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ABSTRACT 

Light Fidelity (LiFi) is a communication technology that operates in the Visible Light (VL) region, using 

light as a medium to enable ultra-high-speed communication. The spectrum occupied by LiFi does not 

overlap with the Radio Frequency (RF) spectrum. Thus, they can be used in a hybrid manner to enhance 

the Quality of Service (QoS) for users. However, in a heterogeneous LiFi and RF network, users experience 

constant handovers due to the small coverage area of the LiFi and their frequent movement. This study 

proposes an intelligent handover scheme, where the network parameters of the users are used to train four 

machine learning models, namely an Artificial Neural Network (ANN), an Adaptive Neurofuzzy Inference 

System (ANFIS), a Support Vector Machine (SVM), and a Regression Tree (RT), to predict the mobility of 

the users, so that the central network can have a priori mobility information to ensure seamless 

connectivity. Furthermore, the performance of the standalone models was enhanced by integrating 

ensemble learning techniques such as the Simple Averaging Ensemble (SAE), Weighted Averaging 

Ensemble (WAE), and a Meta-Learning Ensemble (MLE). The results show that the ensemble algorithms 

improved prediction performance, with an average error decrease of 44.40%, 53.53%, and 61.03% for 

SAE, WAE, and MLE, respectively, which further demonstrated the effectiveness and robustness of using 

ensemble algorithms to predict user mobility. 

Keywords-light fidelity; visible light; radio frequency; machine learning; ensemble learning 
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I. INTRODUCTION  

Recently, Cisco Systems published a visual networking 
index, in which it predicts that more than 70% of all IP traffic 
will come from mobile data traffic and more than 80% of this 
will take place indoors [1]. This will make short-range wireless 
communication technologies such as WiFi a part of the 5G and 
beyond era. Moreover, another report estimated that there 
would be more than 628 million Wi-Fi hotspots by 2023 and 
that data demand is growing exponentially, making it difficult 
for the RF spectrum to meet up with [2, 3]. To free up the 
demands of the RF spectrum and to address spectrum 
shortages, LiFi, a form of Visible Light Communication 
(VLC), has been proposed to meet the ever-increasing demands 
of users [4]. LiFi is license-free, as it operates in the visible 
light spectrum, and has a bandwidth that is more than 10,000 
times higher than that of the RF spectrum. It uses an existing 
Light Emitting Diode (LED) both for illumination and as a 
transmitter, while a photodiode receiver is used to provide up 
to 1 Gbps continuous high-speed Internet services to users [5, 
6]. In addition, it is more secure than RF wireless 
communication, as light cannot penetrate walls, hence it can be 
used in a confined area making it difficult for signals to be 
intercepted. LiFi communication technology can be used for 
communication between vehicles and traffic infrastructure for 
traffic management purposes [4-6]. Furthermore, LiFi 
technology is safe for human health. It can also be used in areas 
where RF usage is restricted, such as nuclear plants, hospitals, 
and airplanes, and it is energy efficient since the same source 
used to transmit signals is also used for illumination [7].  

As RF and LiFi technology operate on different spectrums 
of electromagnetic waves, they can be combined to form 
hybrid networks without interference to achieve better network 
performance, due to the huge bandwidth of the VLC spectrum, 
and enhanced QoS for users regardless of their position within 
a given coverage area [8]. Users in a combined Li-Fi and WiFi 
network experience constant handovers due to their frequent 
mobility and the small coverage area of a single Access Point 
(AP), which considerably degrades QoS. Therefore, as constant 
handover will be experienced in combined WiFi-LiFi 
networks, effective and efficient handover decision algorithms 
must be designed to address the problem [8-11]. Handover is 
the process of transferring an ongoing wireless communication 
from one network to another [12]. The handover is divided into 
vertical and horizontal handover. Horizontal handover is a type 
of handover between similar networks, while vertical handover 
is the type of handover between different network technologies 
[4]. The following handover decision parameters should be 
considered to enable handover [12-23]: network load, monetary 
service cost, Received Signal Strength Indicator (RSSI), 
handover delay/latency, handover failure probability, 
throughput, Signal-to-Noise Ratio (SNR), security control, 
number of unnecessary handovers, and user preferences. 

