally expensive and 
inefficient, especially for large parameter spaces. Random 
search, while faster, selects hyperparameter combinations 

randomly, potentially missing better configurations. In contrast, 
TPE focuses on exploring promising regions of the 
hyperparameter space by modeling the probability of 
improvement, making it more efficient. This results in faster 
convergence to optimal configurations and improved 
performance. 

Table II shows the hyperparameters and their ranges used in 
the optimization process. The optimization of these 
hyperparameters using TPE ensures that the LightGBM model 
is fine-tuned to achieve the best possible predictive 
performance on the QSAR task, thus enhancing the accuracy 
and reliability of the pIC50 value predictions. This approach not 
only improves accuracy but also aids in the generalization of 
the model to new, unseen data, which is a critical aspect of 
successful QSAR modeling. 

TABLE II.  HYPERPARAMETERS FOR LIGHTGBM 
OPTIMIZATION WITH TPE 

Hyperparameter Range 

num_leaves 20 to 150 

max_depth 3 to 15 

learning_rate 1×10−4 to 1×10−1 (log) 

n_estimators 50 to 1000 

min_child_samples 5 to 100 

subsample 0.5 to 1.0 

colsample_bytree 0.5 to 1.0 

reg_alpha 1×10−8 to 10.0 (log) 

reg_lambda 1×10−8 to 10.0 (log) 

 

C. Model Evaluation 

The evaluation of QSAR models in predicting the activity 
of potential HCV inhibitors involves multiple performance 
metrics, namely accuracy, precision, recall, specificity, and F1-
score [47-49]. These metrics are integral to understanding the 
models' predictive capabilities from different perspectives, 
allowing for a nuanced comparison of their effectiveness. The 
choice of these metrics ensures that the evaluation 
comprehensively covers the correctness of predictions and the 
model's ability to generalize across unseen data. The equations 
for these metrics are shown below. 

��������  =  
�� � ��

�� � �� � �� � ��
    (2) 

 �!��"�#$ =
��

�����
    (3) 

%!��&& =
��

�����
    (4) 

'(!������)� =
��

�����
    (5) 

*1 − '�#�! = 2 ×
Precision×Recall

Precision�Recall
   (6) 

where TP refers to the number of correctly predicted positive 
cases, TN is the number of correctly predicted negative cases, 
FP represents the number of negative cases incorrectly 
predicted as positive, and FN indicates the number of positive 
cases incorrectly predicted as negative. 

To provide a comprehensive evaluation, the performance of 
LightGBM-TPE was compared to several other ML algorithms 
using their default hyperparameters: standard LightGBM, 
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XGBoost, RF, K-Nearest Neighbors (KNN), and SVM. Each 
of these algorithms brings unique strengths to the task of 
QSAR modeling. Specifically, the comparison to LightGBM 
without TPE allows us to assess the impact of TPE on 
LightGBM's performance and determine how much of the 
observed performance gain is attributable to TPE. 

III. RESULTS AND DISCUSSION 

The hyperparameter optimization process using TPE 
resulted in a notable enhancement in the performance of the 
LightGBM model in predicting HCV inhibitor efficacy. Figure 
1 shows the objective value (model accuracy) for 100 trials. 
The blue dots represent the objective value for each trial, while 
the red line indicates the best value achieved up to that point. 
The optimization stabilizes after approximately 11 trials, with 
the best objective value exceeding 0.86. This indicates that 
TPE identified an optimal hyperparameter configuration early 
in the process, leading to a robust and accurate QSAR model. 

 

 
Fig. 1.  Objective value optimization across 100 trials using LightGBM-

TPE. 

TABLE III.  BEST HYPERPARAMETERS FOR LIGHTGBM-TPE 

Hyperparameter Value 

num_leaves 146 

max_depth 15 

learning_rate 0.02 

n_estimators 714 

min_child_samples 64 

subsample 0.62 

colsample_bytree 0.52 

reg_alpha 0.00 

reg_lambda 0.004 

 
Table III outlines the optimal hyperparameters determined 

for the LightGBM model using the TPE optimization approach 
in trial 11. These hyperparameters include a maximum depth of 
15 and 146 leaves, which control the complexity of the trees, as 
well as a learning rate of 0.02, which regulates the step size 
during model training. Additionally, 714 estimators were used 
to control the number of boosting iterations, while the 
subsample and colsample_bytree parameters, set at 0.62 and 
0.52 respectively, help prevent overfitting by introducing 
randomness in row and feature sampling. The regularization 
terms, reg_alpha and reg_lambda, were tuned to very low 
values, ensuring minimal penalization, which likely indicates 
that overfitting was not a significant concern.  

