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ABSTRACT 

Model construction is of significant importance for the extraction of information from datasets and the 
prediction of responses based on predictor variables. The objective of this study is to compare the Multiple 
Regression (MR) and model averaging approaches in the context of missing data and to validate the 
effectiveness of the Multiple Imputation (MI) method used to address missing data issues. A comparison 
was performed between the results obtained from the multiple-imputed data and those derived from the 
Complete Case (CC) data, using a diabetes dataset from Hospital Besar Alor Setar. Prior to the application 
of MI and model building, k-fold cross-validation was employed to partition the dataset, resulting in 90% 
of the data lacking complete covariates for training and 10% of the data comprising complete covariates 
for testing. Subsequently, MI was applied to the 90% training dataset. Model M115, derived from the 
multiple-imputed data, was identified as the optimal model for MR. In the model averaging approach, two 
models were identified as optimal: Model 1 (without interaction variables) and Model 2 (with interaction 
variables). The first one, exhibited the lowest values of Mean Square Error (MSE), Root Mean Square 
Error (RMSE), and Mean Absolute Error (MAE). These results indicate that model averaging, specifically 
Model 1, is the superior model-building approach for this study, demonstrating improved performance 
compared to MR and validating the effectiveness of the MI method. 

Keywords-statistical modeling; regression analysis; model averaging; missing data; multiple imputation 
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I. INTRODUCTION  

Statistical modeling is a fundamental tool for elucidating 
the relationships among variables, evaluating hypotheses, and 
forecasting outcomes. The construction of these models hinges 
on the model-building process, which frequently employs MR 
analysis, a widely used method in fields, such as social 
sciences, economics, and medicine [1]. MR allows researchers 
to estimate the relationships between a dependent variable and 
multiple independent variables, thereby facilitating a more 
profound understanding of correlations, interactions, and 
potential causal relationships. However, the reliability of these 
insights is contingent upon the model-building process, which 
entails the selection of an appropriate model from the multitude 
of potential alternatives [2]. This phase is frequently 
challenging, particularly when determining the most pertinent 
independent variables or addressing complex datasets. The 
challenge of model selection is typically addressed through the 
use of forward selection, backward elimination, and stepwise 
selection, which involve the iterative inclusion or exclusion of 
variables based on their statistical significance or contribution 
to model fit [3]. Although these methods are effective to some 
extent, they are susceptible to overfitting and underfitting, 
particularly when models are selected based on criteria, such as 
the Akaike Information Criterion (AIC) or the Bayesian 
Information Criterion (BIC). These criteria prioritize 
parsimony in models, balancing the complexity of a model 
with its goodness of fit [4]. Nevertheless, even with these 
guidelines in place, the process of selecting an appropriate 
model remains a subjective one, with the specific goals of the 
study often exerting a significant influence. More recent 
research has called into question the robustness of these 
techniques, particularly in cases where the research objective is 
unclear or where multiple plausible models could explain the 
data [5]. 

A significant drawback of conventional model selection is 
its exclusive emphasis on identifying a single optimal model, 
which can result in the neglect of the inherent uncertainty 
associated with the model-building process. Model averaging 
represents a promising alternative, as it considers multiple 
models and averages their estimates, rather than relying on a 
single model [6]. This approach diminishes the probability of 
bias resulting from an excessive reliance on a single model and 
enhances the resilience of statistical inference. Model 
averaging has been demonstrated to address issues, such as 
standard error underestimation, thereby facilitating the 
generation of more accurate parameter estimates and 
confidence intervals [7]. Notwithstanding its advantages, model 
averaging is not yet widely adopted, and there are gaps in the 
literature concerning its application in the presence of missing 
data. Missing data introduces another layer of complexity into 
the process of model building, as it is a common issue in real-
world datasets. Failure to address this issue can result in biased 
or inefficient results [8]. Conventional methodologies, such as 
listwise or pairwise deletion, often result in the exclusion of 
incomplete cases, which can markedly diminish the sample size 
and statistical power, particularly in small datasets. Although 
these methods are simple, they are susceptible to introducing 
biases if the data are not missing completely at random [9]. In 
contrast, MI represents a more sophisticated technique, 

whereby several plausible values are generated for each 
missing data point, thus creating numerous complete datasets 
for analysis. This approach has been demonstrated to yield 
more reliable estimates by maintaining the variability and 
intrinsic structure of the data [10]. 

