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ABSTRACT 

Nowadays, deep neural networks are in a phase of rapid development. Simultaneously, the field of 

biometric forgery is also advancing. Systems that can successfully pass face verification systems are 

emerging and continuously improving deepfake videos and voice messages are created. These 

developments can have a negative impact on a person’s reputation or cause serious security breaches. This 

paper proposes an approach for spoofing detection in voice biometrics using the ASVspoof2019 LA dataset 

The model is trained and validated on subsets representing one type of attack, and evaluated on a subset 

containing more advanced types of spoofing attacks, demonstrating the model’s ability to generalize to 

more complex attack scenarios. Two models, capsule-based and TCN-based, are proposed, noted as 

ResCapsGuard and Res2TCNGuard, respectively. ResCapsGuard achieved an Equal Error Rate (EER) 

value of 2.27, while Res2TCNGuard reached an EER value of 1.49. Notebooks with our models are 

available in repositories in github. Due to the fact that a random part is cut out of the audio, the results 

may vary. 
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I. INTRODUCTION 

Spoofing audio can be used to deceive a verification system 
or to create fake news. The quality of such audio is improving 
greatly due to the development of deep learning architectures 
and the increase of training data. This makes the creation of 
forgeries a relatively simple process. Today, creating spoofing 
audio requires only a laptop with internet access to find a 
pretrained model, feed it data, and obtain the desired synthetic 
speech sample. It is not difficult to generate any passage from a 
given text using a powerful text-to-speech model (e.g. [1]). 

Anti-spoofing models determine whether an utterance is 
bona fide or spoof. Combining voice verification systems with 
these models can enhance the security of systems that use voice 
biometrics. The ASVspoof community is conducting research 
in this field. In 2013 [2], the collection and development of a 
database for a unified evaluation of different countermeasure 
(CM) systems was initiated. In [3], CM systems for synthetic 
voice detection as well as voice conversion spoofing attacks 
were developed. In [4], the main focus was on replay attacks. 
In [5], the dataset consisted of two parts, Physical Access (PA) 
and Logical Access (LA). The PA subset aims to record and 
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play back real speech. The LA part of the dataset consists of 19 
different types of attacks. The model was trained and validated 
on 6 different attacks, while the evaluation subset presents 13 
different types of audio manipulation. This allows the 
generalization ability of models to be assessed. 

According to the description of the data set, the model’s 
primary criterion is to capture global patterns rather than 
memorize local ones from training samples. This is why we 
decided to work on creating lightweight architectures. 

In this paper, we propose capsule-based and TCN-based 
models to detect audio spoofing. Inspired by the work of 
AASIST [6], we decided to use a sinc-convolutional layer [7] 
to produce high-level feature maps, along with 6 residual 
blocks [8]. In capsule architecture, noted ResCapsGuard, 
ResNet blocks are used in the encoder. This architecture 
consists of 30 primary capsules, whose output is routed to 2 
output capsules using a dynamic routing algorithm. The TCN-
based approach, noted Res2TCNGuard, uses Res2Net blocks 
[9] whose output is converted into spectral and temporal 
components. The output of both branches is concatenated and 
fed into fully-connected layers [10]. 

II. ENCODER 

High-level feature-maps were obtained using encoders 
based on ResNet and Res2Net blocks. Each encoder includes a 
trainable sinc-conlvolutional layer that can learn to extract 
important frequency features from the raw waveform. 

A. Sinc-Convolutional Layer 

Unlike common convolutional layers, where the filter is 
trained on all data, the sinc-convolutions layer performs 
waveform convolution using parametrized sinc functions. This 
layer learns only two parameters from the data: the upper and 
lower frequencies to be cut. This enables the network to reduce 
the number of parameters that require training and focus on 
higher-level features that are important in audio processing. 

B. ResNet Blocks 

Each of the ResNet blocks consists of two convolutional 
layers. Before each of them, there is a batch normalization and 
the SELU activation function. The skip-connection is 
implemented by adding the original data to the output after two 
convolutions. If required, the original tensor changes the 
channel dimension for summation using an additional down 
sample layer. A maximum pooling operation with kernel size 
of (1,3) is applied to the obtained result. Due to this size, each 
block reduces the temporal dimensionality by a factor of three. 
We used six of these blocks in the encoder. 

