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ABSTRACT 

Electric load forecasting is crucial in a power system comprising electricity generation, transmission, 

distribution, and retail. Due to its high accuracy, the ensemble learning method XGBoost has been widely 

applied in load forecasting. XGBoost's performance depends on its hyperparameters and the Genetic 

Algorithm (GA) is a commonly used algorithm in determining the optimal hyperparameters for this model. 

In this study, we propose a flowchart algorithm to investigate the impact of GA parameters on the 

accuracy of XGBoost models over the hyperparameter grid for load forecasting. The maximum load data 

of Queensland, Australia, are used for the research. The analysis of the results indicates that the accuracy 

of the XGBoost model significantly depends on the values of its hyperparameters. Using default 

hyperparameter values may lead to substantial errors in load forecasts, while selecting appropriate values 

for the GA to determine the optimal hyperparameters for the XGBoost model can significantly improve its 

accuracy. 

Keywords-load forecasting; XGBoost; genetic algorithm   

I. INTRODUCTION  

Electricity load forecasting is the process of estimating the 
future electricity consumption an plays a significant role in an 
electricity system composed of production planning, 
operational planning, and future development planning [1-2]. 
Load forecasting models based on time-series data represent 
the changing patterns of electric load over time in an 
autoregressive manner. Specifically, at each time step, the load 
forecasting model aims to predict the current load value based 
on the values from the preceding time points. Numerous 
methods for electricity load forecasting have been proposed, 
including classical ones such as regression [3], exponential 
smoothing [4], and ARIMA [5], as well as more modern 
techniques like Artificial Neural Networks (ANN) [5-6], deep 
learning [7], and ensemble learning [8]. In recent years, among 
advanced load forecasting methods, the XGBoost model has 
been proven effective and widely used in general time series 
forecasting in general and load forecasting problems in 
particular [9-10]. 

The performance of ensemble learning models, including 
XGBoost, often depends on their hyperparameters. Thus, 
several optimization algorithms have been applied to determine 
them, such as Random Search (RS), Grid Search (GS), Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), 
Bayesian Optimization, etc. [11-13]. In recent years, many 

studies have successfully applied the GA to enhance the 
performance of the XGBoost model. It is worth noting that the 
accuracy of the GA algorithms is sensitive to its parameters, 
making it crucial to evaluate the impact of parameter values on 
the performance of GA when applied to an XGBoost model. 
Most authors either use the default parameter values or set 
them based on empirical values, and, to the best of our 
knowledge, no studies dedicated in the analysis of this aspect 
have been published [14-18]. Thus, in this paper, an algorithm 
flowchart if proposed for the evaluation of the influence of 
GA's parameters on the XGBoost model regarding the load 
forecasting problem. The study utilizes peak load data from 
Queensland, Australia. Boxplot charts will be used statistically 
to analyze the results of different experimental scenarios. 

II. RESEARCH METHODS 

A. XGBoost Model 

XGBoost is a powerful boosting algorithm used for 
regression and classification tasks [18-19]. Given the dataset 

D={(xi, yi)} where xi ∈ R
m
, (with m being the dimension of 

each sample) and yi ∈ R
n
) (where n is the number of samples). 

The prediction model can be described as a tree ensemble 
model, which includes K decision trees as follows: 

y�� = ∑ f�(x�),  f� ∈�
���  F   (1) 
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where fk represents the k-th decision tree in the ensemble. Each 
fk is a function that maps a sample xi to a predicted value, and 
these functions are parameterized by the structure and 
parameters of the decision trees. 

To optimize the model, XGBoost minimizes a regularized 
objective function, which consists of a loss function � that 
measures the difference between the predicted values and the 
actual target values, and a regularization term Ω that penalizes 
the complexity of the model. 

L(ϕ) = ∑ l(y��, y�) + ∑ Ω(f�)��    (2) 

The regularization term helps to control overfitting by 
penalizing the complexity of the individual trees fk. The 
specific forms of the loss function L and the regularization term 
Ω can vary depending on the task (e.g. squared error for 
regression, logistic loss for classification) and the 
implementation details of XGBoost. The regularization term Ω 
is defined as follows: 

Ω(f) = γT + �
� λ‖ω‖�    (3) 

where γ is a regularization parameter that controls the 
complexity of the tree by penalizing the number of leaves T 
and λ is a regularization parameter that controls the leaf 
weights wj. In XGBoost, the prediction of the i-th instance at 

the t-th iteration, denoted as ���
( )

 can be obtained by (1). 

Substituting (1) into the objective function, we can rewrite it as 
follows: 

L(!) = ∑ l(y�, y��
(!"�) + f!(x�)) + Ω(f!)#

���   (4) 

To simplify the optimization process, we can use a second-
order Taylor expansion to approximate the objective function: 

L(!) ≃ ∑ [l(y�, y��
(!"�) + g�f!(x�) + �

� h�f!�(x�)]#
��� + Ω(f!)

∀ g� = +,-./,.0(123)4 
+.0(123) , h� =   +5,-./,.0(123)4 

+(.0(123))5

 (5) 

where gi and hi are first and second order gradient statistics of 
the loss function. The residual between the prediction score 

y��
(!"�) and y�  does not affect the optimization of the objective 

function, so the specific objective function at step t becomes: 

L6(!) = ∑ 7g�f!(x�) + �
� h�f!�(x�)8#

���

+γT + �
� λ ∑ ω9

�:
9��

  (6) 

The objective function is an improvement of the XGBoost 
method over GBDT (Gradient Boosting Decision Tree) due to 
the addition of a regularization factor, which helps reduce 
model complexity and avoid overfitting. In XGBoost, both the 
first and second derivatives of the loss function are used to 
optimize the adjustment of the residual error. This method also 
supports column sampling, which reduces overfitting and 
speeds up computation. Due to these improvements, XGBoost 
has many hyperparameters, with the important ones being [20-
21]: 

 Learning_Rate (eta): Controls the step size at each iteration 
while moving toward minimizing the loss function. 