The combination of model averaging with MIs has yet to be 
extensively explored, despite its potential to offer more robust 
inferences in the presence of missing data. Previous studies 
have primarily concentrated on enhancing the precision of MR 
models through model selection or addressing missing data 
through imputation techniques. Nevertheless, few studies have 
conducted a systematic comparison of these methodologies 
[11]. This gap in the literature is particularly significant, as 
modern datasets often contain a mix of incomplete and 
complex variables, necessitating a more comprehensive 
approach to model building those accounts for both uncertainty 
in model selection and the complications of missing data to be 
resolved. The objective of this study is to address this gap by 
conducting a systematic comparison between MR and model-
averaging approaches within the context of MIs for handling 
missing data. The current paper’s contribution is an evaluation 
of the relative performance of these two model-building 
strategies, with a focus on their ability to produce reliable and 
accurate estimates in the presence of incomplete data. By 
providing a detailed comparison, this study aims to offer 
practical guidance for researchers and statistical analysts on 
selecting the most appropriate model-building approach when 
dealing with missing data, while advancing the theoretical 
understanding of how these methods perform under different 
conditions. The findings of the present study have significant 
implications for fields where the missing data issue is 
prevalent, including healthcare, social sciences, and economics. 
The former provide valuable insights into the relative merits 
and limitations of different model-building strategies. 

II. MATERIALS AND METHODS 

A. Dataset 

The dataset used in this study comprises patient records 
from the diabetes dataset of Hospital Besar Alor Setar. The 
primary outcome of interest is plasma glucose concentration, 
also referred to as blood glucose concentration, which serves as 
the dependent variable in the conducted analysis. The 
independent variables are: 

 Age: The age of the patient, measured in years. 

 Gender: The patient’s gender is categorized as male or 
female. 

 Diastolic Blood Pressure: The diastolic blood pressure 
measurement is recorded in millimetres of mercury 
(mmHg). 

 Systolic Blood Pressure: The systolic blood pressure 
measurement is also recorded in mmHg. 

 Pulse Rate: The patient’s pulse rate is measured in beats per 
minute (bpm). 

 Level of Hemoglobin: The hemoglobin concentration in the 
blood, measured in grams per deciliter (g/dL). 
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 Presence of Coronary Heart Disease (CHD): A binary 
variable indicating whether the patient has been diagnosed 
with coronary heart disease (yes or no). 

B. Analysis Approach 

The analysis was carried out using two principal 
approaches: 

 A CC analysis was conducted to analyze only those records 
that contain no missing data for any of the variables of 
interest. This traditional approach is frequently employed in 
the presence of missing data, but it can result in biased 
estimates due to the reduced sample size [12]. 

 MI generates multiple datasets by incorporating information 
from other variables in the data set to fill in the gaps in the 
original data set. In contrast to the inferences produced by 
simple imputation methods, those derived from MI are 
more accurate in reflecting the uncertainty associated with 
missing data. The technique entails imputing each missing 
value with a vector of imputed values, incorporating 
random variations through an appropriate model [13, 14]. 

The MI process mainly involves replacing incomplete data 
with imputed values on multiple instances (typically 3 to 10 
times), which results in the generation of several datasets that 
are deemed to be complete. Subsequently, the desired statistical 
analysis is conducted on these datasets using standard 
complete-data methods. The MI process comprises three 
principal stages: 

 The Multiply Imputed Dataset is generated as unknown 
missing values are replaced by J-independent sets of 
imputed values drawn from the distribution of the missing 
data conditional on the observed data. 

 The multiply imputed dataset is then subjected to analysis. 
Once the MIs have been generated, the complete datasets 
are obtained. Each imputed dataset is then subjected to a 
separate analysis, with parameters estimated for each. It 
should be noted that the results will vary depending on the 
specific imputations that have been applied to replace the 
missing values. 

 The next step is to combine the estimates from the multiply 
imputed datasets. The J estimates are aggregated to form 
overall estimates in accordance with Rubin's Rules (RR). 
The combined variance-covariance matrix incorporates 
both within-imputation and between-imputation variability, 
thereby providing a more accurate overall forecast. 

