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ABSTRACT 

Enhancing the reliability of wind speed forecasting is vital for efficient wind power generation. Given the 

wind's stochastic nature, preprocessing is crucial to obtain a clean wind speed series. This study introduces 

an innovative wind speed prediction model that integrates Variational Mode Decomposition (VMD), 

Symplectic Geometry Mode Decomposition (SGMD), and Long Short-Term Memory (LSTM). The model 

begins with VMD dividing the series into low- and high-frequency parts, then the SGMD further analyzes 

the high-frequency segment, and LSTM predicts results based on these components. Collaborative use of 

VMD and SGMD enables thorough decomposition of intricate wind speed data, while LSTM boosts the 

model's ability to capture patterns and dependencies. This hybrid model addresses the challenges posed by 

wind power uncertainty, aiming to efficiently integrate wind energy into power systems. The proposed 

hybrid model was compared to some benchmark models and outperformed them, reducing MAPE by 58% 

and RMSE by 31% for Dataset 1, and improving MAPE by 14% and RMSE by 36% for Dataset 2. The 

results confirm the competitive strength of the proposed strategy. Furthermore, the suggested two-stage 

decomposition technique demonstrates suitability for the examination of nonlinear characteristics in wind 

speed patterns. 

Keywords-wind speed prediction; secondary decomposition; VMD; SGMD; deep learning; LSTM 

I. INTRODUCTION  

The wind holds significant importance in numerous areas of 
human existence, particularly in its contribution to renewable 
energy sources. This natural element not only offers sustainable 
power solutions but also influences various other aspects of 
daily life and environmental sustainability [1]. Wind also has a 
crucial impact on industries such as shipping, where it affects 
navigation and safety, and agriculture, where it influences crop 
growth and soil conditions. Additionally, the wind plays a role 
in natural disasters, as its turbulence intensity can lead to severe 
weather events, affecting both human activities and the 
environment [2]. Wind is a key factor that significantly affects 
agricultural production, influencing various aspects, from 
pollination and soil erosion to the microclimate of crop fields 
[3]. Strong winds can pose risks in agricultural settings by 
hindering pollination and facilitating the spread of pests, such 

as promoting fungal growth in plants. These adverse effects can 
lead to significant losses for farmers [4].  

In recent decades, a variety of forecasting models have 
been proposed to enhance the precision of wind speed 
prediction. In general, these methods can be categorized into 
four main types: physical methods, which are based on 
atmospheric data and physical principles; statistical methods, 
using historical data to predict future trends; artificial 
intelligence methods, applying advanced algorithms and 
machine learning; and hybrid methods, which combine 
elements of the aforementioned approaches for improved 
accuracy [5, 6]. In hybrid forecasting methods, data 
preprocessing techniques are often combined with machine 
learning algorithms to enhance the accuracy of wind speed 
predictions. For example, in [7], empirical wavelet transform 
was applied to decompose speed data, LSTM and regularized 
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Extreme Learning Machine (ELM) were used for prediction, 
and then the results were reconstructed with the inverse 
empirical wavelet transform. In [8], wavelet transform was 
combined with a genetic algorithm-optimized Support Vector 
Machine (SVM), selecting input variables based on 
autocorrelation and partial correlation. In [9], the effectiveness 
of empirical mode decomposition and its variations was 
evaluated, showing that a combination of the complete 
ensemble empirical mode decomposition with adaptive noise 
and SVM yielded the best results. In [10], wavelet packet 
decomposition and filtering were used, and Elman neural 
networks and boosting algorithms were employed for 
forecasting.  

The concept of a secondary decomposition algorithm has 
gained significant attention to reduce non-stationarity in data 
sequences more effectively. Its objective is to harness the 
strengths of diverse decomposition techniques to enhance the 
overall efficacy of the decomposition process. In [11], a multi-
step wind speed forecasting model was formulated, combining 
a secondary decomposition algorithm with an optimized 
Wavelet Neural Network (WNN). The Ensemble Empirical 
Mode Decomposition (EEMD) was used to extract the 
appropriate and detailed components from the original data 
series. For components with the highest frequency, VMD was 
employed for further decomposition. Empirical evidence 
demonstrated that the proposed EEMD-VMD-HSBADAWNN 
model outperformed other comparative models in terms of 
accuracy and reliability.  

