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ABSTRACT 

The present study evaluates the performance of fiber-reinforced geopolymer, especially its flexural 

strength, using a Deep Learning (DL) approach, Deep Residual Network (ResNet), and the experimental 

work is presented. A total of 245 mixtures were employed to generate the data for the ResNet training and 

validating procedures. In the proposed model, the Fly Ash (FA) content, sodium silicate solution/solid 

binder ratio, curing temperature, curing time, fiber volume fraction, fiber length (l) and diameter (d), as 

well as fiber tensile strength, were considered as input factors. In contrast, flexural strength was the output 

parameter. The effectiveness of ResNet was evaluated by three statistical factors, correlation coefficient 

(R2), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). ResNet validation 

revealed the effectiveness of predictive methods with 94.5%, 0.292 MPa, and 4.068% for R2, RMSE, and 

MAPE, respectively. The suggested models may be used as standard mixtures for geopolymer concrete 

reinforced with steel fibers. 

Keywords-geopolymer concrete; steel fiber; Machine Learning (ML); flexural strength; ResNet   

I. INTRODUCTION  

ResNet [1] was developed to overcome a limitation in the 
training of deep networks, where training errors can increase as 
the number of layers increases. Owing to their modified 
architecture, ResNet models have been empirically confirmed 

to enhance the learnability of neural networks with lower error 
rate observed in defined tasks using a limited number of layers. 
ResNet consists of residual blocks with shortcut connections, 
as shown in Figure 1, where the formulation H(x) is the desired 
mapping output of a specific layer and x is the input data. 
Machine Learning (ML) approaches are widely applied in 
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many fields, including construction technology. Authors in [2, 
3] predicted concrete performance by employing Artificial 
Neural Networks (ANNs). Authors in [4] used neural networks 
to detect structural damage, while authors in [5] developed a 
network model to evaluate the chloride diffusivity in high-
performance concrete.  

 

 
Fig. 1.  ResNet approach. 

Geopolymer concrete, one of the potential substitutions for 
conventional concrete, was first introduced in [6]. Recently, 
geopolymer materials have gained significant attention because 
of their notable environmental advantages. Geopolymer 
concrete is a low-cost and eco-friendly material that uses 
industrial waste, such as FA, rice husk ash, red mud, 
ferrochrome ash, and ground granulated blast furnace slag [7, 
8]. Authors in [9] investigated the influence of aluminosilicate 
in predicting the mechanical properties of geopolymer concrete 
by deploying an ANN in 2019. Authors in [10-12] predicted 
the compressive strength of geopolymer concrete utilizing ML 
approaches, sensitivity analysis, and Artificial Intelligence (AI) 
approaches. In recent years, popular approaches, such as ANNs 
[13] Support Vector Machines (SVMs) [14], and Decision 
Trees (DTs) [15] have been applied to predict the geopolymer 
concrete strength based on various input variables, involving 
mixture proportion and curing conditions.  However, no 
research has investigated fiber-reinforced geopolymer 
composites in depth. Therefore, this section presents the 
prediction of the performance of fiber-reinforced geopolymer 
concrete, especially its flexural behavior. Flexural behavior is 
one of the most common weaknesses of geopolymer concrete; 
without reinforcement, using fiber leads to the best 
cooperation. This section focuses on the utilization of a DL 
approach, ResNet, and experimental data for investigation. The 
predicted and actual strength are evaluated through the 
essential parameters of the model. The effect of input variables, 
including FA content, sodium silicate solution/solid binder 
ratio, curing temperature, curing time, volume fraction, fiber 
length to diameter (l/d) ratio, and fiber tensile strength, were 
investigated through sensitivity analysis.  

