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ABSTRACT 

This paper presents a customized Convolutional Neural Network (CNN) architecture for multi-stage 

detection of Diabetic Retinopathy (DR), a leading cause of vision impairment and blindness. The proposed 

model incorporates advanced image enhancement techniques, particularly Contrast Limited Adaptive 

Histogram Equalization (CLAHE), to improve the visibility of critical retinal features associated with DR. 

By integrating CLAHE with a finely tuned CNN, the proposed approach significantly enhances accuracy 

and robustness, allowing for more precise detection across various stages of DR. The proposed model was 

evaluated against several state-of-the-art techniques, with the customized CNN alone achieving an overall 

accuracy of 97.69%. The addition of CLAHE further boosts the performance, achieving an accuracy of 

99.69%, underscoring the effectiveness of combining CLAHE with CNN for automated DR detection. This 

approach provides an efficient, scalable, and highly accurate solution for early and multistage DR 

detection, which is crucial for timely intervention and prevention of vision loss. 
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I. INTRODUCTION  

Diabetic Retinopathy (DR) is a significant risk to public 
health, leading to blindness and loss of vision [1]. Various 
studies have been conducted to address early-stage detection 
and severity classification of DR using deep learning models. 
Early detection and accurate classification of DR stages are 
crucial for preventing vision impairment and guiding 
appropriate treatment strategies. Fundus imaging is a widely 
used non-invasive technique for diagnosing and monitoring the 
progression of DR. Manual analysis of fundus images by 
clinicians is time-consuming and subject to variability, which 
can lead to inconsistent diagnoses. Consequently, there is a 
growing interest in using deep learning techniques, particularly 
Convolutional Neural Networks (CNNs) [2], to automate the 
detection and classification of DR stages from fundus images. 
CNNs have demonstrated exceptional performance in various 
medical imaging tasks, including the classification of retinal 
diseases. Numerous studies have proposed the use of deep 
learning and CNNs for DR classification [3-11]. However, 
many previous works have encountered challenges, particularly 
in terms of scalability and efficiency, indicating a need for 

further optimization. To address these challenges, Contrast 
Limited Adaptive Histogram Equalization (CLAHE) [12] has 
emerged as a powerful preprocessing technique to enhance 
image contrast, making subtle features more discernible. This 
paper proposes a combined approach that integrates a 
customized CNN architecture with a customized CLAHE 
preprocessing technique for the classification of DR stages. 
Enhancing the contrast of fundus images using a customized 
CLAHE, followed by feature extraction and classification 
using a specialized CNN, aims to improve the accuracy and 
reliability of DR stage detection. The contributions of this 
study are as follows.  

 Combines a custom CNN architecture and CLAHE to 
classify multi-stage DR. 

 Presents a high-performance approach for DR 
classification. 

 Achieves higher accuracy compared to seven other previous 
works. 
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II. BACKGROUND AND RELATED WORKS 

A. Convolutional Neural Network (CNN) 

CNNs are highly effective in medical image analysis. 
CNNs automatically learn features from complex medical 
images. These networks consist of layers such as convolutional, 
pooling, and fully connected layers, which progressively 
extract and analyze visual patterns in the images. Each time a 
convolution is performed, a new convolved image is generated, 
capturing features extracted from the previous layer's image. If 
���, �� represents a 2D input image and ���, �� denotes the 2D 
kernel used for the convolution, the process can be described as 
follows [13]: 

���, �� � ��, ����, �� �  

∑ ∑ ��� 
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 �����, ��
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�    (1) 

During the convolution process, edge pixel values can 
either be disregarded, or padding can be added to include them. 
The result of the convolution can then be modified using a 
nonlinear activation function [14]. 
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In addition to convolutional layers, CNNs have pooling and 
fully connected layers. Pooling layers reduce the size of feature 
maps by downsampling, using max or average pooling to 
condense local regions. This process includes pixel spacing, 
called stride. Unlike other layers, pooling layers don't have 
activation functions but often use ReLU for non-linearity. The 
average pooling is calculated for each convolutional layer as 
needed [15]. 