This study proposes an intelligent handover scheme where 
the network parameters of the users are used to train machine 
learning models to predict their mobility so that the central 
network can have priori mobility information of the users to 
ensure seamless connectivity, as shown in Figure 1. 

 
Fig. 1.  The proposed handover decision system. 

II. METHODOLOGY 

A.  Data Preprocessing 

This study used simple averaging, weighted averaging, and 
meta-learning ensemble learning techniques to improve the 
prediction performance of the developed models, namely, 
ANN, ANFIS, SVR, and RT. The dataset used in this study is 
from an Irish operator that collected user traces for different 
mobility patterns [24] (train, bus, car, pedestrian, and static), 
which could be used for wide areas of applications. The 
collected data were standardized in the range of 0 to 1 to 
enhance learning and performance using: 

�� � � � ���	��
� � ���	    (1) 

where ��  denotes the normalized data, �  is the data to be 
normalized, and ���  and ����  are the minimum and 
maximum values. 

When designing prediction models, some input variables 
may have extreme effects or more impact on the output than 
others. Therefore, it is necessary to determine the best sets of 
input variables to obtain an ideal solution. Subsequently, the 
Longitude (LG), Latitude (LT), SNR, and Channel Quality 
Indicator (CQI) were chosen to arrive at the three input 
combinations, as shown in (2). Each combination was used 
with ANN, ANFIS, SVR, and RT to predict user mobility. 

�� � ��1 � �� � ��                            �2 � �� �  �� � ���             �3 � �� �  �� � ��� � ���  (2) 

The performance of the standalone models, namely ANN, 
ANFIS, SVR, and REG, was further improved by ensemble 
optimization. The flowchart of the method is given in Figure 2. 

B. Artificial Neural Network (ANN) 

ANNs learn from experience, by example, and by analogy, 
and have been applied to solve real-world problems such as 
pattern recognition, system processing, systems identification, 
prediction, optimization, control systems, modeling, etc. [4, 
17]. The adopted ANN architecture has three layers: the input 
that is fed into the system, the output layer that obtains data 
after combining and passing the inputs into the activation 
function, and lastly the hidden layers that connect the input and 
output layers. 

C. Support Vector Regression (SVR) 

SVR is a supervised machine learning algorithm that falls 
under the family of support vector classification and Support 
Vector Machine (SVM) algorithms. SVM is one of the most 
important machine learning algorithms and is suitable for linear 
or nonlinear regression, classification, detection of outliers, etc. 
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SVMs have a wide range of applications, such as handwriting 
recognition, image classification, text classification, spam 
detection, gene expression analysis, anomaly detection, face 
detection, etc. [24]. SVRs are very powerful and effective, 
especially when dealing with high-dimensional data and 
nonlinear relationships [25]. 

D. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS was introduced in the early 1990s and is an artificial 
neural network structured on the Sugeno-Takagi-based fuzzy 
system [26]. ANFIS integrates the principles of the fuzzy logic 
system and neural networks and combines the benefits of these 
systems. The ANFIS architecture is basically composed of five 
layers [26, 27]. 

E. Regression Tree (RT) 

A decision tree is an important supervised learning 
technique that can be used for either regression or classification 
tasks. When the target values are discrete, the tree model is said 
to be a classification tree, while if the target values are 
continuous (real), is said to be an RT. A decision tree has a 
tree-like structure, consisting of internal nodes representing a 
test on an attribute, a branch representing the test outcome, and 
a leaf or terminal node holding a class label [28-31]. 

 

 
Fig. 2.  Study flowchart. 

F. Ensemble Learning 

Ensemble learning is used in supervised learning. It is a 
technique that uses machine learning algorithms to obtain 
improved predictive performance by combining their results. 
Ensemble methods use inducers or base learners, such as 
ANNs, DT, neuro-fuzzy, regression models, etc. to make a 
final judgment. Ensemble learning is very important, as it helps 
improve prediction performance by addressing overfitting, 
class imbalance, concept drift, and dimensionality problems 
associated with other learning techniques to compensate for 
poor-performing algorithms [32, 33]. 

