
Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 19024-19029 19024

www.etasr.com Badana & Kiran: A Hybrid Metaheuristic Aware Enhanced Deep Learning Approach for Software …

A Hybrid Metaheuristic Aware Enhanced Deep
Learning Approach for Software Effort
Estimation

Mahesh Badana

GITAM Deemed to be University, Vishakhapatnam, India | Department of Computer Science and
Engineering, ANITS, Vishakhapatnam, India
b.mahesh498@gmail.com (corresponding author)

Mandava Kranthi Kiran

Department of Computer Science and Engineering, GITAM deemed to be University, Vishakhapatnam,
India
kmandava@gitam.edu

Received: 2 September 2024 | Revised: 26 September 2024 | Accepted: 1 October 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8890

ABSTRACT

Software Effort Estimating (SEE) is a fundamental task in all software development lifecycles and

procedures. Therefore, when deciding how to anticipate effort in a variety of project types, the

comparative assessment of effort prediction methods has emerged as a standard strategy. Unfortunately,

these studies include a range of sample techniques and error metrics, making a comparison with other

work challenging. To overcome these drawbacks, this study proposes a deep learning model to effectively

estimate software effort. The estimation is mainly focused on minimizing the cost and time consumption.

The input data is taken from the dataset and preprocessing is performed to remove the noise content. Then

the required features are extracted using the preprocessed data with the help of the simple and higher-

order statistical features. A novel Modified Chaotic Enriched Jaya with Moth Flame Optimization

(MCEJMO) algorithm is introduced for feature selection to enhance SEE accuracy. The estimation is

performed using Multilayer Long Short-Term Memory (M-LSTM). The proposed method achieved a

Mean Square Error (MSE) of 0.2825 for dataset 1 and 0.2285 for dataset 2.

Keywords-software effort estimation; statistical features; Jaya optimization algorithm; moth flame

optimization; modified long short-term memory

I. INTRODUCTION

Software Effort Estimating (SEE) is one of the most
difficult aspects of project management. Project managers have
struggled for years to accurately estimate the time, money, and
effort needed to complete initiatives to create schedules and
budgets [1-2]. Numerous interconnected aspects that affect
development effort and productivity are present during the
software development process. As many of these interactions
are poorly understood, accurate forecasting has proven to be
challenging [3-4]. SEE for the planning of software projects
and estimating methodologies' actual themes are crucial.
Erroneous project planning that results from inadequate task
estimation is a significant risk in the management of software
engineering projects [5-6]. Optimization has been one of the
most significant scientific areas in recent years. Optimization
involves procedures to determine the ideal solution to a specific
issue. Natural laws and processes have an impact on how
computing systems are created to address difficult issues [7-8].

The key benefit of adopting machine learning algorithms is
their ease of implementation and relatively high processing
performance [9]. Nowadays, non-algorithmic strategies are
becoming more and more important for SDEE because of the
numerous constraints of algorithmic models. The imprecision
of the inputs is accommodated by these strategies, and they are
nevertheless able to deliver respectable outcomes [10].
Machine learning techniques use historical project data to
create a regression model that will be used to forecast the
amount of work needed for upcoming software projects.
However, it has been discovered that none technique is
completely stable and dependable under all circumstances.
Furthermore, the properties of the dataset used to build the
model have a general impact on how well any technique
performs [11-12]. Estimating effort and development time
improves performance by managing human resources, project
schedules, cost estimation, and other factors in addition to
enhancing software's success potential. These advantages
minimize the likelihood of software failure and control project
delays [13-14]. Additionally, they put forth a prediction model

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 19024-19029 19025

www.etasr.com Badana & Kiran: A Hybrid Metaheuristic Aware Enhanced Deep Learning Approach for Software …

that helps a team by suggesting a story-point estimate for a
specific user narrative. To forecast the size of new issues, such
a method learns from the team's prior narrative point
estimations [15-16]. Machine learning, and especially Deep
Learning (DL), varies from traditional software engineering
(SE) because its behavior is highly reliant on information from
the outside world. The main contributions of this study are as
follows:

 Effectively selects the optimal features for the Modified
Chaotic Enriched Jaya with Moth Flame Optimization
(MCEJMO).