In [12], a hybrid forecasting model was developed, which 
combined Empirical Mode Decomposition (EMD), Wavelet 
Packet Decomposition (WPD), Crisscross Optimization (CSO), 
and ELM. Wind speed data was first broken down into various 
Intrinsic Mode Functions (IMFs) through EMD. The 
component with the highest frequency, IMF1, was then further 
decomposed using WPD. The experimental results indicated 
that the effectiveness of EMD was enhanced through this 
secondary decomposition process. In [13], a Secondary 
Decomposition Algorithm using Complete Ensemble Empirical 
Mode Decomposition with Adaptive Noise (CEEMDAN) and 
VMD was proposed for wind speed prediction. In this 
approach, the highest frequency component derived from the 
CEEMDAN decomposition results was re-decomposed using 
VMD. The proposed prediction framework comprised a Kernel 
ELM (KELM), which was enhanced with an Improved Hybrid 
Differential Evolution-Harris Hawks Optimization 
(IHDEHHO) strategy. 

Numerous studies have shown the effectiveness of both 
decomposition models and machine learning algorithms. It can 
be inferred that secondary decomposition algorithms, which 
capitalize on the strengths of various decomposition methods, 
tend to exhibit superior performance. Moreover, it is important 
to recognize that commonly utilized decomposition techniques 
exhibit a mix of advantages and shortcomings [14]. For 
example, EMD is known for its adaptability, especially in 
handling nonlinear and non-stationary data series. However, 
EMD is not without its drawbacks, such as end effects, mode-
mixing issues, and over-envelope problems [15]. On the other 
hand, VMD is effective in accurately extracting low- and 

medium-frequency signals but struggles with identifying weak 
high-frequency signals [16]. To address these decomposition 
challenges in VMD, the SGMD algorithm was used in [17]. 
SGMD leverages symplectic geometry similarity 
transformations to break down a signal into a series of 
independent mode components, demonstrating a strong 
capacity to mitigate issues such as mode-mixing, sensitivity to 
user-defined parameters, and lack of noise robustness. The 
SGMD algorithm has found applications in different areas, 
such as noise reduction [18], medical diagnosis [14], and fault 
diagnosis [19]. Numerous studies have shown the effectiveness 
of SGMD in these fields, which collectively have attested to its 
superior performance in data decomposition tasks. 

This study proposes a secondary decomposition algorithm 
that combines the strengths of both VMD and SGMD. Initially, 
VMD is employed to isolate the low-frequency components of 
the signal. Subsequently, SGMD is applied to further 
decompose the remaining part of the signal into an appropriate 
number of components. This preparatory method maximizes 
the utilization of signal information and obtains several 
independent and simple decomposition results. Moreover, the 
LSTM [4] algorithm is subsequently employed to develop a 
predictor that offers enhanced performance. The LSTM is a 
deep learning algorithm, which is part of a larger family of 
machine learning strategies that have been effective against 
several domains in the time series field over the last years [20]. 

This study introduces a hybrid model for wind speed 
forecasting, combining secondary decomposition with deep 
learning techniques. The model employs a two-tier 
decomposition approach, initially utilizing VMD to separate 
the original wind speed series into low- and high-frequency 
components. This step capitalizes on VMD's proficiency in 
isolating low-frequency elements, thereby minimizing the 
initial data's information content to prevent SGMD's potential 
over-decomposition. Subsequently, SGMD is applied to further 
break down the high-frequency portion into a series of 
independent Symplectic Geometry Components (SGCs) and 
residuals. Then, LSTM is deployed to forecast the components 
derived from the secondary decomposition process. The 
aggregate forecast result is then computed by adding the 
predicted values across all modes. The primary contributions of 
this study can be summarized as follows: 

 Introduces a new method specifically designed for 
segmenting wind speed series into fully reconstructed 
modes, enhancing the accuracy and clarity of 
decomposition. 