1)  Simple Averaging Ensemble (SAE) 

SAE is one of the most popular, and easily implementable 
and utilizable ensemble techniques. This technique has 
demonstrated improved performance for prediction models, 
having been applied to numerous machine learning algorithms 
[28, 34]. SAE is widely applied in real-life problems due to its 
simplicity, effectiveness, and robustness. In (3), the proposed 
SAE technique takes the average of the outputs of the trained 
standalone models (ANN, ANFIS, SVR, and RT). 

��� ! � "� ∑ ��� !�$"     (3) 

2) Weighted Averaging Ensemble (WAE) 

WAE assigns a specific weight to each distinct output, 
according to each output's relative importance, to obtain the 
predicted results. This technique is considered to offer better 
prediction, training, and testing effectiveness compared to 
unweighted ensembles, as weights try to minimize the error 
between the actual and ensemble output [28, 34]. The 
correlation and the determination coefficients are mostly used 
to determine the standalone relative weights of the models. The 
WAE adopted in this study was based on the determination 
coefficient, given as: 

��� ! � ∑ %�$" . ��� !   (4) 

where %  is denoted by: 

% � ∆(�∑ (�	�)*      (5) 

where %  is the weight assigned to the corresponding +th model, ��� !  is the + th output of a standalone model (ANN, SVR, 
ANFIS, and DTR), ,  shows the total number of individual 
models (, � 4), and ∆�  is the coefficient of determination of 
the + th standalone models' output. Figure 3 shows the block 
diagram of WAE. 

 

 
Fig. 3.  Proposed WAE. 

3) Meta-Learning Ensemble (MLE) 

MLE is a technique that learns from other learning methods 
or algorithms. In other words, it is a machine-learning 
technique that combines predictions of algorithms by learning 
from the outputs of other ML algorithms. In the MLE adopted 
in this study, the outputs from the standalone models (ANN, 
SVR, ANFIS, and RT) are used as the input to the meta-
learner, which is another ML model that produces a final 



Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18300-18306 18303  
 

www.etasr.com Sanusi et al.: Mobility Prediction Algorithms for Handover Management in Heterogeneous LiFi and RF … 

 

output. This technique is very effective, especially when base 
models make errors in classifying instances [34]. In this study, 
the predictions from the standalone models (ANN, SVR, 
ANFIS, and RT) were used as inputs and trained by the Neural 
Network (NN). NN was used as a meta-learner due to its 
reliability, effectiveness, and wide use [33-36]. Figure 4 shows 
the schematic diagram of the proposed MLE. 

 

 
Fig. 4.  Proposed MLE. 

III. RESULTS 

The dataset was split into 70% for training and 30% for 
testing. The performance of the standalone ANFIS, ANN, 
SVR, and RT models was evaluated using r, R2, MSE, and 
RMSE, as shown in Table I. The Pearson correlation 
coefficient is between 0 to 1, and the closer to 1, the better the 
model's prediction capability. MSE should be as close to zero 
as possible because the idea is to minimize the error between 
the actual and the predicted value. Table II shows the 
performance evaluation of the ensemble models. 

��. � "� ∑ /0 1 0234�$"    (6) 

���. � 5"� ∑ /0 1 0234�$"    (7) 

�4 � 1 1 ∑ /6��6738	�)*∑ /6��6�38	�)*      (8) 

� � 91 1 ∑ /6��6738	�)*∑ /6��6�38	�)*      (9) 

TABLE I.  PERFORMANCE EVALUATION OF THE STANDALONE MODELS 

 Training Testing 

Models R R2 MSE  RMSE R R2 MSE  RMSE 

ANN-M1 0.5831 0.3400  0.0545 0.2335 0.2791 0.0779 0.0343 0.1851 
ANN-M2 0.8429 0.7104 0.0239 0.1548 0.643 0.4135 0.0221 0.1486 
ANN-M3 0.9166 0.8401 0.0132 0.1149 0.8426 0.71 0.0109 0.1043 