 Employs a Modified multilayer Long-Short-Term Memory
(M-LSTM) model to estimate the software estimation,

using the GRU and RBM at the top and bottom layers,
respectively.

 Hyperparameter tuning in the M-LSTM is performed using
the MCEJMO algorithm.

II. PROPOSED METHODOLOGY

SEE is the process of estimating how much time, money,
and resources are needed to build a software project. The goal
of effort estimation is to provide stakeholders with a reasonable
estimate of the resources required to complete a project, which
can help to plan and budget resources, set schedules and
deadlines, and manage risk. The block diagram of the software
effort estimation is given in Figure 1.

Fig. 1. SEE block diagram.

The input data are chosen, standardized, and normalized
during the preprocessing stage. The preprocessed data is given
as input to the feature extractor. Here, higher-order statistical
features, statistical features, and entropy are extracted. From
the extracted features, the optimal characteristics are chosen
using MCEJMO. Finally, SEE is predicted using the M-LSTM
with RBM.

A. Preprocessing

The data taken from the dataset is given to the preprocessor
to perform data standardization and normalization [17].

1) Data Standardization

Data standardization is a process of transforming raw data
into a consistent, unambiguous, and standardized format to
facilitate data processing, analysis, and comparison. Data
standardization aims to ensure that data is easily understood
and can be used by different systems, tools, and applications.
Standardized data improve data quality, simplify data

integration, and enable more accurate data analysis and
decision-making [18].

2) Data Normalization using Min-Max Normalization (MMN)

Data normalization [20] is performed using the MMN
model. In this method, the unnormalized data (��� is linearly
scaled to predetermined lower and higher bound. Usually, the
data is rescaled between a range of 0 and 1 or -1 and 1. This
process is represented by:

��� � ��,
�������
�������������� ����� � ����� � ���� (1)

where min and max stand for the ith feature's minimum and
maximum values, respectively. The lower and higher
constraints to rescale the data are indicated by the numbers
nMin and nMax, respectively. In this study, the classification
performance is examined using both [0, 1] and [-1, 1] scales.

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 19024-19029 19026

www.etasr.com Badana & Kiran: A Hybrid Metaheuristic Aware Enhanced Deep Learning Approach for Software …

B. Feature Selection using MCEJMO

The extracted features are given to the feature selection
option for selecting the best-required features. In feature
selection, the MCEJMO algorithm is used, combining the
JAYA optimization algorithm, MFO, and chaotic map function
[21].

C. JAYA Optimization Algorithm

The population-based JAYA algorithm was developed to
compare the best and worst solutions for each solution. This
algorithm forces users to choose the best option while avoiding
the worst option. In comparison to cutting-edge methods, the
JAYA algorithm has demonstrated superior outcomes. Jaya
does not have any algorithm-specific parameters and is readily
modified to solve difficulties [22]. Let the objective function ���� having � dimension variables (� � 1,2, … . , �), the � th
variable's value for the �th potential solution is �,!, then the �th
candidate's position is represented as � �
� �,", �,#, … … , �,$� . Similarly, the position of the best
candidate is denoted as %&'(� � %&'(,", %&'(,#, … … , %&'(,$�,
which has the best value for ����, and similarly for the worst.
Then, the updated �! is given as:

 �,!∗ � �,! � *��+". , %&'(,! � - �,!-. � *��+#. , /01'(,! �
- �,!-. (2)

where the best solution is represented as %&'(,! and the worst is
 /01'(,! for the �th variable. The �,! is updated as �!∗, and the

absolute value of �,!is - �,!-. The two random variables *��+"
and *��+# are uniformly distributed between 0 and 1. The term
*��+". , %&'(,! � - �,!-. in represents the probability of the
solution being directed to the best solution and
*��+#. , /01'(,! � - �,!-. is the probability of the solution
being directed to the worst solution, respectively.

The updated solution �!∗ � � �,"∗, �,#∗, … . . , �,$∗� is
acceptable if it provides the best function value. Moving away
from the worst option and towards the best solution are two
search-process outcomes produced by the JAYA algorithm. By
seeking the optimal solution, the JAYA algorithm seeks to win.