C. Model Building Approaches 

 MR is a regression model comprising more than one 
independent variable, which is used to describe the 
behavior of the dependent variable. In other words, it 
generalizes the simple linear regression model by allowing 
for more than one term in a mean function, rather than just 
one intercept and slope. The MR model may include any 
number of independent variables [15-23]. Accordingly, the 
linear additive model that describes the relationship 
between a dependent variable, Yi, and p independent 
variables, Xi, is: 

�� � �� � ������. . . . . ��
��
 � ��  (1) 

In addition, an example of the regression model for two 
independent variables (X1 and X2) with the first order 
interaction between X1 and X2, which is X12, can be stated as: 

� � �� � ���� � ���� � ������ � �  (2) 

The development of the mathematical model consists of 
four distinct phases, as shown in Figure 1. 

 

 

Fig. 1.  Four phases of MR for model building approach. 

 Model Averaging: Model uncertainty represents a 
significant challenge that frequently arises during the 
model-building process. Model selection techniques 
represent a standard methodology for identifying the 
optimal model among all potential models. Nevertheless, 
the selection of a model will typically introduce further 
uncertainty into the model-building process. This is because 
the selection of a single model tends to ignore the 
uncertainty associated with the specification of the selected 
model. As a result, outcomes may lack precision and the 
confidence interval may be overly optimistic. 
Consequently, model averaging represents an alternative 
methodology to that of model selection. Rather than 
selecting a single optimal model, the weighted average of 
the estimates for all potential models is calculated. The 
application of model averaging will result in more accurate 
predictions and a reduction in the estimated influence of 
weaker variables. In model averaging, the "better" model is 
assigned a higher weight. 

The model averaging process can be broken down into five 
distinct steps. At the initial stage of the process, all potential 
models will be enumerated. The number of potential models 
will be equivalent to the number of probable models for the 
MR procedure. Subsequently, the weight assigned to each 
potential model will be determined in accordance with the 
specified criteria for model selection. Once the overall weights 
have been determined, the averaging estimator or coefficient 

(�
� will be calculated. Subsequently, the optimal model will 

be identified by integrating the estimates pertaining to the 
model's constituent sets. Lastly, in a manner analogous to the 
procedure employed in MR, a scatter plot of the residuals for 
the optimal model will be constructed to ascertain the 
randomness of the residuals. Furthermore, the skewness and 
kurtosis values of the optimal model will be calculated to 
ascertain its normality. In essence, when model averaging is 
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carried out in conjunction with MI, the model averaging 

estimator (�

(���

) for the linear model can also be defined as: 

�

(���

�
�

�
∑ �


��
�     (3) 

where M is the total number of models, p is the number of 
variables in each model, wj is the weight of each variable j in 
each model m, and: 
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Therefore, the estimated variance (���� ) is: 
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D. Evaluation Metrics 

Once the optimal model has been identified through the 
application of both MR and model averaging techniques, it will 
be subjected to evaluation using established metrics, MSE, 
RMSE, and MA. These three metrics will be employed to 
assess the model's performance, with lower values indicating 
superior performance. 

III. RESULTS AND DISCUSSION 

Tables I and II present summaries of the variables, 
providing descriptive statistics for the imputed data. Table II 
indicates that the mean blood glucose level (Y) is 13.14, while 
the mean age (X1) is 59.09. The mean diastolic blood pressure 
(X2) is 76.33, and the mean systolic blood pressure (X3) is 
142.32. The mean pulse rate (X4) is 86.36, and the mean 
hemoglobin level (X5) is 11.36. As indicated by the descriptive 
statistics in Table II, the imputed data closely match the 
original data, with the mean values for the imputed data being 
nearly identical to those in Table I. This similarity suggests that 
the imputed data are valid and suitable for analysis. 