Figure 2 illustrates the importance of various 
hyperparameters in optimizing the objective value for the 

LightGBM-TPE model. The learning rate emerges as the most 
critical factor, contributing 47% to the model's performance. 
Colsample_bytree and n_estimators follow with contributions 
of 22% and 14%, respectively. Other hyperparameters, such as 
min_child_samples and subsample, account for 7% each, while 
num_leaves has a minimal contribution of 1%. 
Hyperparameters like max_depth, reg_lambda, and reg_alpha 
contribute less than 1%, indicating their negligible impact on 
the model's performance. This analysis highlights the 
significant influence of the learning rate on the model's 
accuracy, making it a key focus in the hyperparameter tuning 
process. The prominence of colsample_bytree and n_estimators 
further underscores the importance of optimizing tree structure 
and ensemble size to achieve the best model performance. 

 

 
Fig. 2.  Importance of hyperparameters for the objective value in the 

LightGBM-TPE model. 

Table IV compares different ML models used to predict the 
efficacy of HCV inhibitors, focusing on key performance 
metrics. LightGBM-TPE demonstrates superior performance 
across all of these metrics. Specifically, the LightGBM-TPE 
model achieves an accuracy of 86.27%, precision of 85.47%, 
recall of 87.50%, specificity of 85.03%, and an F1-score of 
86.47%. Other models such as standard LightGBM, XGBoost, 
RF, KNN, and SVM were also evaluated for comparison. 
XGBoost, a widely used gradient boosting algorithm, performs 
well with an accuracy of 82.09% and a balanced precision and 
recall, leading to an F1-score of 82.04%. However, it falls short 
of the LightGBM-TPE model, particularly in recall, indicating 
that it may miss more true positives in the prediction process. 

TABLE IV.  PERFORMANCE METRICS OF DIFFERENT 
MODELS IN PREDICTING HCV INHIBITOR EFFICACY. 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Specificity 

(%) 

F1-score 

(%) 

LightGBM-TPE 86.27 85.47 87.50 85.03 86.47 

LightGBM 84.48 84.94 83.93 85.03 84.43 

XGBoost 82.09 82.53 81.55 82.63 82.04 

RF 83.28 81.46 86.31 80.24 83.82 

KNN 82.99 81.01 86.31 79.64 83.57 

SVM 81.79 80.23 84.52 79.04 82.32 

 
RF performed slightly better than XGBoost in terms of 

recall (86.31%) and achieved an accuracy of 83.28%. 
However, its lower precision of 81.46% resulted in an F1-score 
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of 83.82%. KNN followed closely with an accuracy of 82.99% 
and an F1-score of 83.57%, indicating comparable performance 
to RF but still not reaching the level of LightGBM-TPE. SVM 
shows the lowest performance among the models, with an 
accuracy of 81.79% and an F1-score of 82.32%. The lower 
precision of 80.23% suggests that SVM is more prone to false 
positives than the other models. 

LightGBM-TPE not only outperformed the other models 
but also exceeded previous studies that utilized stacked 
classifiers to predict HCV inhibitors, which achieved a top 
accuracy of 85.07% [50]. By achieving an accuracy of 86.27%, 
LightGBM-TPE demonstrates a clear improvement over 
stacked classifiers, further highlighting the advantages of TPE 
optimization. This enhanced accuracy, along with superior 
precision, recall, and F1-score, underscores the potential of 
LightGBM-TPE as a more reliable and effective approach to 
identifying active compounds in drug discovery. 