II. EXPERIMENTAL WORK 

A. Material and Mixing Process 

In this study, FA, Ground Granulated Blast Slag (GGBS), 
sodium silicate solution, aggregate, and steel fiber were 

employed to fabricate the fiber-reinforced geopolymer 
concrete. The Class F FA [16], with a specific gravity of 2500 
kg/m3, and GGBS [17] were used with the content of FA in 
combination (FA – GGBS), with a percentage ranging from 
0%-100%. The solid binder was a mixture of FA and GGBS. 
The sodium silicate solution/solid binder ratio was about 0.33 – 
0.9. The steel fiber, with a value of 500 MPa – 1200 MPa in 
tensile strength, was mixed with fresh geopolymer concrete, 
with 0% – 1.5% volume fraction. The steel fiber l ranged from 
4.5 mm – 50 mm, while the fiber d was about 0.03 mm – 1 
mm. The l/d ratio varied from 50 – 600. Following the mixing 
procedure, the fresh steel fiber-reinforced geopolymer concrete 
was poured into a rectangular mold, 100 mm × 100 mm × 400 
mm, with a span l of 300 mm. All specimens were cured at 
seven different temperatures, including 20 °C, 60 °C, 80 °C, 90 
°C, 100 °C, 110 °C, and 120 °C. The curing time was set to 
vary between 4 and 10 hours. A minimum of three specimens 
were used for testing at 28 days. The flexural test followed the 
guidelines outlined in [18, 19]. 

TABLE I.  STATISTICAL PARAMETERS OF GEOPOLYMER 
CONCRETE 

Variables Unit Value Variable 

FA content in binder  0 – 1 

Input 

Sodium silicate  0.33 – 0.9 
solution/solid binder   

Curing temperature °C 
20, 60, 80, 90,100, 

110, 120 
Curing time h 4, 6, 8, 10 

The volume fraction of fiber % 0 – 1.5 
Fiber l mm 4.5 – 50 
Fiber d mm 0.03 – 1 

l/d of fiber  50 – 600 
Tensile strength of fiber MPa 500 – 1200 

Flexural strength MPa 2.70 – 10.22 Output 
Total number of datasets  245  

 

 
Fig. 2.  Datasets used for ResNet approach. 

B. Data Preparation for ResNet Approach and Methodology 

To forecast the flexural strength of steel fiber-reinforced 
geopolymer concrete, 245 datasets were collected from the 
experimental work, each containing nine inputs and one output. 
Each dataset consisted of a distinct combination of geopolymer 
mix proportions, including the FA content in solid binder, 
sodium silicate solution/solid binder ratio, curing temperature, 
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l, d, steel fiber l/d ratio, and fiber tensile strength as input 
features. The output feature was the flexural strength of fiber-
reinforced geopolymer concrete. The details of the variables 
are presented in Table I and Figure 2. 

III. METHODOLOGY 

The ResNet model was trained and validated using 245 
datasets collected from the experimental work. One dataset has 
nine inputs, the FA content in the geopolymer binder, sodium 
silicate solution/solid binder ratio, curing temperature and time, 

l, d, fiber l/d ratio, and fiber tensile strength, and one output 
parameter, flexural strength, ranging from 2.7 MPa to 10.22 
MPa. The ResNet structure flowchart is presented in Figure 3. 
Among the 245 datasets, 220 datasets (90% of input 
parameters) were randomly chosen to be trained. In addition, 
the other 25 datasets (10% of input parameters) were utilized as 
validation values to check the model's accuracy. This method 
for diving data was deployed to maintain the objectivity and 
reliability of the experimental results.  

 

 
Fig. 3.  Flowchart of ResNet model and sensitivity analysis. 

The ResNet architecture included weight, normalization, 
and activation layers. There are three weight layers in the 
ResNet model. The number of nodes set for Weight Layer 1, 
Weight Layer 2, and Weight Layer 3 were 300 nodes, 200 
nodes, and 200 nodes, respectively. Those nodes were used in 
[20] as an optimization technique to update neural network 
coefficients, owing to their integration of advanced features 
from different optimization algorithms, including AdaGrad and 
RMSProp. Authors in [21] proposed a layer normalization 
method, which exhibited a more effective training time in 
neural networks compared to the traditional batch 
normalization. Therefore, the former normalization technique 
was applied to the model. Besides, the non-normalized models 
were used to compare and validate the accuracy of training 
models with normalization. Besides, were also used normalized 
training models, the non-normalized models. To prevent the 
overfitting problems, dropping out with a keep probability of 
0.2 was used in the training process. In this study, the 
performance of ResNet approach was evaluated by using three 
metrics: R2, RMSE, and MAPE under the K-fold validation 
scheme. The Equations (1-3) show how to calculate three 
measures: 