���
��� � �

 !
∑ ∑ �� �",�!�#

�����!
#

 
"    (3) 

In this context, �  and $  represent the coordinates of the 
output map and % and &  denote the sizes of the pooling 
samples. To convolutional and pooling layers, CNNs use fully 
connected layers for classification. The extracted features are 
passed to these layers, where each connection has its own 
weight, requiring significant computational power. The 
standard sigmoid function is applied for final classification 
[15]: 
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B. Contrast Limited Adaptive Histogram Equalization 
(CLAHE) 

CLAHE enhances local image contrast by applying 
histogram equalization to small blocks and clipping the 
histogram to control contrast and reduce noise [16-17]. 
CLAHE improves feature visibility without introducing 
artifacts, making it ideal for detailed image enhancement. The 
mathematical formulation of CLAHE is as follows: let ���, �� 
represent the intensity of the pixel at location ��, ��  in the 
image. The image is divided into small non-overlapping blocks 
or tiles of size % ) & . For each tile, the histogram *��� is 
computed, where � represents the intensity level. A clip limit , 
is defined. If any histogram bin *���exceeds ,, it is clipped: 

*-��..�/��� � ��0�*���, ,�   (5) 

The excess pixels above the clip limit , are then redistributed 
across all histogram bins. Normalize the Cumulative 
Distribution Function (CDF) to obtain the intensity mapping 
function. The CDF for the clipped histogram is calculated as: 

123��� � ∑ *-��..�/�$��
�45    (6) 

To avoid artifacts between neighboring tiles, the intensity 
value for a pixel is interpolated using the CDFs of the 
surrounding tiles. The final pixel value after applying CLAHE 
is given by: 

�6789:��, �� � 123;���, ��< )  =>?#@�#A�@B� �#?#@�#A�@B
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where the %F��0(G0��(� and %�0�0(G0��(� are the maximum 
and minimum intensity values in the image, and 
,�(FHI��GH��0,�HG is the number of pixels in each tile. 

C. Related Works 

Several studies [3-9, 18-20] have applied deep learning 
techniques to enhance DR detection from retinal fundus 
images. In [3], the Beluga Whale Optimizer (BWO) was 
combined with deep learning to assist DR diagnosis through 
ShuffleNet-v2 for feature extraction and Deep Stacked 
Autoencoder (DSAE) for classification, achieving 99.58% 
accuracy. In [4], a hybrid approach was introduced using 
NASNetLarge for feature extraction and Glowworm Swarm 
Optimization (GSO) for tuning, employing Variational 
Autoencoders (VAE) for classification and reaching 99.36% 
accuracy. In [5], DR grading was improved by integrating bio-
inspired optimization with VGGNet and U-Net, resulting in 
99.26% accuracy. In [9], transfer learning-based models such 
as InceptionResNetV2 were optimized for retinal image 
segmentation, achieving 99.55% accuracy. In [6], the focus 
was on CNN models enhanced by attention mechanisms and 
transfer learning, achieving 99.40% accuracy. Heuristic 
optimizers such as Moth Search were explored in [7], 
combined with residual learning techniques to refine DR 
classification and achieve 99.33% accuracy. In [8], lightweight 
CNNs were developed with ensemble learning, reaching 
99.50% accuracy in early DR detection. These studies highlight 
the importance of hybrid optimization, feature extraction, and 
classification techniques to improve the accuracy and 
efficiency of automated DR diagnosis. 

III. THE PROPOSED METHOD 

CNNs automatically learn features from complex medical 
images, making them ideal for detecting and classifying 
abnormalities in fundus images. Figure 1 shows the proposed 
model approach. This combined approach utilizes a customized 
CNN architecture and CLAHE to classify the DR stages. 

 

 

Fig. 1.  The proposed approach. 
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A. Customized CLAHE 

The proposed customized CLAHE method enhances the 
contrast of fundus images through a systematic process that 
begins with preparing the input image and carefully applying 
each step based on the mathematical principles of CLAHE. 
This approach ensures precise and effective contrast 
enhancement, producing a final output with significantly 
improved visual clarity. The steps of this process are: 

 Prepare the Input Image: Convert the original fundus image 
to grayscale, simplifying it to focus on pixel intensity 
values ���, ��. This is essential for CLAHE to effectively 
enhance brightness and contrast. 

 Global Histogram Equalization: Improve the contrast of an 
image by stretching the intensity range of the pixel values. 
This redistributes the intensities so that the histogram of the 
output image is approximately flat. 

 Define CLAHE Parameters: Set the clip limit , to 2.0 to 
control contrast enhancement, and divide the image into 
non-overlapping tiles of size 8×8 for the tile size % ) &. 
These parameters were chosen to balance detail 
enhancement with noise suppression. 