ANFIS-M1 0.6119 0.3744  0.0516 0.2272 0.3673 0.1349 0.0322 0.1795 
ANFIS-M2 0.7512 0.5643 0.036 0.1896 0.6045 0.3654 0.0237 0.1538 
ANFIS-M3 0.833 0.6939 0.0253 0.159 0.7511 0.5641 0.0162 0.1273 
SVM-M1 0.6823 0.4656  0.0442 0.2101 0.6509 0.4236 0.0214 0.1465 
SVM-M2 0.7223 0.5217 0.0396 0.1989 0.6609 0.4368 0.0211 0.1452 
SVM-M3 0.7439 0.5534 0.0371 0.1925 0.7903 0.6246 0.0144 0.1198 
RT-M1 0.9873 0.9748  0.0021 0.0456 0.9986 0.9971 1.06E-04 0.0103 
RT-M2 0.9919 0.9838 0.0013 0.0365 0.9986 0.9971 1.06E-04 0.0103 
RT-M3 0.9914 0.9828 0.0014 0.0377 0.9984 0.9969 1.16E-04 0.0108 

 
A. Prediction Performance of the Mobility-based Standalone 

Models 

The M3 performance of the ANN was the best in terms of 
prediction capability among the ANN models. The 
combination of LG, LT, CQI, and SNR in M3 provided better 
prediction performance in both training and testing phases 
compared to M2 (LG, LT, SNR) and M1 (LG, LT), 
respectively. The ANN-M3 model is preferred among the ANN 
models due to its Pearson coefficient performance of 0.9166 in 
the testing phase compared to ANN-M2 and ANN-M1 with 
0.8429 and 0.5831, respectively. Furthermore, ANN-M3 
proved its robustness among the other models by having an 
MSE value of 0.0109 in testing compared to ANN-M2 and 
ANN-M1 with 0.0221 and 0.0343, respectively. The results of 
the ANFIS models were also encouraging. ANFIS-M3, which 
considered LG, LT, CQI, and SNR, had an MSE of 0.0162 in 
the testing phase compared to M2 and M1 with 0.0237 and 
0.0322, respectively. Moreover, a good correlation between 
actual and predicted mobility was observed in both training and 
testing the ANFIS models. 

In the SVR, it was noticed that the M3 had optimal 
performance in predicting user mobility both in terms of errors 
and goodness of fit in the training and testing stages. M3, 
which combined LG, LT, CQI, and SNR had an R of 0.7903 
and an MSE of 0.0144 in the testing stage, while M2 (LG, LT, 
and SNR) had 0.6609 and 0.0211, and M1 (LG and LT) had 
0.6509 and 0.0214, respectively. This could be interpreted as 
M1 with fewer inputs than M2 could also be used to make 
mobility predictions with lower computational complexity. 

 

 
Fig. 5.  Radar plot of the standalone models. 
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Fig. 6.  Error plot of the standalone models. 

 
Fig. 7.  Scatter plot of the RT-M3 model. 

Figures 5 and 6 present the performance of all the 
standalone models using a radar plot, with RT-M2 being the 
optimal. Figure 7 shows the error plots of the standalone 

models. Figure 7 shows the scatter plot of the best model. 
Scatter plots are very handy in analyzing the assessing the 
precision of the proposed models. In RT-M3, most data points 
lie around the y=x line. These results demonstrate the model's 
reliability and robustness in prediction accuracy. 