Table V provides a detailed comparison of actual versus 
predicted outcomes for the various models classifying 
compounds as active or inactive HCV inhibitors. The 
LightGBM-TPE model demonstrated superior performance, 
correctly identifying 147 active and 142 inactive compounds, 
with only 21 false negatives and 25 false positives. This 
balance between true positive and true negative predictions 
highlights the model's effectiveness in sensitivity (recall) and 
specificity, which is critical in reducing both classification 
errors. In comparison, the standard LightGBM model correctly 
identified 141 active and 142 inactive compounds, with 27 
false negatives and 25 false positives, indicating a slightly 
lower accuracy than LightGBM-TPE, especially in identifying 
active compounds. XGBoost also fell short, correctly 
predicting 137 active and 138 inactive compounds, but with 
higher false negatives (31) and false positives (29), showing 
less accuracy compared to both versions of LightGBM. RF and 
KNN correctly classified 145 active compounds, but RF 
showed 23 false negatives and 33 false positives while KNN 
had 23 false negatives and 34 false positives. Both models 
underperformed compared to LightGBM-TPE, particularly in 
distinguishing inactive compounds. Lastly, SVM performed the 
weakest, with 142 correct predictions for active compounds 
and 132 for inactive compounds, along with the highest 
number of false negatives (26) and false positives (35), making 
it the least accurate. 

TABLE V.  CONFUSION MATRIX OF DIFFERENT MODELS 
IN PREDICTING HCV INHIBITOR EFFICACY 

Model Actual 
Predicted 

Active Inactive 

LightGBM-TPE 
Active 147 21 

Inactive 25 142 

LightGBM 
Active 141 27 

Inactive 25 142 

XGBoost 
Active 137 31 

Inactive 29 138 

RF 
Active 145 23 

Inactive 33 134 

KNN 
Active 145 23 

Inactive 34 133 

SVM 
Active 142 26 

Inactive 35 132 

 
Fig. 3.  ROC curves across various ML models. 

Figure 3 illustrates the Receiver Operating Characteristic 
(ROC) curves for the five models, with the Area Under the 
Curve (AUC) values displayed in the legend. The ROC curve 
plots the True Positive Rate (sensitivity) against the False 
Positive Rate, visually representing the trade-offs between 
sensitivity and specificity for each model. The LightGBM-TPE 
model achieved the highest AUC of 0.911, indicating its 
superior ability to distinguish between active and inactive 
compounds. It was closely followed by XGBoost and RF, with 
AUC values of 0.910, and standard LightGBM with AUC 
values of 0.909. demonstrating comparable performance. KNN 
and SVM, with AUC values of 0.888 and 0.885, respectively, 
show slightly lower performance, which aligns with the 
previous evaluation metrics. The ROC curves for LightGBM-
TPE, XGBoost, and RF closely overlap, reflecting their strong 
and similar performance in classification tasks. In contrast, the 
ROC curves for KNN and SVM are slightly lower, particularly 
in the early stages of the curve, indicating that these models are 
more prone to false positives than LightGBM-TPE, XGBoost, 
and RF. This further validates the choice of LightGBM-TPE as 
the most effective model to predict HCV inhibitor efficacy, 
combining high sensitivity with a low rate of false positives. 

 
Fig. 4.  Feature importance rankings for the top five features identified by 

the LightGBM-TPE model. 

Figure 4 shows the five most important features identified 
by the LightGBM-TPE model in predicting the efficacy of 
HCV inhibitors. Feature importance was calculated using 
LightGBM's split-based method, which works by counting how 
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often a feature is used to split the data across all trees in the 
model. Features that are used more frequently to create splits 
are assigned higher importance scores, as they contribute more 
to reducing the model's overall error. This approach provides a 
clear interpretation of feature relevance by directly linking it to 
the model's decision-making process during training. 

Among these features, Psi_i_1 stands out as the most 
influential, followed closely by SM4_D and VR3_D. These 
features are likely critical molecular descriptors that play a key 
role in determining the biological activity of the compounds. 
ATSC7s and Wi_B(v) also contribute significantly, though 
slightly less than the top three. This analysis of feature 
importance offers valuable insights into which molecular 
properties are most closely associated with the activity of HCV 
inhibitors. Understanding these key features can guide further 
research, focusing on optimizing these specific aspects of 
chemical compounds to enhance their efficacy as potential drug 
candidates. The prominence of these features in the model's 
decision-making process underscores their relevance in the 
biological mechanisms targeted by the inhibitors. 