 Apply Histogram Clipping: Calculate the histogram for 
each tile and clip any bins exceeding the clip limit , � 2.0, 
redistributing the excess pixels. This step reduces noise 
while enhancing the contrast within each tile. 

 Compute the CDF: Compute the CDF for each tile's clipped 
histogram, mapping the original pixel values to new 
intensities. This mapping enhances local contrast, making 
subtle image details more visible. 

 Interpolate Pixel Intensities: Interpolate pixel values using 
the CDFs from neighboring tiles to ensure smooth 
transitions between them. This avoids visible seams and 
creates a cohesive, artifact-free image. 

 Generate and Save the Enhanced Image: Generate the final 
enhanced image with improved contrast and save it. This 
enhanced image provides better visibility of critical 
features, aiding in accurate medical analysis. 

This customized CLAHE approach modifies the traditional 
CLAHE method to enhance applications such as DR 
classification. Figure 2 illustrates the enhancement results of 
CLAHE. 

 

 

Fig. 2.  Enhancement results of CLAHE. 

B. Customized CNN Architecture 

To simplify the explanation, each set of layers is presented 
in a section of its own, and the layer-wise parameters are 
summarized in Table I. 

 Input Layer: The input layer receives 224×224 pixel RGB 
images, feeding them into the network without any 
alterations. This layer is crucial for establishing the initial 
data structure but contains no learnable parameters. 

 Conv Layer 1: This layer applies 32 filters of size 3×3 with 
a stride of 1×1, detecting basic features such as edges and 
textures. The filters create 32 feature maps that capture 
diverse aspects of the input image. 

 Max Pooling 1: This layer reduces the spatial dimensions of 
the feature maps from Conv Layer 1 using a 2×2 pooling 
window and a stride of 2×2. It helps decrease 
computational complexity while maintaining important 
features. 

 Conv Layer 2: This layer uses 64 filters of size 3×3, 
continuing the feature extraction process by identifying 
more complex patterns in the input. The stride of 1×1 
preserves the spatial dimensions for further processing. 

 Max Pooling 2: Similar to Max Pooling 1, this layer 
downsamples the feature maps from Conv Layer 2, again 
using a 2×2 window with a stride of 2×2. This step further 
reduces the size of the feature maps, making the model 
more efficient. 

 Conv Layer 3: With 128 filters of size 3×3, Conv Layer 3 
extracts even finer details and more complex features from 
the image. This layer is key to capturing intricate patterns 
essential for accurate classification. 

 Average Pooling: This layer applies a 2×2 pooling window 
with a stride of 2×2, averaging the values within each 
window. It smooths out the feature maps and reduces their 
size, preparing the data for the fully connected layers. 

 Flatten Layer: This layer converts the 3D output from the 
final pooling layer into a 1D vector, bridging the gap 
between the convolutional layers and the fully connected 
layers. This transformation is essential for feeding the data 
into the subsequent layers. 

 Fully Connected Layer 1: This layer, with 256 neurons, 
takes the flattened vector and combines the extracted 
features into higher-level representations. A ReLU 
activation function is used to introduce non-linearity, 
allowing the model to capture complex patterns. 

 Fully Connected Layer 2: This layer has 128 neurons and 
further refines the feature combinations, reducing the 
dimensionality while maintaining essential information. 
ReLU activation continues to enable the learning of non-
linear relationships. 

 Fully Connected Layer 3: Containing 64 neurons, this layer 
further condenses the information, focusing on the most 
crucial features. It prepares the data for the final 
classification step by narrowing down the learned patterns. 
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 Output Layer: The output layer consists of neurons equal to 
the number of classes in the task, using softmax activation 
to produce a probability distribution. The class with the 
highest probability is selected as the final prediction. 

The proposed CNN architecture for classifying DR stages 
consists of 1,740,645 parameters and starts with an input layer 
for 224×224 RGB images. It includes three convolutional 
layers with 32, 64, and 128 filters, progressively capturing 
more complex features. Max pooling layers follow the first two 
convolutions, reducing spatial dimensions, while an average 
pooling layer after the third convolution condenses feature 
maps. The flattened output is passed through fully connected 
layers with 256, 128, and 5 neurons. ReLU activation in the 
fully connected layers captures non-linear patterns, and a 
softmax-activated output layer classifies images into one of the 
five DR stages. This architecture offers an efficient solution for 
multi-stage DR classification. 