D. Modified Chaotic Enriched Jaya with Moth Flame
Optimization (MCEJMO)

To choose the best features effectively, the population of
the flame is improved by the chaotic map function and the
JAYA optimization solution. The chaotic map function is used
to introduce randomness into the optimization process, which
can help to overcome the limitations of traditional optimization
algorithms. By adding chaotic elements to the optimization
process, the hybrid population of the flame optimization
algorithm can better explore the search space and find more
optimal solutions. The current solutions of the JAYA algorithm
are hybrid with the population of the flame with a chaotic map.
The mathematical model is given as:

 �,!∗ � ��2� ∗ 34(∗ cos�289� � �,! �:ℎ�<9�= >�?� (3)

The distance from the moth to the flame is updated using the
best and worst solutions of the JAYA algorithm. The distance
for the optimal solution is obtained using (4):

��2� � *��+" . , %&'(,! � - �,!-. �
*��+#. , /01'(,! � - �,!-. (4)

where ��2� is the distance from the �th moth to the �th flame.

E. Software Effort Estimation (SEE) Using Multilayer LSTM
(M-LSTM)

The M-LSTM involves a combination of several types of
neural network layers, specifically a GRU layer, the LSTM
layer, and the RBM layer. The GRU layer is presented in the
top layer, which is often used in sequential data processing
tasks such as SEE due to its ability to capture long-term
dependencies [24]. Below the GRU layer, there is an LSTM
layer, which is also a type of RNN layer that is designed to
capture long-term dependencies. The LSTM layer uses
memory cells to store information from previous time steps and
decides when to let information flow and when to block it,
allowing it to better handle long-term dependencies compared
to traditional RNNs.

The additional LSTM layer enables the addition of more
hyperparameters. Hyperparameter tuning was performed based
on the MCEJMO algorithm. The hyperparameters used in this
study are shown in Table I.

TABLE I. HYPERPARAMETERS FOR M-LSTM TRAINING

Parameter Value

Activation function Leaky ReLU, sigmoid
Loss function MSE
Dropout rate 0.14

Optimizer MCEJMO
Number of epochs 47

Learning rate 0.01
Batch size 80

III. RESULTS AND DISCUSSION

This section discusses the results obtained using the
proposed model and compares them with existing techniques
such as Recurrent Neural Network (RNN), traditional LSTM,
and GRU. Along with prediction performance, the
effectiveness of feature selection is also assessed using
currently available techniques such as Moth Flame
Optimization (MFO), Jaya Optimization (JO), Particle Swarm
Optimization (PSO) [26], and Genetic Algorithm (GA) [27].
The proposed method was implemented using Python and used
two datasets released by ISBSG version 11 [28], given as
Dataset 1 and Dataset 2. The collection contains more than
5,000 industrial projects that were developed using a variety of
programming languages and implemented in accordance with a
number of different software development life cycles. Each of
the projects falls under the category of either new or upgraded
development. In addition, the size of the software for each
project was calculated in function points by making use of
industry standards such as IFPUG and COSMIC, amongst
others. The ISBSG also assigns grades to the project data
quality, from "A" to "D," with "A" standing for the highest-
quality projects, followed by "B," and so on. Dataset 1 consists
of A and D, and dataset 2 consists of B and C.

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 19024-19029 19027

www.etasr.com Badana & Kiran: A Hybrid Metaheuristic Aware Enhanced Deep Learning Approach for Software …

A. Performance Metrics

The error metrics Mean Square Root Error (MSRE), Mean
Absolute Percentage Error (MAPE), Normalized Mean Square
Error (NMSE), Mean Square Error (MSE), and Root Mean
Square Error (RMSE) were used for evaluation.

MAPE [27] divides the demand by the total number of
different absolute mistakes and is calculated by:

�@AB � "
CD

∑ FGH�IH
GH FCD

!J" (5)

where K! is the occurrences of the summation iteration in total,
@L is the actual value, and ML is the forecast value.

MSE measures the average squared difference between the
predicted and the actual values [27]. A model's effectiveness is
evaluated using the MSE loss to guide its training. The smaller
the MSE, the better the model fits the data.

�NB � "
O �@L � AL�# (6)

where @L is the actual value and AL is the predicted value of the
target variable.

MSRE measures the average error in a set of predictions or
forecasts [27]. It is a measure of how well the predictions or
forecasts match the actual values.

�NPB � Q"
O �@L � AL�# (7)

where � is the number of predictions or forecasts.