 Combining the strengths of VMD and SGMD simplifies the 
complexities involved in wind speed prediction and 
improves the quality of decomposition beyond what is 
achievable with traditional single-method approaches. 

 Presents a hybrid model for wind speed forecasting that 
combines VMD, SGMD, and LSTM networks. The model 
begins with a detailed secondary decomposition process to 
extract complete and accurate components. 

 Uses LSTM for prediction: After decomposition, the LSTM 
algorithm is employed as a reliable prediction tool, utilizing 
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the direct forecasting strategy for its accuracy and 
simplicity in delivering stable forecasting results. 

II. METHODOLOGY 

A. Variational Mode Decomposition (VMD) 

To overcome the difficulties related to noise sensitivity and 
sampling inherent in EMD, an alternative technique was 
introduced in [16], known as VMD. This technique can 
decompose a multi-component signal into several quasi-
orthogonal intrinsic mode functions in a non-recursively way 
[21]. As a method that does not rely on recursion, the goal is to 
break down a signal into several quasi-orthogonal intrinsic 
modes, each having a restricted bandwidth. This unique 
technique of decomposition gives VMD an advantage in terms 
of resistance to noise and minimizing errors, especially 
compared to methods that involve recursive calculations [22]. 
Figure 1 shows the specific steps involved in VMD for a signal ���� with a certain dimension. 

 

 

Fig. 1.  The flowchart of the VMD algorithm. 

B. Symplectic Geometry Mode Decomposition (SGMD) 

SGMD is a mathematical technique used in signal 
processing, particularly for analyzing time series data. It was 
introduced to address common problems such as the sensitivity 
to artificial parameters and mode mixing found in 
decomposition models. SGMD is based on non-linear 
transformations, making it well-suited for analyzing dynamic 
systems. The SGMD method can be divided into four main 
stages: (i) adaptively establishing the embedding dimension of 
the time series, (ii) employing a symplectic geometry similarity 
transformation to determine the eigenvalues of the Hamiltonian 
matrix, (iii) implementing diagonal averaging, and (iv) 
adaptively reconstructing the components [17]. The main steps 
of SGMD are as follows. 

1) Trajectory Matrix Constructing 

For a given time series X of length �, consisting of elements ��, �	, ..., �
, the trajectory matrix X is constructed following 
the Takens embedding theorem. This matrix X is structured as 
follows: 

X �
⎣⎢
⎢⎢
⎡ �� ���� … ����������	 ���� … �	�������::��

::����
… :… :… ���������⎦⎥

⎥⎥
⎤
  (1) 

where � denotes the embedding dimension, � is the time delay, 
and � � � � �� � 1�� . The selection of values for �  and � 
follows specific adaptive rules [22]. The maximum peak 
frequency ����  is calculated from the initial time series Power 
Spectral Density (PSD). If the normalized frequency is below 10�! , �  is chosen to be �/3 . Conversely, if it exceeds this 
threshold, �  is set to 1.2 times the quotient of the sampling 
frequency %& by ���� [17]. 

2) Symplectic Geometry Decomposition (SGD) 

To reconstruct the Hamiltonian matrix, an autocorrelation 
analysis of the trajectory matrix is performed, resulting in the 
symmetric covariance matrix A , which is expressed as  A �  X(X. Next, the Hamilton matrix M is formed using the 
symmetric matrix A, in the structure [17]: 

M � *A 00 �A+,    (2) 

Once the Hamilton matrix M is constructed, its square, denoted 
as N �N � M	�, is calculated. Both matrices M and N qualify 
as Hamilton matrices according to the definition of a Hamilton 
matrix. Consequently, a symplectic orthogonal matrix Q  is 
derived as per the equation [17]: 

Q+NQ � *B R0 B+,    (3) 

Q is an orthogonal symplectic matrix that holds the special 
properties of symplectic matrices. This is crucial to ensure that 
the Hamilton matrix's structure is not altered during 
transformations. Here, B is set as an upper triangular matrix, 

defined such that  123 � �4 5 6 7 1�. By applying the Schmidt 

orthogonalization technique, this upper triangular matrix B is 
converted to matrix N, and its eigenvalues are determined as 8�, 8	, 8!, … . , 8� . If  A  is a real symmetric matrix, then its 
eigenvalues will be identical to those of B. The eigenvalues of 
the matrix A are calculated from the properties of the Hamilton 
matrix [17]: 