R� � �� ∑ ����′	∑ �′ ∑ ����� 
�

�∑ ��′ �� 	�∑ ��′� 
��� ∑ ���	�∑ ��� ��� ��
′
  (1) 

MAPE � �
�∑ ���	��

′

�� � � 100   (2) 

RMSE � ���∑ �y� � y�′
��� �    (3) 

Where n is the number of datasets, and yj, yj' are the 
flexural strength of the experimental results and predictions. 

This research divided the data into K = 10 folds by 
deploying the K-fold cross-validation method. In this case, 
there are K-independent training iterations on the prediction 
model with (K-1) folds; the remaining fold is used for 
validation. Through the obtained R2, RMSE, and MAPE, the 
prediction model was evaluated and the iterations were 
investigated by: 

M!	"#$% � �
!∑ m'!' �     (4) 

MK-fold stands for the general metric measurement, as K-fold 
cross-validation is applied, and mk is the metric measurement 
in the K-fold of the procedure. 

IV. RESULTS AND DISCUSION 

A. Performance of ResNet Model 

Figure 4 displays the performance of the ResNet model 
along with the obtained measurements on validation sets.  
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Fig. 4.  Flexural strength of experiment and ResNet model. 

 
Fig. 5.  R2 of ResNet approach. 

The input variables are the FA content in binder materials, 
the activated sodium silicate solution/solid binder ratio, the 
curing temperature, the curing time, the properties of fiber, 
such as l, d, l/d ratio, and the tensile strength, while the flexural 
strength of geopolymer concrete is the output value.  

The R2, RMSE, and MAPE under the K-fold validation 
scheme exhibit the effectiveness of the ResNet model. The 
validation R2 value of ResNet is 0.945. Regarding RMSE and 
MAPE, the ResNet performs 0.292 and 4.068, respectively. In 
addition, Figure 5 compares the correlation R2 value by 
illustrating the relationship between the experimental flexural 
strength and predicted values through the median line. Overall, 
the points close to the median line in the two graphs stand for 
the values. The effectiveness and accuracy of the ResNet 
approach in predicting flexural performance are also 
demonstrated. The validation RMSE value along with the 
iteration relationship is evidenced in Figure 6 and describes the 
convergence speed of the ResNet model. As outlined in the 
graph, the ResNet model shows a convergence speed of 6000 
iterations to reach a validation RMSE value of 0.306 MPa. The 
error rate of the validation ResNet value is shown in Figure 7. 
Generally, the ResNet model indicates that a significant 
proportion of specimens (60%) show an error rate of less than 
2%. In addition, almost all specimens exhibit an error rate 
under 6%, and the maximum error rate is also under 10%. In 
terms of an error rate of 0%-6%, the number of specimens 
accounts for 90%. 

B. Sensitivity Analysis 

In this study, sensitivity analysis is applied to investigate 
the influence of the input variables on the flexural performance 
of fiber reinforced geopolymer composites. Among nine input 
variables, one parameter was varied in a range, while the other 
parameters were maintained at their average value. For 
instance, to evaluate the effect of curing temperature on the 
flexural behavior, the temperature was considered to range 
from 20 °C to 120 °C. At the same time, the FA content, 
sodium silicate solution/solid binder ratio, curing time, fiber 
volume fraction, fiber l, fiber d, fiber l/d ratio, and fiber tensile 
strength were used with the average values of 0.5, 0.615, 7h, 
0.75%, 27.25 mm, 0.35 mm, 325 MPa, and 850 MPa, 
respectively. Sensitivity analysis for each parameter is applied 
by: 

Ii = fmax(xi) – fmin(xi)    (5) 

SA( =
)�

∑ )��
× 100    (6) 

where fmax(xi) and fmin(xi) are the maximum and minimum 
estimated flexural strength related to the input variables xi, with 
all other input parameters kept constant at their average value. 