NMSE [27] measures the difference between two signals
and is typically used for evaluating the performance of a
prediction algorithm. It is defined as the ratio of the MSE of the
predicted signal to the variance of the target signal.

��NB � R"
ST ∗ 2U> R�GH�VH�W

LX1�GH� T (8)

where Y�*�@L� is the variance of the actual values.

RMSE [27] is given by:

P�NB � Q"
O �@L � AL�# (9)

B. Overall Performance Comparison

Comparisons are made between the performance of the
suggested approach and that of currently used methods such as
GA, JA, MFO, and PSO. Table II provides a comparison of the
proposed and the existing techniques for Dataset 1.

TABLE II. COMPARISON FOR DATASET 1

Metrics GA JA MFO PSO Proposed

MSE 0.2957 0.3195 0.3104 0.3078 0.2825
MSRE 0.2741 0.2853 0.3030 0.2659 0.2627
NMSE 0.3989 0.4234 0.4294 0.4016 0.3816
RMSE 0.3687 0.3427 0.3493 0.3216 0.3729
MAPE 0.2898 0.3131 0.3042 0.3017 0.2768

The results show that the proposed algorithm had the lowest

values for MSE, MSRE, and MAPE, indicating that it had the

best performance compared to the other algorithms. Table III
shows a comparison of error metrics for Dataset 2.

TABLE III. COMPARISON FOR DATASET 2

Metrices GA JA MFO PSO Proposed

MSE 0.2511 0.2490 0.2584 0.2377 0.2285
MSRE 0.2450 0.2151 0.2308 0.2553 0.2125
NMSE 0.3751 0.3508 0.3698 0.3727 0.3334
RMSE 0.2221 0.1950 0.2092 0.2314 0.1926
MAPE 0.2500 0.2848 0.2577 0.2966 0.2469

MAPE measures the average absolute percentage error

between the expected and real values. The fit between the
anticipated and actual values is better when the MAPE value is
smaller. Figure 2 shows the comparison of MAPE values
among the existing and proposed methods.

Fig. 2. Comparison of MAPE values for the proposed and existing
techniques.

This figure compares the MAPE values for Dataset 1 and
Dataset 2. The MAPE values were lower for Dataset 2
compared to Dataset 1.

MSE denotes the mean of the squared deviations between
the expected and observed values. The fit between the
anticipated and actual values is better when the MSE is smaller.
Figure 3 compares the MSE values for the currently used and
the proposed techniques.

Fig. 3. Comparison of MSE values for the proposed and existing
techniques.

The graph illustrates the MSE results between Dataset 1
and Dataset 2. Compared to Dataset 1, the MSE values for
Dataset 2 are lower. MSRE is similar to MSE, but it is

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 19024-19029 19028

www.etasr.com Badana & Kiran: A Hybrid Metaheuristic Aware Enhanced Deep Learning Approach for Software …

normalized by the mean of the actual values. This helps to
adjust for the scale of the data. Figure 4 compares the MSRE
values for the existing and the proposed techniques on both
datasets Compared to Dataset 1, the MSRE values for Dataset 2
are lower. NMSE is similar to MSE, but it is normalized by the
variance of the actual values. This helps to adjust for the
variability of the data. Figure 5 displays a comparison of the
NMSE values between the currently used and the proposed
techniques. The graphic contrasts datasets 1 and 2's NMSE
values. Comparing datasets 1 and 2, the NMSE values are
lower for the latter.

Fig. 4. Comparison of MSRE values for the proposed and existing
techniques.

Fig. 5. Comparison of NMSE values for the proposed and existing
techniques.

Fig. 6. Comparison of RMSE values for the proposed and existing
techniques.

This metric is the square root of the MSE and gives a more
intuitive representation of the error, as it is expressed in the
same units as the data. Figure 6 compares the RMSE values of
the existing and the proposed techniques. Compared to Dataset
1, the RMSE values for Dataset 2 are lower. Figure 7 shows a
comparison between the actual results and the predicted results
by the proposed MCEJMO method.

Fig. 7. Comparison of actual and predicted values for the proposed
MCEJMO technique.

IV. CONCLUSION

This study introduced a new hybrid optimization model to
effectively predict SEE. Preprocessing involves selecting the
input data from the dataset to standardize and normalize them.
The feature extractor receives the preprocessed data as input,
extracting normal and higher-order statistical features and
entropy. The proposed MCEJMO method is used to select the
best of the retrieved features. Finally, the improved LSTM with
RBM and GRU is used to predict the SEE.