TABLE I.  PARAMETERS OF THE PROPOSED CNN 

Layer Name Type Customized Parameters 

Input Layer Input 224×224×3 - 

Conv Layer 1 Convolutional 
Filters=32, Kernel 

size=3×3, Stride=1×1 
928 

Max Pooling 1 Pooling 
Pool size=2×2, 

Stride=2×2 
- 

Conv Layer 2 Convolutional 
Filters=64, Kernel 

size=3×3, Stride=1×1 
18,496 

Max Pooling 2 Pooling 
Pool size=2×2, 

Stride=2×2 
- 

Conv Layer 3 Convolutional 
Filters=128, Kernel 

size=3×3, Stride=1×1 
73,856 

Average Pooling Pooling 
Pool size=2×2, 

Stride=2×2 
- 

Flatten Layer Flatten - - 

Fully Connected 

Layer 1 
Fully Connected Neurons=256 1,605,888 

Fully Connected 

Layer 2 
Fully Connected Neurons=128 32,896 

Fully Connected 

Layer 3 
Fully Connected Neurons=64 8,256 

Output Layer Fully Connected Neurons=5 325 

 

IV. EXPERIMENTS 

This section outlines the experiments conducted, detailing 
the experimental setup and the configurations used throughout 
the process. 

A. Datasets 

The APTOS 2019 dataset [21] is a trusted resource for 
graded DR severity, and is widely used in clinical practice and 
research across the Asia-Pacific region. It has been 
instrumental in developing and evaluating computer-aided 
diagnostic systems that use retinal images to classify DR 
severity. The dataset classifies DR into five stages: No DR (0), 
Mild (1), Moderate (2), Severe (3), and Proliferative DR 
(PrDR) (4). It includes 3,662 images, and when combined with 
the DDR dataset, a total of 16,170 images are used for training, 
validation, and testing. The distribution of stages is 1,014 
images for No DR, 999 for Mild, 684 for Moderate, 429 for 
Severe, and 1,207 for PrDR.  

B. Experimental Setup 

Approximately 70% of the DR image dataset [21] was used 
for training and 30% for testing. Five-fold cross-validation 
(M =5) ensured accurate performance evaluation. The model 
was trained using binary cross-entropy loss and the Adam 
optimizer at a 0.0001 learning rate over 50 epochs with a batch 
size of 32. Python and Keras (TensorFlow-based) were run on 
an Intel Core i7 CPU with 16 GB RAM and a CUDA-
compatible GPU. Multiple trials were used to optimize 
hyperparameters to balance accuracy and efficiency. 

C. Preprocessing 

Retinal images were converted to RGB, batched in groups 
of 32, resized to 224×224 pixels, and scaled. These steps were 
implemented to improve computational efficiency and enhance 
feature detection for DR classification.  

D. Performance Metrics 

Accuracy (Acc) [22] was used to evaluate training 
efficiency, representing the percentage of correct predictions in 
the test set. Along with precision (PPV), sensitivity (Sen) [23], 
and F1-score (F1) [24], these metrics provide a comprehensive 
view of the model's performance, highlighting its robustness. 
Precision measures the correctness of positive predictions, 
while sensitivity assesses the identification of actual positives. 
The F1 balances precision and recall to offer a single 
effectiveness measure. 

NOO �  CE�C!

CE�PE�P! �C!
              (8) 

IIQ �  CE

CE�PE
     (9) 

'G0 �  CE

CE�P!
     (10) 

31 � 2 ∙ EET · V�#

EET �V�#
    (11) 

V. RESULTS AND DISCUSSION 

This section presents the experimental results, evaluating 
the proposed combined customized CNN architecture and 
CLAHE for multi-stage DR classification. The proposed 
approach was also compared with several previous works. 
Table II illustrates the experimental results of the proposed 
CNN architecture alone. Table III presents the experimental 
results of the combined customized CNN architecture and 
CLAHE. Figure 3 compares the performance of the custom 
CNN architecture alone with that of the customized CNN 
architecture with CLAHE for multi-stage DR classification. 
The results highlight the significant improvements achieved by 
incorporating CLAHE into the CNN architecture. The custom 
CNN alone achieved an overall accuracy of 97.69%, with 
stage-specific accuracy ranging from 97.5% to 97.85%. In 
contrast, the combined approach of customized CNN and 
CLAHE demonstrated a substantial boost in performance, 
achieving an overall accuracy of 99.69%, with all stage-
specific accuracies consistently above 99.6%. This 
improvement is particularly notable across all stages, showing 
the effectiveness of CLAHE in enhancing retinal image 
features, allowing the CNN model to better detect and classify 
the different stages of DR. 
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TABLE II.  EXPERIMENTAL RESULTS OF THE 
CUSTOMIZED CNN ARCHITECTURE 