C. Res2Net Blocks 

To extract high-level features, Res2Net blocks were also 
used, as they are able to process deeper features with 
approximately the same number of operations. However, this 
architecture has not been demonstrated to be effective in all 
cases, as will be explained below. The first layer is a 
convolutional layer with a kernel size of 1 without padding and 
a stride equal to 1, after which comes the batch normalization 
and the ReLU activation function. The output is further split 
into N parts, denoted as xi, i ∈ {1,2,...,N}. The splitting occurs 

channel-wise, while preserving the temporal and spectral 
dimensions. The first split goes directly through without any 
transformations. The second split passes through a 3×3 
convolution, denoted as Ki(), and batch normalization. The 
third and next splits before convolution are summed with the 
result after the convolution of the previous split and are fed into 
the next convolution, after which the batch normalization is 
applied. These operations can be defined by (1): 

�� =  ���� = 	 �� , � = 1
�����, � = 2
���� + ���� �, 2 < � ≤ �   (1) 

The results are concatenated and are then fed into 1 
convolution with batch normalization. Next is the squeeze and 
excitation block [11]: the result from channel-wise average 
pooling is passed through the fully-connected layers, with 
ReLU being after the first and sigmoid after the second. Each 
number of the original is multiplied by the obtained result. 
Finally, like ResNet blocks, a skip-connection mechanism is 
implemented, followed by ReLU and max pooling with the 
same parameters as in Section II.B. 

III. RESCAPSGUARD 

This section discusses the architectural specifics of a 
capsule neural network. The proposed model consists of two 
levels of capsules: 30 primary and 2 for output. Using exactly 
this amount was found to be optimal for our model. The 
encoder comprises ResNet blocks. 

A. Primary Capsule Extractor 

The encoder output produces an H feature map, H ∈ RC×S×T 

which is then fed into the capsule extractor. The first part of the 
extractor consists of two convolutional layers, the first reduces 
the number of channels to 64, the second to 16. After each 
layer there is batch normalization and ReLU. Authors in [12] 
proposed using statistical pooling to reduce dimensionality in 
the field of image forgery detection. We used this method 
because we work with audio forgeries. Between the first and 
the second parts of the extractor for dimensionality reduction, 
there is a pooling that calculates the channel-wise mean and 
standard deviation. The encoder’s second part consists of two 
convolutions. The first increases the channel dimensionality to 
8 and the second reduces it to 1. Each layer is followed by 
batch normalization without activation. The extractor produces 
30 capsules, each containing 8 elements. 

B. Dynamic Routing 

The output from the primary capsules is routed to the output 
capsules using Algorithm 1. 

Algorithm 1 Dynamic Routing algorithm 

procedure Routing(��|�,W, r) 
    �� = � + ������� !���"  
    �#�|� = $�%&%�' (�)���ℎ��� ��|�"+ 
    for all input capsules i and all 

output capsules j do: 

        ,�� ← 0 
    for r iterations do: 
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        for all input capsules i do: /� ← �%�'0���1�� 
        for all input capsules j do: �� ← ∑ /�� �#�|��  

        for all input capsules j do: 3� ← �)���ℎ���" 
        for all input capsules i and 

output capsules j do:,�� ← 3�  �#�|�  
    end for 

    return 3� 
end procedure 

 

The proposed dynamic routing mechanism includes a 
special feature: the addition of Gaussian random noise to the 

weight vector, and the use of dropout to prior vectors �#�|� . 

These modifications increase the network’s generalisation 
ability. The squash procedure follows the formula proposed in 
[13]: 

3� = 456754
�84567549 67456754    (2) 

C. Implementation Details 

The model was trained using weighted cross-entropy loss. 
A weight of 0.9 was applied to bona fide speech and one of 0.1 
to spoofed speech. For the training, the AdaBound optimizer 
[14] was used with a learning rate of 10

−4 
and a weight decay of 

10
−5

. The number of iterations r for dynamic routing 
mechanism was chosen empirically to be 2. The learning rate 
was reduced by half every 10 epochs during the 25-epoch 
training period with a batch size of 32. Training was done on 
an NVIDIA Tesla A100 using PyTorch framework. The model 
has approximately 1.6 million parameters. However, training 
for one epoch takes around 6 minutes whereas the validation 
takes 1.5 minutes. The full training took about 3 hours. 