;2 � <82 �4 � 1,2,3, … , ��   (4) 

The eigenvalues of the symmetric matrix A  are derived 
based on the characteristics of the Hamilton matrix. The 
distribution of ;2  is arranged in a descending order, such that, ;� > ;	 > · ·  ·  >  ;� , with the smaller eigenvalues often 

considered to represent noise components. Then S? � Q?+X+ 
and Z? � Q?S?  can be given using the eigenvector Q? , 
corresponding to the eigenvalue ;2   of  A . The reconstruction 
matrix Z  consists of the initial single component Z?  ( 4 � 1, 2, . . . , �), defined as follows [17]: 
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Z � Z� 7 Z	 7 ⋯ 7 ZB    (5) 

3) Diagonal Averaging Transformation 

Initially, Z is defined as an � × � matrix. It is essential to 
reorganize its single components for optimal use. After this 
reorganization, Z is transformed by diagonal averaging, which 
forms a set of new time series, all measuring � in length. This 
results in the formation of �  new time series, each with the 
same �  length, and the combined total of these �  series 
effectively restores the original time series. 

For each initial single-component matrix ZD , its elements 

are defined as E23, where 4 ranges from 1 to � and 6 from 1 to  �. Then, �∗ is defined as the smaller of � and �, and �∗ is 
the larger of �  and  � , � � � 7 �� � 1�� . When �  is less 

than  � , setting  E23∗ � E23 , and if �  is greater, then setting   E23∗ � E32  . This can allow the application of the diagonal 

averaging transfer to the matrix [17]. 

GH �
⎩⎪⎨
⎪⎧ �

H ∑ NO,H�O��∗HOP�                     1 ≤ R ≤ �∗
�

�∗ ∑ NO,H�O��∗�∗OP�                      �∗ < R ≤ �∗
�


�H�� ∑ NO.H�O��∗
��∗��OPH��∗��    �∗ < R ≤ �
 (6) 

The matrix Z? is converted into a sequence of G2  �G�, G	, … , G
� . Consequently, the reconstruction matrix Z  is 
transformed into a new series of matrix  Y , which has a 
length  � × � , by applying diagonal averaging. This process 
decomposes the original time series into  �  independent, 
superimposed components, each with distinct trends and 
frequency bands. The  �  single component signals are then 
obtained through diagonal averaging [17]. 

U � U� 7 U	 7 ⋯ 7 U�    (7) 

4)  Reconstruction 

Through diagonal averaging, �  decomposed components 
are obtained, which might not be entirely independent of each 
other. Components that share similar frequencies and exhibit 
high correlation need to be reconstructed into new components. 
Additionally, some noise elements may be present in these 
components due to environmental interference [17]. 

Therefore, the initial component VWX�  is formed by 
combining  Y�, the first single component, with its associated 
components having the same similarity. The matrix left after 
removing the elements related to VWX� is termed G�. The first 
column of G� , along with its corresponding components, are 
then consolidated to create VWX	. Following this, any residual 
signals are grouped into Z[\, leading to the compilation of the 
final results as follows[17] : 

V � ∑ VWX��� 7 Z[\    (8) 

where �  is the number of iterations. The Normalized Mean 
Square Error (NMSE) of the Z[\ is calculated, and whenever it 
becomes less than the given threshold �ℎ=1%, the process is 
finished. 

C. Long Short-Term Memory (LSTM) Network 

LSTM networks, a subset of Recurrent Neural Networks 
(RNNs), are designed to address the limitations of traditional 
RNNs, particularly in processing long sequences of data. 
LSTMs are distinguished by their ability to remember 
information for extended periods, making them highly effective 
for a range of sequential data tasks in deep learning. This 
model serves as an intricate non-linear component essential for 
constructing deep neural networks [23]. 