TABLE I.  SUMMARY OF QUANTITATIVE VARIABLES FOR 
THE DIABETES DATA 

Variable Mean Median Minimum value Maximum value Missing value 
Y 13.39 12.20 1.20 35.00 114 

X1 57.25 59.00 10.00 94.00 No 

X2 77.38 76.00 38.00 164.00 No 

X3 87.63 87.00 33.00 170.00 No 

X4 11.54 11.40 3.70 21.40 268 

X5 143.00 140.00 16.00 266.00 No 

TABLE II.  DESCRIPTIVE STATISTICS FOR THE IMPUTED 
DATASETS 

Variable Mean Median Minimum value Maximum value 
Y 13.14 12 1.19 32.43 

X1 59.09 60 27.00 90.00 

X2 76.33 75 38.00 115.00 

X3 86.36 86 44.00 136.00 

X4 11.36 11.30 2.67 18.60 

X6 142.32 140 70.00 216.00 

 

A. MR Model Building Approach for MI Data 

The majority of selection criteria indicate that M115 is the 
optimal model, as evidenced by its AIC and log-likelihood 
values of 7,757.389 and -3,871.648, respectively. The blood 
glucose level is 3.7908 mmol/L when the other variables are 
held constant, as predicted by model M115, and as presented in 
Table III. However, this is not feasible given that the patients' 
age, blood pressure, pulse rate, and hemoglobin level cannot be 
zero. In addition, it can be inferred that an increase of 1 mmHg 
in blood pressure will result in a reduction of 0.0261 mmol/L in 
blood glucose levels, and that the presence of coronary heart 
disease will lead to a further reduction of 2.8806 mmol/L. 
Furthermore, an increase of 1 bpm in pulse rate will result in an 
increase of 0.0641 mmol/L in blood glucose level. 
Additionally, an increase of 1 g/dL in hemoglobin level will 
lead to an increase of 0.6475 mmol/L in blood glucose level, 
and an increase of 0.9647 mmol/L in blood glucose level when 
the patient is female: 

�� � 3.7908 − 0.0261�� � 0.0641�( � 0.6475�* −
0.9647�+(�,-.� − 2.8806�/(0�12 456�  (6) 

TABLE III.  M115 COEFFICIENTS FOR IMPUTATION DATA 

 Model estimator Std. Error P-value 
(Intercept) 3.7908 1.4392 <0.001 

X2 -0.0261 0.01252 <0.001 

X3 0.0641 0.009918 <0.001 

X4 0.6475 0.06788 <0.001 

X5 -0.9647 0.3383 <0.001 

X7 -2.8806 0.33677 <0.001 

 

B. Model Averaging Model Building Approach for MI Data 

Model 1 is a statistical model developed using the model 
averaging approach, which does not take into account variable 
interactions. According to Model 1, as evidenced in Table IV, 
the blood glucose level is 3.0982 mmol/L when all other 
variables are held constant. An one-unit increase in diastolic 
blood pressure is associated with a decrease of 0.0293 mmol/L 
in blood glucose level. Furthermore, for each additional year of 
age, the blood glucose level increases by 0.0002 mmol/L. 
Similarly, for each 1 bpm increase in pulse rate, the blood 
glucose level increases by 0.0648 mmol/L: 

�� � 3.0982 � 0.0002�� − 0.0293�� � 0.0648�( �
0.6499�* − 0.8996�+(�,-.� �               0.0057�7 −

2.8863�/(0�12 456�    (7) 

TABLE IV.  THE MODEL-AVERAGED COEFFICIENT FOR 
MODEL 1 

 Model estimator Std. Error P-value 
(Intercept) 3.0982 1.6875 0.0666 

X1 0.0002 0.0079 0.9816 

X2 -0.0293 0.0209 0.1628 

X3 0.0648 0.0100 <0.001 

X4 0.6499 0.0688 <0.001 

X5 -0.8996 0.3918 0.0218 

X6 0.0057 0.0089 0.5279 

X7 -2.8863 0.3713 <0.001 
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Model 2 is derived through the application of the model 
averaging approach, which incorporates variable interactions. 
According to Model 2, as presented in Table V, the blood 
glucose level is -1.759 mmol/L when all other variables are 
held constant. The model predicts that an increase of 1 g/dL in 
hemoglobin will result in an increase of 3.0567 mmol/L in 
blood glucose levels. Furthermore, the blood glucose level will 
increase by 0.0884 mmol/L for each 1-unit increase in the 
interaction between pulse rate and hemoglobin level. 
Conversely, the blood glucose level will exhibit a decrease of 
0.1813 mmol/L for each 1-unit increase in the interaction 
between diastolic blood pressure and hemoglobin: 