B. Performance of the Ensemble Models 

The idea behind ensembles is to aggregate the performance 
of multiple learners to achieve better predictions. In most cases, 
the performance of a standalone model is improved by 
ensemble models because they help address the shortcomings 
of a single standalone model, such as overfitting, underfitting, 
bias, and variance reduction. This is the reason why they 
gained popularity and are applied in a lot of machine learning 
problems. SAE, WAE, and MLE techniques were adopted in 
this work with the dataset divided into 70% for training and 
30% for testing. Table II presents the results obtained from the 
ensemble-based models. Performance improvement was 
achieved by integrating ensemble models. For instance in M2, 
SAE was found to improve the predictive performance of the 
standalone ANN, ANFIS, and SVM by 40.93%, 49.91%, and 
37.12%, respectively. WAE was found to improve the 
predictive performance of the standalone ANN, ANFIS, and 
SVM models by 46.86%, 56.21%, and 42.88%, respectively. 
MAE improved the prediction performance of the ANN, 
ANFIS, SVM, and RT models by 55.38%, 65.28%, 51.17%, 
and 5%, respectively. The MLE model was more effective and 
robust compared to WAE and SAE. Meanwhile, the prediction 
accuracy of the RT models is very similar to that of the MLE 
and better than that of the WAE and SAE. 

TABLE II.  RESULTS OF ENSEMBLE MODELS 

 Training Testing 

Ensemble models R R2 MSE  RMSE R R2 MSE  RMSE 

SAE-M1 0.8552 0.7314 0.0278 0.1668 0.8708 0.7582 0.0202 0.142 
SAE-M2 0.911 0.83 0.0166 0.1288 0.9062 0.8213 0.0136 0.1166 
SAEM3 0.9446 0.8923 0.0106 0.1028 0.9279 0.861 0.0061 0.0784 

WAE-M1 0.936 0.8761 0.0156 0.1248 0.9615 0.9245 0.0103 0.1014 
WAE-M2 0.9386 0.881 0.0122 0.1103 0.9443 0.8917 0.01 0.0999 
WAE-M3 0.9577 0.9171 0.0082 0.0907 0.9436 0.8903 0.0049 0.0702 
MLE -M1 0.9867 0.9737 0.0022 0.0467 0.998 0.9961 1.49E-04 0.0122 
MLE-M2 0.9939 0.9878 9.04E-04 0.0301 0.9991 0.9982 7.90E-05 0.0089 
MLE-M3 0.995 0.9899 7.50E-04 0.0274 0.9989 0.9978 1.11E-04 0.0106 

 

The ensemble models reduced the errors of the standalone 
models, proving their superiority and justifying the need for 
their adoption. For example, in M1, SAE reduced the RMSE of 
the standalone ANN, ANFIS, and SVM models by 28.57%, 
26.58%, and 20.61%, respectively. Similarly, in M2, WAE 
reduced the RMSE of the standalone ANN, ANFIS, and SVM 
models by 28.75%, 41.82%, and 44.541%, respectively. In M3, 
MAE reduced the RMSE of the standalone ANN, ANFIS, 
SVM, and RT models by 76.15%, 82.77%, 85.77%, and 
27.32%, respectively. Figure 8(a) shows the performance of the 
ensemble models in the testing stage using R. A value to the 
outermost gridline indicates a better predictive performance. 
Based on this criterion, the best models were SAE-M3, WAE-
M2, and MLE-M2. Figure 8(b) shows a graphical comparison 
between the best ensemble models and related works [37], with 
MLE-M2 having the optimum predictive performance. 

(a) 

 

(b) 

 

Fig. 8.  Radar plots of the ensemble models: (a) Best ensemble models in 
this study, (b) Comparison with related works. 
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IV. CONCLUSION 

This study considered a hybrid LiFi-WiFi network to meet 
the ever-increasing demand for data services because the RF 
communication spectrum seems over-saturated. Frequent 
handover was considered a problem in a LiFi-WiFi hybrid 
network due to the movement of users coupled with the fact 
that a single AP covers a small service area. Therefore, an 
intelligent handover scheme was proposed, in which user 
network parameters (LT, LG, SNR, and CQI) were used to 
train machine learning models to predict their mobility so that 
the central network can have a priori mobility information to 
ensure seamless connectivity. The results show that the four 
proposed ML techniques can be relied upon for user mobility 
prediction. Furthermore, the proposed ensemble learning 
techniques enhanced the prediction performance of the 
proposed mobility algorithms, thus proving superiority and 
effectiveness in handover decision applications. The proposed 
techniques can be applied extensively to address handover 
problems in heterogeneous networks for 5G and beyond 
communications where operations are intelligence-driven. 
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