The core architecture of an LSTM unit consists of a cell 
state and three gates: the input gate, the forget gate, and the 
output gate [24]. The cell state acts as a conveyor belt, carrying 
relevant information throughout sequence processing [25]. The 
gates in LSTM, controlled by sigmoid neural network layers, 
decide what information is to be stored, forgotten, or outputted 
at each step of the sequence. This structure allows LSTMs to 
mitigate the issues of vanishing and exploding gradients 
common in traditional RNNs [26]. The forget gate decides 
which information to discard by processing the previous output 
and current input through a sigmoid function, producing a 
value between zero and one. This value determines how much 
of the previous cell state is forgotten or retained. The input gate 
selects new information to store by passing the previous output 
and current input through a sigmoid function, with a tanh layer 
further refining the amount added to the cell state. The output 
gate controls the information that is sent out by combining the 
previous output and the current input, then processing them 
through a sigmoid function and tanh layer to produce the final 
output for the current time step [4]. 

D. The Hybrid VMD-SGMD-LSTM Model 

This section presents the development of a hybrid model 
combining VMD, SGMD, and LSTM, aimed at forecasting 
wind speed series. The proposed model starts with applying 
VMD to the original series, separating it into two parts with 
differing frequency ranges, low and high. The high-frequency 
portion is then further analyzed using SGMD. Following these 
decomposition phases, the deep learning strategy of LSTM is 
implemented to make predictions based on these segmented 
components. Figure 2 shows the overall architecture of the 
model. The detailed method for this combined approach is 
presented in the following steps: 

 Step 1: In VMD, the decomposition level is adjusted to two 
to extract the low-frequency portion from the initial dataset. 
This extraction results in the identification of the low-
frequency component, which is achieved through the 
primary level of VMD decomposition. Concurrently, the 
high-frequency element is determined by calculating the 
difference between the original data series and the extracted 
low-frequency component. The two parameter keys in 
VMD are ^, which represents the decomposition level, and 
the penalty factor (alpha), which is set in iterative testing by 
increasing or decreasing it until it gets the optimal value. 

 Step 2: The segment labeled high-frequency, is further 
broken down into several symplectic geometry components, 
termed VWX�, VWX	, . . ., VWX� , and includes a residual 
component as well. The selection of the decomposition 
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level �  is adaptively determined based on the 
characteristics of the original data series. 

 Step 3: The forecasting of the low-frequency component, 
the various SGCs, and the residual is accomplished using 
LSTM. The final forecast result is then calculated by 
summing all these individual forecasted values. 

 

 
Fig. 2.  Flowchart of the proposed VMD-SGMD-LSTM model. 

III. CASE STUDY 

A. Data Description 

To verify the effectiveness of the proposed method, four 
wind speed datasets were collected from a wind farm in 
Chengde, China. The two 20-minute datasets come from two 
seasons, each containing 10 days (720 observations). These 
datasets were divided into two parts: the first 600 wind speed 
observations were the training set, and the last 120 were the 
testing set. The third wind speed dataset is the 10-min dataset 
for 10 days, and the last dataset is for 10-min wind speed for 90 
days. The four wind speed datasets are called Dataset 1, 
Dataset 2, Dataset 3, and Dataset 4. Figure 3 shows the wind 
speed for Dataset 4. The LSTM model summary is four layers, 
2,816,451 trainable params, 80 epochs, Adam optimizer, and 
MSE as the loss function. 

TABLE I.  STATISTICAL METRICS FOR THE DATASETS 

Dataset Maximum Minimum Mean Median Std. 

Dataset 1 12.37 0.36 5.94 5.98 2.26 

Dataset 2 21.02 0.34 7.81 7.5 3.97 

Dataset 3 9.23 3.14 5.98 6.27 1.59 

Dataset 4 30.37 0.10 9.79 9.21 4.977 

 

Fig. 3.  Dataset 4 of wind speed data. 

B. Performance Evaluation Metrics 

Three key performance evaluation metrics were employed 
to assess the effectiveness of various models: Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), and Mean 
Absolute Percentage Error (MAPE). The definitions of these 
metrics are as follows: 

_`a � �

 ∑ |G2 � ŷ2|
2P�    (9) 

_`da � �

 ∑ efg�ŷgŷg e
2P�     (10) 

h_Va � i�

 ∑ �G2 � ŷ2�	
2P�    (11) 

where � is the number of data tested, G2 is the value of the 4jk  
prediction and ŷ2 is the 4jk true value. 