�� � −1.759 � 1.1737�� − 0.8268�� � 0.3690�( � 3.0567�* −
3.1888�+(�,-.� �          0.3117�7 − 2.871�/(0�12 456� �

0.1224��� − 0.0748��( � 0.0781��* �          0.1009��( −
0.1813��* � 0.0884�(* � 0.0019���( � 0.0131���* −

0.0146��(* −          0.0127��(* � 0.0004���(*  (8) 

TABLE V.  MODEL-AVERAGED COEFFICIENT FOR MODEL 
2 

 Estimate Std. Error Pr(>|z|) 
(Intercept) -1.759 4.2324 0.9101 

X1 1.1737 0.7534 0.6734 

X2 -0.8268 0.6408 0.7228 

X3 0.3690 0.5205 0.4788 

X4 3.0567 3.5618 0.3911 

X5 (male) -3.1888 1.4620 0.0293 

X6 0.3117 0.4486 0.4874 

X7 (with CHD) -2.871 1.3902 <0.001 

X12 0.1224 0.1134 0.7693 

X13 -0.0748 0.0892 0.4018 

X14 0.0781 0.1628 0.8964 

X23 0.1009 0.0706 0.6977 

X24 -0.1813 0.1449 0.7338 

X34 0.0884 0.3668 0.8097 

X123 0.0019 0.0107 0.9896 

X124 0.0131 0.0242 0.8831 

X134 -0.0146 0.0513 0.9383 

X234 -0.0127 0.0459 0.9400 

X1234 0.0004 0.0039 0.9932 

 

C. CC Data Analysis 

CC analysis represents the most prevalent technique for 
addressing issues pertaining to missing data. This study 
employed CC analysis as an additional methodology for 
addressing the issue of missing data. The analysis was 
implemented by removing all cases with missing values and 
only including all cases with complete values for all variables. 
In the case of the diabetes dataset, 1,147 CCs were identified, 
with 346 incomplete cases being subsequently removed from 
the original dataset. The same model-building approaches were 
applied to the CC data: MR and model averaging. A 
comparison of the MSE, RMSE, and MAE indicates that 
Model A (model averaging without an interaction process) 
represents the optimal model for CC analysis. Model A 
exhibited the lowest MSE, RMSE, and MAE. 

�� � 3.2908 � 0.0016�� − 0.0224�� � 0.0619�( �
0.6163�* − 0.6736�+(�,-.� � 0.0068�7 −

3.1265�/(0�12 456�    (9) 

In this model (Model A), the blood glucose level is 3.2908 
mmol/L when the remaining variables are held constant. 
Furthermore, an increase of 1 bpm in variable X3, representing 
pulse rate, will result in a corresponding increase of 0.0619 
mmol/L in blood glucose level. Concurrently, an increase of 
0.6163 mmol/L in blood glucose level is observed when 
variable X4 (hemoglobin level) is elevated by 1 g/dL. 
Additionally, blood glucose levels will decrease by 3.1265 
mmol/L in the presence of coronary heart disease. The three 
independent variables with the greatest significance for this 
model are X3, X4, and X7, as indicated by p-values that are less 
than 0.05. 

D. Comparison of Model Building by using MR and Model 
Averaging 

The model building for this study is evaluated through the 
calculation of the MSE, RMSE, and MAE for each selected 
model. Table VI demonstrates that the model averaging 
approach is more effective than MR in building a model, as the 
evaluation metrics for the former are consistently lower than 
those for the latter. Therefore, the model averaging approach is 
deemed the optimal methodology for constructing the model 
for the diabetes data set. Table VII presents the MSE, RMSE, 
and MAE values for Model A and Model 1, which are the 
optimal predictors identified through the model averaging 
process in both the CC analysis and MI analysis. As illustrated 
in Table VII, the MSE, RMSE, and MAE values for Model A 
are higher than those for Model 1. This indicates that MI is an 
effective approach for addressing missing data. In addition, the 
systematic imputation technique employed to fill in missing 
values has been demonstrated to reduce the MSE in 
comparison to other methods. Moreover, MI preserves the 
inherent variability of missing values and accounts for their 
uncertainty, thereby facilitating more precise and reliable 
statistical inferences. 