REFERENCES

[1] R. Mohanani, I. Salman, B. Turhan, P. Rodríguez, and P. Ralph,
"Cognitive Biases in Software Engineering: A Systematic Mapping
Study," IEEE Transactions on Software Engineering, vol. 46, no. 12, pp.
1318–1339, Sep. 2020, https://doi.org/10.1109/TSE.2018.2877759.

[2] A. Calleja, J. Tapiador, and J. Caballero, "The MalSource Dataset:
Quantifying Complexity and Code Reuse in Malware Development,"
IEEE Transactions on Information Forensics and Security, vol. 14, no.
12, pp. 3175–3190, Sep. 2019, https://doi.org/10.1109/TIFS.2018.
2885512.

[3] J. Iglhaut, C. Cabo, S. Puliti, L. Piermattei, J. O’Connor, and J. Rosette,
"Structure from Motion Photogrammetry in Forestry: a Review,"
Current Forestry Reports, vol. 5, no. 3, pp. 155–168, Sep. 2019,
https://doi.org/10.1007/s40725-019-00094-3.

[4] C. Tam, E. J. da C. Moura, T. Oliveira, and J. Varajão, "The factors
influencing the success of on-going agile software development
projects," International Journal of Project Management, vol. 38, no. 3,
pp. 165–176, Apr. 2020, https://doi.org/10.1016/j.ijproman.2020.02.001.

[5] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou,
"Complementing IoT Services Through Software Defined Networking
and Edge Computing: A Comprehensive Survey," IEEE
Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1761–1804,
2020, https://doi.org/10.1109/COMST.2020.2997475.

[6] N. Dey, A. E. Hassanien, C. Bhatt, A. S. Ashour, and S. C. Satapathy,
Eds., Internet of Things and Big Data Analytics Toward Next-
Generation Intelligence, vol. 30. Cham, Switzerland: Springer
International Publishing, 2018.

[7] R. Jayanthi and L. Florence, "Software defect prediction techniques
using metrics based on neural network classifier," Cluster Computing,

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 19024-19029 19029

www.etasr.com Badana & Kiran: A Hybrid Metaheuristic Aware Enhanced Deep Learning Approach for Software …

vol. 22, no. 1, pp. 77–88, Jan. 2019, https://doi.org/10.1007/s10586-018-
1730-1.

[8] S. S. Rathore and S. Kumar, "A study on software fault prediction
techniques," Artificial Intelligence Review, vol. 51, no. 2, pp. 255–327,
Feb. 2019, https://doi.org/10.1007/s10462-017-9563-5.

[9] N. Qamar, F. Batool, and K. Zafar, "Efficient effort estimation of web
based projects using neuro-web," International Journal of Advanced and
Applied Sciences, vol. 5, no. 11, pp. 33–39, 2018.

[10] E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn, "Estimation
of energy consumption in machine learning," Journal of Parallel and
Distributed Computing, vol. 134, pp. 75–88, Dec. 2019, https://doi.org/
10.1016/j.jpdc.2019.07.007.

[11] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, "An effective
approach for software project effort and duration estimation with
machine learning algorithms," Journal of Systems and Software, vol.
137, pp. 184–196, Mar. 2018, https://doi.org/10.1016/j.jss.2017.11.066.

[12] P. Suresh Kumar, H. S. Behera, A. K. K, J. Nayak, and B. Naik,
"Advancement from neural networks to deep learning in software effort
estimation: Perspective of two decades," Computer Science Review, vol.
38, Nov. 2020, Art. no. 100288, https://doi.org/10.1016/j.cosrev.2020.
100288.

[13] R. Silhavy, P. Silhavy, and Z. Prokopova, "Evaluating subset selection
methods for use case points estimation," Information and Software
Technology, vol. 97, pp. 1–9, May 2018, https://doi.org/10.1016/j.infsof.
2017.12.009.

[14] S. H. S. Moosavi and V. K. Bardsiri, "Poor and rich optimization
algorithm: A new human-based and multi populations algorithm,"
Engineering Applications of Artificial Intelligence, vol. 86, pp. 165–181,
Nov. 2019, https://doi.org/10.1016/j.engappai.2019.08.025.