In addition, to further compare the prediction ability of 
different models, three promoting percentages PMAE, PRMSE, and 
PMAPE, which respectively denote the promoting percentages of 
MAE, RMSE, and MAPE, are provided as follows: 

dlmn � e�lmno�lmnp�
lmno e    (12) 

dlmqn � e�lmqno�lmqnp�
lmqno e   (13) 

drlsn � e�rlsno�rlsnp�
rlsno e   (14) 

where _`a�  and _`a	 represent the MAE of the initial and 
the proposed model, respectively. _`da�  and _`da	 
represent the MAPE of the initial and the proposed model, 
respectively. h_Va� represents the RMSE of the initial model 
and h_Va	 represents the RMSE of the proposed model. 

In addition, theoretical and practical analysis was applied to 
validate and justify the performance of the proposed SD model. 
SGMD, which relies on symplectic geometry's similarity 
transformation instead of Euclidean geometry, is well-suited 
for non-linear analysis due to its non-linear transformation 
basis. However, during SGMD's traditional reconstruction 
process, similar components may be separated excessively, 
leading to over-decomposition. For example, using only 
SGMD for Dataset 4 produces 182 SGC components and a 
residual. Such a high number of components escalates 
computational resource usage and reduces the method's 
practicality. Therefore, the secondary decomposition method 
initially uses VMD to isolate the low-frequency elements of the 
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original signal, reducing data complexity. Subsequently, 
SGMD is applied to the remaining signal, producing a 
manageable number of components. In the case of Dataset 1, 
the SDA produces five SGCs and a residual. This secondary 
decomposition technique effectively harnesses the strengths of 
both VMD and SGMD to enhance the decomposition quality 
while also being mindful of computational resource usage. 
Consequently, it achieves a balance between decomposition 
effectiveness and computational efficiency. 

 

 
Fig. 4.  The decomposition components for Dataset 4 obtained by the 

secondary decomposition technique. 

IV. RESULTS 

A. Comparative Analysis of Related Models 

The proposed model was compared with two different 
models, including LSTM, and VMD-LSTM. These models 
were used for multi-step ahead forecasting, spanning from 1-
step to 2-step predictions, allowing for a more thorough 
evaluation of each model's performance. Figures 5-6 show the 
forecasting results achieved by the proposed model for 1-2 step 
ahead predictions, covering Dataset 3 and Dataset 4. These 
figures show that the model's predictions closely align with the 
actual wind speed trends, showcasing superior forecasting 
capabilities in both single-step and multi-step scenarios. Table 
II presents the error metrics calculated for the various models 
for the four wind speed datasets. When comparing the 
proposed model with others, it consistently exhibits the 
smallest forecasting errors across all three indexes, regardless 
of the unique characteristics and complexity of the data series. 
Table III highlights the performance enhancement metrics for 
1-2 step forecasting, illustrating the performance improvement 
of the proposed model. Table III shows that the proposed 
model achieved a considerable reduction in error rates for the 
four wind speed datasets. This marked improvement in 
forecasting accuracy highlights the effectiveness of the 
proposed model in multi-step wind speed prediction. The wind 
speed series in Dataset 3 was selected as a representative case. 

TABLE II.  PERFORMANCE COMPARISON 

Dataset Models 
MAPE (%) RMSE(m/s) MAE(m/s) 