The integration of the LightGBM model with TPE 
demonstrated significant improvements in the prediction 
accuracy of HCV inhibitors. Beyond the advancement in ML 
techniques, this study highlights the critical role of QSAR 
modeling in enhancing the drug discovery process. QSAR 
modeling, by establishing correlations between chemical 
structures and their biological activities, is fundamental in 
identifying structure-activity relationship patterns that drive the 
efficacy of drug candidates. In this context, the combination of 
LightGBM and QSAR allows efficient identification of 
potential inhibitors by leveraging molecular descriptors that 
capture key structural and chemical features relevant to the 
biological activity of the compounds. 

The results highlight how advanced ML techniques, when 
applied to QSAR modeling, can optimize the identification of 
potent drug candidates. The LightGBM-TPE model 
consistently outperformed other ML models, such as standard 
LightGBM, XGBoost, RF, KNN, and SVM, in key 
performance metrics, including accuracy, precision, recall, and 
F1-score. This suggests that integrating sophisticated ML 
algorithms with QSAR can significantly accelerate the drug 
discovery process, enhancing the prediction of active 
compounds while reducing the time and resources required for 
early-stage screening. The importance of hyperparameter 
tuning through TPE further optimized model performance, 
underscoring the critical role of robust optimization techniques 
in predictive QSAR modeling. 

A central aspect of this study is the contribution of QSAR 
in uncovering structure-activity relationship patterns, which are 
instrumental in predicting the inhibitory activity of compounds. 
The molecular descriptors used in QSAR capture various 
chemical, physical, and topological properties of the 
compounds, which play a pivotal role in determining their 
biological activity. For instance, in the case of HCV inhibitors, 
molecular descriptors such as electronic, hydrophobic, and 
steric properties may significantly affect how compounds 
interact with the target protein, ultimately influencing their 
inhibitory potency. By integrating thousands of molecular 

descriptors into the LightGBM model, the QSAR framework 
allows the identification of critical features that drive inhibitory 
activity against HCV. 

This study also demonstrates how molecular descriptors 
enable the model to capture nonlinear relationships between 
chemical structures and biological activities, which may be 
difficult to detect using traditional linear QSAR methods. The 
use of LightGBM allows for the identification of complex 
interactions among multiple descriptors, enhancing the model's 
predictive power and enabling it to uncover novel structure-
activity relationship patterns. This ability to model complex 
relationships is particularly valuable in drug discovery, where 
subtle variations in molecular structure can lead to significant 
differences in biological activity. 

Despite promising results, this study has some limitations. 
First, the dataset is small and specific to HCV inhibitors, which 
may limit the application of the findings to other drug 
discovery areas. Expanding the dataset to include more diverse 
compounds and targets could make the model more robust. 
Second, although the LightGBM-TPE model showed good 
performance, its complexity might make it harder for 
researchers unfamiliar with advanced ML techniques to 
interpret. Using simpler models or interpretive methods could 
clarify how certain molecular features affect predictions. 
Finally, this study focuses on binary classification. Including 
multiclass or regression approaches could provide a fuller 
understanding of how chemical structures influence activity 
across a spectrum. Future research could explore alternative 
ML algorithms or hybrid models that combine the strengths of 
multiple approaches, further improving predictive accuracy and 
robustness. Additionally, further research into the role of 
specific molecular descriptors in determining biological 
activity could provide deeper insights into the structure-activity 
relationships that drive drug efficacy. This, in turn, could guide 
the design of more effective inhibitors by targeting the key 
molecular features that contribute to their potency. 

IV. CONCLUSION 

The application of LightGBM-TPE in this study 
demonstrated a significant advancement in the predictive 
modeling of HCV inhibitors, achieving outstanding 
performance metrics, with an accuracy of 86.27%, precision of 
85.47%, recall of 87.50%, specificity of 85.03%, and F1-score 
of 86.47%, surpassing other models such as standard 
LightGBM, XGBoost, RF, KNN, and SVM. The novelty of 
this study lies in the use of TPE for optimizing LightGBM, 
which has not been extensively explored in QSAR modeling 
for HCV inhibitors. Compared to traditional grid and random 
search methods, TPE allows faster and more accurate 
hyperparameter tuning, resulting in enhanced model 
performance. The findings demonstrate that integrating 
advanced optimization methods with QSAR modeling can 
significantly improve the identification of potent drug 
candidates, reducing the time and computational resources 
required for early-stage drug discovery. This study contributes 
to the growing body of literature by offering a more efficient 
and accurate approach to predictive modeling in drug 
discovery, with potential applications beyond HCV inhibitors 
to other disease targets. 
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