TABLE VI.  EVALUATION METRICS FOR STATISTICAL 
MODELS (MI DATA) 

 MR 
Model 1 (Model averaging 

without interaction) 
Model 2 (Model averaging  

with interaction) 
MSE 32.4832 32.3371 32.8099 

RMSE 5.6994 5.6866 5.7280 

MAE 4.8674 4.8625 4.8872 

TABLE VII.  EVALUATION METRICS FOR THE BEST MODEL 
FROM CC ANALYSIS AND MI ANALYSIS 

 
Model A (Model Averaging 

for CC analysis) 
Model 1 (Model averaging for 

imputed data analysis) 
MSE 32.5482 32.3371 

RMS

E 
5.7051 5.6866 

MAE 4.9076 4.8625 

 

IV. FINDINGS 

This study compared the efficacy of MR and model 
averaging approaches for analyzing datasets with missing data, 
using both CC data and MI data. The results substantiate the 
efficacy of MI as a robust technique for handling missing data, 
providing more accurate and less biased estimates in 
comparison to methods that rely solely on CC analysis. The 
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findings demonstrate that the model derived from the model 
averaging process applied to the MI data yielded the lowest 
MSE, RMSE, and MAE, thereby showcasing its superior 
performance. In contrast, CC analysis, which excluded data 
with missing values, proved to be a less reliable method, 
particularly when the proportion of missing data was high. This 
further emphasizes the importance of MI in preserving data 
integrity. A distinctive aspect of this study is its comprehensive 
examination of model-building techniques in the context of 
missing data. While previous studies have primarily focused on 
either model selection techniques or missing data handling 
separately, this study addresses the limitations of these 
approaches by incorporating model averaging with MIs. This 
combination addressed the uncertainty associated with model 
selection and resolved the common issue of bias that arises in 
missing data scenarios. By comparing these approaches, the 
study offers new insights into how model averaging can 
outperform traditional regression methods in predictive 
accuracy and model reliability, particularly when applied to 
datasets with incomplete information. 

Moreover, the study's contribution extends beyond mere 
comparison. It underscores the importance of model averaging 
in accounting for model uncertainty, a factor that is frequently 
neglected in conventional MR methodologies. These findings 
have significant implications for the broader field of statistical 
modeling, where the choice of model can have a substantial 
impact on the validity of research findings. Model averaging 
consistently yielded the lowest values for MSE, RMSE, and 
MAE, indicating that it provides a more dependable 
methodology for researchers confronted with missing data. 
Consequently, it is the preferred approach in instances where 
model uncertainty and data incompleteness are intricately 
intertwined. Another noteworthy finding is the discrepancy in 
performance between CC analysis and MI, which lends further 
support to the growing consensus that relying on CCs alone can 
lead to erroneous conclusions. As this study presents, the CC 
approach becomes increasingly unreliable as the proportion of 
missing data increases, introducing biases and reducing the 
overall precision of the model. This contribution adds to the 
growing body of evidence supporting the use of more advanced 
techniques, such as MI, which maintain the sample size and 
data variability, thereby leading to more accurate model 
estimates. In practical terms, the results of this study provide 
researchers and practitioners across various disciplines with 
actionable guidance, particularly in fields, such as social 
sciences, healthcare, and economics, where missing data is a 
common occurrence. The demonstrated advantages of 
combining MIs with model averaging provide a clear 
recommendation for future research and data analysis practices. 
This approach enhances the robustness of statistical models and 
the reliability of conclusions drawn from incomplete datasets, 
hence ensuring that critical decisions are informed by sound, 
unbiased evidence. 

V. CONCLUSIONS 

In conclusion, the novel aspect of this study is its integrated 
approach to addressing model uncertainty and missing data, 
which offers a more comprehensive solution than traditional 
methods. The research demonstrates the superiority of model 

averaging with Multiple Imputations (MIs), advancing the best 
practices in statistical modeling with far-reaching implications 
for the construction and validation of models in incomplete 
data. 
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