D. Architectural Specifics 

The EER and t-DCF metrics are unstable (as shown in 
Figure 1), they are not relatively monotonically decreasing, 
they cyclically rise and fall sharply, while the loss is roughly 
monotonically decreasing. Adding the attention mechanism 
between capsules proposed in [15] with different hidden layer 
sizes worsen the result, the EER at validation varied in the 
vicinity of 40. Reducing the number of capsules with attention 
mechanism didn’t solve anything either. Changing the encoder 
blocks from ResNet to Res2Net made the metrics more stable 
with no sudden spikes (Figure 2). However, a problem was 
raised: there is a sharp jump in metrics at the beginning of the 
training, which decreases monotonically after the second 
epoch. After training, the final model in this case no longer 
performs well on the evaluation subset with an EER of 
approximately 4.57. Adding Squeeze-Excitation to all Res2Net 
blocks worsened the results and the model lost stability (Figure 
3). The EER value was initially low but sharply increased after 
the first epoch. Afterward, it slightly decreased, but at the 13th 
epoch, the model stopped working. The reason for this 
phenomenon was not found, and further use of exactly the 
same blocks did not cause similar problems. 

 

Fig. 1.  Loss and EER of the best model. 

 
Fig. 2.  EER of the model with changed encoder blocks from ResNet to 

Res2Net. 

 

Fig. 3.  EER of the model with SE in Res2Net blocks. 

Experiments with varying primary capsule extractor did not 
result in improved outcomes. The performance of the capsule 
network was degraded in all configurations when more 
advanced encoders were used. The model architecture proposed 
in this paper was empirically found to be the optimal solution. 

IV. RES2TCNGUARD 

This section discusses the architecture of the second 
considered model, which was based on TCN. The converting of 
feature maps into temporal and spectral components is inspired 
by AASIST. However, we suggest a TCN approach instead of 
graph processing. The Res2Net blocks described above were 
used as encoder blocks. 
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A. Branching Mechanism 

The output of the encoder is the feature map H, H ∈ RC×S×T. 
Two matrices are created for the spectral and the temporal 
components. This transformation is done by maximum 
selection of the corresponding dimensions. Unlike AASIST, we 
propose to use a non-absolute maximum: 0�'6 =  max= >,    0�'6 ∈  ℝA×C   (3) 0�'= = max6 >,    0�'е ∈  ℝA×E  (4) 

The matrices are then fed into their corresponding TCN 
modules. 

B. TCN-Module Configuration 

According to [31], each TCN block consists of two dilated 
convolutional layers with batch normalization, ReLU and 
dropout. The dilated convolution operation for an input 
sequence x, x ∈ RN and weight wi, i ∈ {0,...,k − 1} is: �= =  ∑ F� ⋅ �=��∗I    J���KL    (5) 

where k is the filter size, in our case 2, d is the dilation factor, 
and t − i ∗ d represents past transformations. A padding equal 
to (k − 1) ∗ d is used and trimmed after one transformation to 
further exclude its influence. The weights are initialized based 
on the normal distribution with a mean of 0 and a standard 
deviation of 0.01. 

One block also utilizes residual connections, where the 
results obtained before applying dilated convolution are added 
to the results obtained after it. The output is processed through 
the ReLU activation function. A TCN module comprises five 
levels of blocks, with the dilation size increasing exponentially 
for each level. �� = 2� , � ∈ M0, … , 4P    (6) 

C. Result Processing after the TCN Modules 

Each TCN-module is followed by a fully-connected layer, 
dropout, and ReLU activation. The results are concatenated and 
then fed into two fully-connected layers with an ReLU between 
them. The output provides logits for both spoof and bona fide 
speech. To evaluate the model, we considered the output of 
genuine speech. Thus, it should be maximal for bona fide and 
minimal for spoof. 

D. Implementation Details 

Weighted cross-entropy loss was used with weights of 0.1 
and 0.9 for spoof and bona fide speech, respectively. The 
model was trained using the Adam optimizer with a learning 
rate of 10

−4
. The batch size was selected as 28. 

The training consisted of 75 epochs using an NVIDIA Tesla 
A100, each epoch lasting approximately 20 minutes. The 
model has around 172k parameters and the total training time 
was 25 hours. 