Figure 8 presents the sensitivity analysis parameter of fiber-
reinforced geopolymer composites with the nine evaluated 
factors. As can be seen in the graph, the presence of binder 
materials, including FA and slag, plays an important role in the 
development of strength in the geopolymer mixture, with the 
greatest sensitivity score being 13.54%. FA and slag contribute 
to the geopolymerization process, while the chemical reactions 
that happen inside the geopolymer structure join in the 
formation of minerals, improving their mechanical properties.  
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Similarly, the curing time and fiber l have a significant effect, 
with sensitivity values of 13.20% and 13.23%. As proved in 
many studies, curing time is an important factor for developing 
properties over time. In geopolymer composites, the 
cooperation of fiber is necessary for improving the flexural and 
tensile behavior; the properties of fiber, especially fiber l, are 
one of the most important factors affecting the adhesion 
between the fiber and concrete structure. On the other hand, the 
sensitivity scores of other parameters, sodium silicate 
solution/solid binder ratio, curing temperature, volume fraction, 
d, l/d ratio, and fiber tensile strength of fiber, take up 10.68%, 
9.06%, 10.53%, 7.48%, 12.61%, and 9.69%, respectively. As a 
result, the importance of the input variables in the mixture 
proportion can be clearly and efficiently determined on the 
basis of mechanical properties. By predicting flexural behavior 
in the utilized DL approach, FA content and curing temperature 
should be carefully designed and suitable for geopolymer 
composite manufacture. The optimized mixture designs could 
lead to the high performance of geopolymer composites in 
experiments and applications. 

 

 
Fig. 6.  Validation RMSE – iterations relationship. 

 
Fig. 7.  Error rate distribution in validation ResNet. 

 
Fig. 8.  Sensitivity analysis parameters of fiber-reinforced geopolymer 

concrete. 

V. CONCLUSIONS 

The Deep Learning (DL) approach, Deep Residual Network 
(ResNet), is followed to predict the properties of fiber-
reinforced geopolymer concrete, especially its flexural strength. 
Nine input variables, the FA content in geopolymer binder, 
sodium silicate solution/solid binder ratio, curing temperature, 
curing time, fiber volume fraction, length (l), diameter (d), 
length to diameter (l/d) ratio, and fiber tensile strength are 
trained and validated. A total of 245 datasets are considered, 
with flexural strength being the main research subject. The 
conclusions drawn are summarized below: 

 The correlation coefficient (R2), Root Mean Square Error 
(RMSE), and Mean Absolute Percentage Error (MAPE) 
under the K-fold cross-validation scheme demonstrate the 
effectiveness of these predictive models.  

 The proposed models were successfully trained to predict 
the flexural behavior of geopolymer composites reinforced 
with steel fiber. The actual and predicted strength in/after 
training and validation exhibit a slight and acceptable 
difference. 

 The validation RMSE– iteration relationship and error rate 
indicate that the ResNet reaches a validation RMSE value 
of 0.306 MPa at 6000 iterations. 

 Almost all specimens show an error rate of under 6%, with 
the maximum error rate being just 10%. Regarding the 0%-
6% error rate, the number of specimens accounts for 90% 
of the predictive model’s ResNet.   

 The most significant sensitivity score of 13.54% is obtained 
in the binder material factors, including FA and slag, while 
the curing time and l of fiber have a significant effect with 
sensitivity values of 13.20% and 13.23%. The importance 
of the aforementioned/certain factors in geopolymer 
mixtures can be evaluated based on sensitivity scores, and 
thus optimized mixture designs can be developed. 

Overall, the results indicate that ResNet can be applied for 
forecasting the flexural strength of steel fiber reinforced 
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geopolymer concrete. Also, ResNet, a DL approach, can be 
used to calculate, or build a standard mixture proportion for 
fiber-reinforced geopolymer concrete. In future work, more 
input and output variables will be considered, to achieve 
greater accuracy when estimating the strength of fiber-
reinforced geopolymer concrete. 
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