[15] C. Liu, D. Yang, X. Xia, M. Yan, and X. Zhang, "A two-phase transfer
learning model for cross-project defect prediction," Information and
Software Technology, vol. 107, pp. 125–136, Mar. 2019,
https://doi.org/10.1016/j.infsof.2018.11.005.

[16] K. Curcio, T. Navarro, A. Malucelli, and S. Reinehr, "Requirements
engineering: A systematic mapping study in agile software
development," Journal of Systems and Software, vol. 139, pp. 32–50,
May 2018, https://doi.org/10.1016/j.jss.2018.01.036.

[17] N. K. Jain, S. Celo, and V. Kumar, "Internationalization speed, resources
and performance: Evidence from Indian software industry," Journal of
Business Research, vol. 95, pp. 26–37, Feb. 2019, https://doi.org/
10.1016/j.jbusres.2018.09.019.

[18] W. Gao, J. Alsarraf, H. Moayedi, A. Shahsavar, and H. Nguyen,
"Comprehensive preference learning and feature validity for designing
energy-efficient residential buildings using machine learning
paradigms," Applied Soft Computing, vol. 84, Nov. 2019, Art. no.
105748, https://doi.org/10.1016/j.asoc.2019.105748.

[19] A. Kaushik and N. Singal, "A hybrid model of wavelet neural network
and metaheuristic algorithm for software development effort estimation,"
International Journal of Information Technology, vol. 14, no. 3, pp.
1689–1698, May 2022, https://doi.org/10.1007/s41870-019-00339-1.

[20] A. Zakrani, A. Idri, and M. Hain, "Software Effort Estimation Using an
Optimal Trees Ensemble: An Empirical Comparative Study," in
Proceedings of the 8th International Conference on Sciences of
Electronics, Technologies of Information and Telecommunications
(SETIT’18), Genoa, Italy, 2020, vol. 1, pp. 72–82,
https://doi.org/10.1007/978-3-030-21005-2_7.

[21] M. S. Khan, Ch. A. Ul Hassan, M. A. Shah, and A. Shamim, "Software
Cost and Effort Estimation using a New Optimization Algorithm
Inspired by Strawberry Plant," in 2018 24th International Conference on
Automation and Computing (ICAC), Newcastle upon Tyne, UK, Sep.
2018, pp. 1–6, https://doi.org/10.23919/IConAC.2018.8749003.

[22] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and T.
Menzies, "A Deep Learning Model for Estimating Story Points," IEEE
Transactions on Software Engineering, vol. 45, no. 7, pp. 637–656, Jul.
2019, https://doi.org/10.1109/TSE.2018.2792473.

[23] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, "Software
Engineering Challenges of Deep Learning," in 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications

(SEAA), Prague, Aug. 2018, pp. 50–59, https://doi.org/10.1109/SEAA.
2018.00018.

[24] M. Azzeh, A. B. Nassif, and C. L. Martín, "Empirical analysis on
productivity prediction and locality for use case points method,"
Software Quality Journal, vol. 29, no. 2, pp. 309–336, Jun. 2021,
https://doi.org/10.1007/s11219-021-09547-0.

[25] Z. abdelali, H. Mustapha, and N. Abdelwahed, "Investigating the use of
random forest in software effort estimation," Procedia Computer
Science, vol. 148, pp. 343–352, Jan. 2019, https://doi.org/10.1016/
j.procs.2019.01.042.

[26] B. K. Kumar, S. Bilgaiyan, and B. S. P. Mishra, "Software Effort
Estimation Based on Ensemble Extreme Gradient Boosting Algorithm
and Modified Jaya Optimization Algorithm," International Journal of
Computational Intelligence and Applications, vol. 23, no. 01, Mar. 2024,
Art. no. 2350032, https://doi.org/10.1142/S1469026823500323.

[27] K. K. Beesetti, S. Bilgaiyan, and B. S. P. Mishra, "Software Effort
Estimation through Ensembling of Base Models in Machine Learning
using a Voting Estimator," International Journal of Advanced Computer
Science and Applications, vol. 14, no. 2, 2023.

[28] "ISBSG Home," ISBSG. https://www.isbsg.org/home/.