1step 2step 1step 2step 1step 2step 

Dataset1 

LSTM 4.26 4.49 0.36 0.38 0.12 0.2 

VMD-LSTM 3.14 3.84 0.22 0.27 0.09 0.14 

VMD-SGMD-LSTM 0.84 1.16 0.09 0.12 0.06 0.07 

Dataset2 

LSTM 5.96 6.65 2.14 2.25 0.43 0.45 

VMD-LSTM 4.84 4.89 0.49 0.58 0.37 0.47 

VMD-SGMD-LSTM 3.7 3.96 0.14 0.21 0.11 0.18 

Dataset3 

LSTM 5.46 5.59 1.89 1.94 0.48 0.5 

VMD-LSTM 4.68 4.76 1.23 1.29 0.36 0.39 

VMD-SGMD-LSTM 3.14 3.18 0.25 0.31 0.23 0.26 

Dataset4 

LSTM 4.43 4.51 1.93 1.99 0.22 0.27 

VMD-LSTM 3.23 3.29 1.09 1.16 0.3 0.32 

VMD-SGMD-LSTM 1.07 1.28 0.11 0.19 0.06 0.09 

TABLE III.  PERFORMANCE-PROMOTING PERCENTAGE OF 
THE PROPOSED MODEL COMPARED TO OTHERS 

Dataset 
VMD-SGMD-

LSTM vs. 

PMAPE  PRMSE PMAE 

1step 2step 1step 2step 1step 2step 

Dataset1 
LSTM 80.28 74.16 75 68.42 50 65 

VMD-LSTM 73.25 69.79 59.09 55.56 33.33 50 

Dataset2 
LSTM 37.92 40.45 93.46 90.67 74.42 60 

VMD-LSTM 23.55 19.02 71.43 63.79 70.27 61.7 

Dataset3 
LSTM 42.49 43.11 86.77 84.02 52.08 48 

VMD-LSTM 32.91 33.19 79.67 75.97 36.11 33.33 

Dataset4 
LSTM 75.85 71.62 94.3 90.45 72.73 66.67 

VMD-LSTM 66.87 61.09 89.91 83.62 80 71.88 

 
A more in-depth analysis of the prediction outcomes is 

presented as follows: 

 Comparing the LSTM and VMD-LSTM models with the 
proposed, the superiority of the latter is clear. For Dataset 1, 
the MAPE values for 1-2 step ahead forecasting using the 
proposed method are 0.84 and 1.16, respectively. Compared 
to the LSTM model, the proposed model significantly 
improves performance, reducing MAPE, RMSE, and MAE 
by 80%, 75%, and 50% for 1-step ahead, and 74%, 68%, 
and 65% for 2-step ahead forecasting. These improvements, 
including a PMAPE of 80.28% and 74.16% for 1-2 step 
forecasting, highlight the proposed model's enhanced 
predictive accuracy. 

 The proposed VMD-SGMD-LSTM model outperforms the 
VMD-LSTM model, especially when forecasting 1-2 steps 
ahead. For example, in Dataset 3, the VMD-SGMD-LSTM 
model improved forecasting accuracy by 32.91% and 
33.19% in MAPE, 79.67% and 75.97% in RMSE, and 
36.11% and 33.33% in MAE compared to the VMD-LSTM 
model. These results indicate that the VMD-SGMD-LSTM 
model is significantly more effective in data decomposition 
for predictions. 

 The experimental results show that model accuracy 
decreases with longer forecasting steps due to reduced data 
correlation in wind speed predictions. However, the VMD-
SGMD-LSTM model shows minimal variability, 
highlighting its strong robustness in forecasting. 

 The use of the VMD algorithm improved accuracy 
compared to single models, and the VMD-SGMD 
secondary decomposition further enhanced prediction 
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accuracy. Overall, the VMD-SGMD-LSTM model proves 
to be highly effective in interpreting wind speed time and is 
well-suited for forecasting. 

Figures 7-9 display the error metrics for the 1-2-step ahead 
predictions for these models. 

 

 

Fig. 5.  The 1–2 step ahead forecasting results for Dataset 3 obtained by 

the proposed model. 

 
Fig. 6.  The 1–2 step ahead forecasting results for Dataset 4 obtained by 

the proposed model. 

 

Fig. 7.  MAPE values of different prediction steps for Dataset 3. 

 
Fig. 8.  RMSE values of different prediction steps for Dataset 3. 

 

Fig. 9.  MAE values of different prediction steps for Dataset 3. 