E. Architectural Specifics of Res2TCNGuard 

As previously stated, the maximum value is used to obtain 
the spectral and temporal sequences. At the same time, the use 
of mean and minimum did not improve the results. We tried 

adding branches for the mean and minimum, but this was also 
unsuccessful. Other frontends improved the results greatly on 
the development subset, but were much worse on the 
evaluation. Unlike AASIST, Res2Net has empirically proven to 
be the best solution when using 4 branches. Scaling to the 
depth of the TCN-blocks didn’t improve the metrics either. 

V. EXPERIMENTS AND RESULTS 

This section describes the dataset used to train, validate, 
and evaluate the models. It also presents the metrics used and 
compares the results with those of other models. 

A. Dataset and Metrics 

Models were trained in the ASVspoof 2019 LA (Logical 
Access) training subset [28]. This dataset contains 10256 
records of real data and 90192 records of spoofed data with a 
sampling rate 16 kHz. There were applied TTS (Text-To-
Speech) and VC (Voice Conversion) spoofing. The models 
were evaluated on the development subset. The models were 
evaluated using the EER and the minimum tandem Detection 
Cost Function (min t-DCF). Min t-DCF evaluates the quality of 
CM systems rather than their contribution to the reliability of 
Automatic Speaker Verification (ASV) systems during 
spoofing attacks. 

B. Results 

Table I shows the comparison of the results of the spoofing 
speech detection systems on the ASVspoof2019 LA dataset. 
According to [30], we find it inappropriate to use deep learning 
models when their EER is greater than 5. The same result can 
be obtained by exploring the features of the data in the dataset 
and processing them using classical machine learning methods. 

The ResCapsGuard outperformed the AdaBoostClassifier 
by approximately 2.2 times and also outperformed various 
front-end-based models. Furthermore, the model has a 
relatively low convergence threshold of 2 epochs, which is just 
slightly higher than those in [22, 25]. In addition, the model 
didn’t exceed the 2 EER barrier and is not the best solution 
from a metric point of view. Res2TCNGuard gave better 
results. Among the models selected for comparison, the 
proposed approach is just behind graph networks and AASIST-
based approaches [6, 8, 17, 18] and CNBNN(MECA) [16]. 

VI. CONCLUSION 

In this paper, we described two proposed approaches for the 
task of audio spoofing detection on the ASVspoof2019 LA 
dataset. The proposed approaches have their own advantages 
and disadvantages. The ResCapsGuard is trained relatively fast, 
the number of epochs required for convergence is 25, with a 
total training time of approximately 3 hours, which we consider 
to be fast enough. The model showed a result of EER equal to 
2.27. The Res2TCNGuard showed better EER results, despite 
the fact that it takes longer to train (75 epochs, 25 hours). Both 
approaches provide a complete end-to-end solution for 
spoofing detection. The models can be found in [32] and [33]. 
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TABLE I.  RESULTS OF SPOOFING SPEECH DETECTION SYSTEMS ON THE ASVSPOOF2019 LA DATASET 

System Front-end Architecture min t-DCF EER (%) Epochs 

[16] Raw waveform CNBNN(MECA) 0.0187 0.64 50 

[17] Raw waveform and power spectrogram S2pecNet 0.025 0.77 100 

[6] Raw waveform AASIST 0.0275 0.83 - 

[18] Raw waveform AASIST-SAMO 0.0356 0.88 100 

[6] Raw waveform AASIST-L 0.0309 0.99 - 

[8] Raw waveform RawGAT-ST 0.0335 1.06 300 

Proposed Raw waveform Res2TCNGuard 0.0457 1.49 75 

[19] FastAudio-Tri ECAPA-TDNN 0.0451 1.54 100 

[20] Raw waveform Res-TSSDNet 0.0482 1.64 100 

[21] Raw waveform Raw PC-DARTS 0.0517 1.77 100 

[22] CQT MCG-Res2Net50+CE 0.052 1.78 20 

[23] LFCC LCNN-LSTM 0.0524 1.92 - 

[24] LFCC ResNet18-OS-softmax 0.059 2.19 100 

Proposed Raw waveform ResCapsGuard 0.0744 2.25 25 

[25] CQT SE-Res2Net50+CE 0.0743 2.502 20 

[26] LFCC GMM 0.0904 3.50 - 

[27] LFB ResNet18-GAT-T 0.0894 3.50 300 

[28] LFCC PC-DARTS 0.0914 4.96 50 

[29] MFCC, IMFCC and others AdaBoostClassifier - 5 - 
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