DR Stage PPV (%) Sen (%) F1 (%) Acc (%) 

0 97.5 97.65 97.57 97.6 

1 97.4 97.55 97.47 97.5 

2 97.7 97.85 97.77 97.8 

3 97.6 97.75 97.67 97.7 

4 97.8 97.9 97.85 97.85 

Overall 97.6 97.74 97.67 97.69 

TABLE III.  EXPERIMENTAL RESULTS OF THE COMBINED 
CUSTOMIZED CNN ARCHITECTURE AND CLAHE 

DR Stage PPV (%) Sen (%) F1 (%) Acc (%) 

0 99.65 99.7 99.67 99.68 

1 99.61 99.66 99.63 99.64 

2 99.75 99.77 99.76 99.76 

3 99.63 99.65 99.64 99.64 

4 99.71 99.73 99.72 99.72 

Overall 99.67 99.7 99.68 99.69 

 
The proposed approach demonstrated superior performance 

compared to several state-of-the-art techniques for DR 
classification. As shown in Table IV, the customized CNN 
model and CLAHE achieved the highest accuracy of 99.69%, 
surpassing existing models such as ResNet-152, ResNet-50, 
and NASNetLarge. The ResNet-152 model in [3] achieved an 
accuracy of 99.41%, which is slightly lower than the proposed 
method. Similarly, the ResNet-50 model combined with the 
enhanced ABC algorithm in [4] reached 98.71%, while 
NASNetLarge with GSO in [5] obtained 99.26%. Although 

ShuffleNet-v2 with Median Filtering (MF) in [7] achieved a 
high accuracy of 99.58%, it is still slightly outperformed by the 
proposed method. The AnLoG model in [6], which employs 
LoG for edge detection and PCA for feature reduction, 
achieved a lower accuracy of 97.29%. Additionally, the 
CLAHE-enhanced VGGNet and CNN models in [8] and [9] 
achieved 97.6% and 71.85%, respectively, highlighting the 
effectiveness of the proposed customized CNN and CLAHE 
for image enhancement. These results demonstrate that the 
proposed method not only improves accuracy but also provides 
a more efficient solution for DR detection by leveraging 
customized CNN and CLAHE techniques. 

 

 
Fig. 3.  Comparison of experimental results. 

TABLE IV.  ACCURACY COMPARISON OF THE PROPOSED WITH STATE-OF-THE-ART MODELS 

Study Year 
Number 

of stages 
Image enhancement techniques Model 

Acc 

(%) 

[3] 2022 5 BWO ResNet-152 99.41 

[4] 2023 5 Data augmentation, enhanced Artificial Bee Colony (ABC) algorithm ResNet-50 98.71 

[5] 2023 5 MF for noise removal, GSO for parameter tuning NASNetLarge 99.26 

[6] 2024 4 
Laplacian of Gaussian (LoG) for edge detection, Principal Component Analysis (PCA) 

for feature reduction 
AnLoG 97.29 

[7] 2024 4 MF for noise reduction ShuffleNet-v2 99.58 

[8] 2024 4 CLAHE VGGNet 97.6 

[9] 2024 5 CLAHE CNN 71.85 

Our Proposed 5 
- Customized CNN 97.69 

Customized CLAHE Customized CNN 99.69 

 

VI. CONCLUSION 

DR is a leading cause of vision loss, making early detection 
crucial. The key challenge addressed in this study is to achieve 
high performance in DR detection, while ensuring scalability 
and computational efficiency, as previous models, despite their 
accuracy, faced limitations in these areas. This study proposed 
a customized CNN architecture combined with CLAHE to 
enhance image quality and improve detection accuracy for 
multi-stage DR classification. The proposed method achieved 
an impressive accuracy of 99.69%, outperforming several state-
of-the-art models, such as ResNet-152, ResNet-50, and 
NASNetLarge, which achieved accuracies between 98.71% 
and 99.58%. The use of customized CNN and CLAHE was 
crucial in enhancing detection performance. The proposed 
approach offers an efficient and accurate solution for 
automated DR classification, supporting early diagnosis and 
treatment. Future work could involve further optimization of 

the model and its application to other medical image analysis 
tasks. 
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