B. Comparative Analysis of Published Models 

This section presents an in-depth comparison between the 
proposed hybrid VMD-SGMD-LSTM model and three 
classical models: WT-VMD [27], EMD-WPD [12], 
CEEMDAN-VMD [28], and SSA-VMD [29]. This comparison 
aimed at thoroughly validating the performance of the 
proposed model. Secondary decomposition models 
demonstrate superior performance compared to their single 
decomposition counterparts, a fact that has been substantiated 
in the existing literature. In this study, the LSTM method was 
employed as a standard predictor to maintain the integrity and 
fairness of the comparative analysis. The effectiveness and 
consistency of the LSTM model as a predictive tool have been 
validated through the earlier detailed experiments. It was 
observed that the quality of the decomposition directly 
influences the overall predictive performance of the combined 
model, given the uniformity in the prediction method. Table IV 
provides error metrics and statistical tests to quantitatively 
assess the predictive prowess of the various models. 

Predictive accuracy was evaluated using three primary 
indicators: MAPE, RMSE, and MAE. Table IV indicates that 
the hybrid VMD-SGMD-LSTM model outperformed the other 
models in multi-step forecasting across all datasets. For 
instance, considering Dataset 1, the MAPE values for 1-2 step 
forecasts using the VMD-SGMD-based model were 0.84% and 
1.16 %, while those for the CEEMDAN-VMD-based model 
were 2.73%, and 2.81 %, respectively. These findings highlight 
the robustness and competitive nature of the decomposition 
process in the VMD-SGMD model, especially when compared 
to other secondary decomposition methods. 

TABLE IV.  COMPARISON RESULTS OF THE VMD-SGMD-
LSTM MODEL AND FOUR OTHER ALGORITHMS 

Dataset Models 
MAPE (%)  RMSE (m/s) MAE(m/s) 

1step 2step 1step 2step 1step 2step 

Dataset

1 

WT-VMD 3.09 5.45 0.18 0.36 0.15 0.26 

EMD-WPD 2.01 3.68 0.13 0.26 0.10 0.18 

CEEMDAN-

VMD 
2.73 2.81 0.18 0.16 0.13 0.13 

SSA-VMD 4.23 4.22 0.26 0.26 0.20 0.20 

Proposed model 0.84 1.16 0.09 0.12 0.069 0.07 

Dataset

2 

WT-VMD 7.16 8.39 0.30 0.42 0.25 0.32 

EMD-WPD 4.29 7.98 0.22 0.38 0.17 0.28 

EEMDAN-

VMD 
6.83 8.72 0.28 0.32 0.22 0.25 

SSA-VMD 9.33 9.80 0.34 0.36 0.27 0.28 

Proposed model 3.70 5.96 0.14 0.27 0.11 0.13 
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V. CONCLUSION 

Considering the complex characteristics of wind speed, a 
novel hybrid forecasting system was proposed, designed for the 
multi-step prediction of wind speed. The model includes a 
secondary decomposition technique that combines VMD and 
SGMD for processing complex wind speed data, resulting in 
thorough and accurate decomposition results. The model starts 
by using VMD to extract low-frequency and high-frequency 
components, then the high-frequency is further decomposed 
into symplectic geometry components (SGC1, SGC2, ..., 
SGCm) and a residual, then the LSTM is used to forecast these 
components, and the final result is obtained by summing up the 
forecasts. Various forecasting models were compared to assess 
the system's efficacy. The results indicate that the combined 
strategy of the proposed model outperformed others in terms of 
accuracy and stability. The SGMD decomposition method 
effectively addresses the limitations of the VMD model, 
making it a valuable tool for handling intricate and high-
frequency data series. In contrast, the developed secondary 
decomposition technique produces more robust and detailed 
results compared to alternative decomposition methods. 
Compared to WT-VMD, EMD-WPD, and CEEMDAN-VMD, 
it was found that the proposed forecasting model VMD-
SGMD-LSTM performed optimally. Compared to EMD-WPD, 
the proposed model improved MAE by 31% and 61.1% for 1-2 
step forecasting in Dataset 1, and 35.29% and 53.57% for 1-2 
step forecasting in Dataset 2. Finally, the empirical study 
confirms that the proposed model is well-suited for predicting 
wind speed series over multiple steps. 
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