 Max_Depth: Specifies the maximum depth of the trees. 

 Min_Child_Weight: Determines the minimum sum of 
instance weight (Hessian) needed in a child. 

 Subsample: Denotes the fraction of samples to be used for 
each tree. 

 Colsample_bytree: Indicates the feature fraction to be 
randomly sampled for each tree. 

 Gamma: Minimum loss reduction required to partition the 
leaf node of the tree further. 

 Lambda (L2 Regularization): Adds an L2 regularization 
term to the loss function to avoid overfitting. 

 Alpha (L1 Regularization): Adds an L1 regularization term 
to the loss function to avoid overfitting. 

Determining the optimal hyperparameters for the XGBoost 
model is crucial for enhancing the model's performance. In this 
study, the authors use the GA to determine the optimal 
hyperparameters for the XGBoost model, which will be 
introduced below. 

B. Genetic Algorithm 

The GA is an evolutionary algorithm method inspired by 
Charles Darwin's Theory of Evolution through Natural 
Selection. One of GA's main advantages is its capability to 
efficiently explore large and complex search spaces, making it 
suitable for problems with numerous variables or constraints. 
Moreover, GA can integrate prior knowledge or constraints 
into the fitness function, generating solutions aligned with 
domain-specific knowledge. The basic steps of GA (Figure 1) 
are [14-18, 22]: 

 Initial Population: A set of individuals is initialized 
randomly. 

 Fitness Calculation: The fitness of each individual in the 
population is calculated using a portion of the training data 
according to the subsample ratio. 

 Parent Selection: The best individuals are selected as 
parents for the crossover process. 

 Crossover: Genetic information from two parents are 
combined to create new individuals. 

 Mutation: Random changes are applied to some genes of 
the new individuals. 

 New Generation: A new generation from the crossover and 
mutated individuals is created. 

 Termination Criteria Reached: Check whether the stopping 
criteria have been met. If yes, the algorithm stops; if not, it 
goes back to the fitness calculation step. 
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Fig. 1.  Implementation steps of the GA algorithm. 

A characteristic of the GA is that the results depend on its 
parameters. Based on the GA process cycle presented in Figure 
1, the main parameters of the GA are: 

 Generations: Number of iterations to run the pipeline 
optimization process. 

 Population Size: Number of individuals to retain in the 
genetic programming population for each generation. 

 Offspring Size: Number of siblings produced in each 
generation. 

 Mutation Rate: It lies in the range [0.0, 1.0]. 

 Crossover Rate: It lies in the range [0.0, 1.0]. 

 Subsample: Fraction of training samples used during the 
optimization process. 

C. The Proposed Algorithm  

As mentioned in the previous section, the GA is used to 
determine the optimal hyperparameters of the XGBoost model, 
but the GA's performance may depend on its own parameters. 
Therefore, evaluating the impact of these parameters is crucial 
when applying GA to the XGBoost model. In this study, the 
authors propose a flowchart algorithm to investigate the GA's 
response as the parameters change within a predefined range, 
as illustrated in Figure 2. The main steps of the model are: 

 Create Training Data: Generate the training data, including 
input variables X and target variables y. 

 Define Hyperparameter Ranges for XGBoost: Specify the 
ranges of the hyperparameters of XGBoost that need to be 
optimized, including the number of trees (nei), learning rate 

(lr), tree depth (mdi), etc. Initialize the XGBoost model 
with hyperparameters within the defined ranges. 

 Define Parameter Ranges for GA: Specify the ranges for 
the parameters of the GA, including the number of 
generations (gen), mutation rate (mut), subsample (sub), 
and other parameters. 

 Apply Genetic Algorithm: Utilize the GA to search for the 
optimal hyperparameters of the XGBoost model. 

 Obtain Final Results: The final result is an optimal set of 
hyperparameters (mdlopt) for the XGBoost model along 
with the proposed corresponding error value, MAPE. 

 

GA algorithms

XGBoost Hyperparameter Ranges:

Hypi ={nei, lri, mdi, …}

Data 

(X,y)

GA Parameter Ranges: 

Cfg
i
 ={gen

i
, mut

i
, sub

i
, …}

MAPE
iXGBoost model

mdl mdlopt

 

Fig. 2.  Implementation steps of the proposed algorithm. 

Each value of the GA parameters set, denoted as Cfg
i
, 

corresponds to a MAPE
i
 value. Analyzing the MAPE values in 

relation to individual parameters such as gen, mut, and sub will 
assess the impact of each parameter on the accuracy of the GA 
algorithm. Additionally, this study evaluates the overall impact 
of these parameters on the performance of the GA algorithm 
when applied to the XGBoost model for load forecasting 
problems by analyzing the MAPE accuracy as detailed in Table 
I. 

TABLE I.  PROPOSED SURVEY MODELS 

Model Description 

XGBoost Use the default hyperparameters of XGBoost. 

GA-XGBoost 
Use the default parameters of GA to determine 

the optimal hyperparameters of XGBoost. 

GS-GA-XGBoost 

Change the values of GA's parameters based on 

their Grid Space (GS) values. Each combination 

of parameter sets will yield a corresponding 

optimal set of hyperparameters for XGBoost and 

MAPE. 

 

III. RESULTS AND DISCUSSION 

A. Setting Model Parameters 

In this study, we used the maximum electricity load dataset 
from Queensland, Australia, from July 1, 2019, to September 
30, 2019 [23]. The peak load values of this dataset are 
presented in Table II. This dataset will be split into X and y 
using a sliding window method with a window size of 7 [24]. 
Table III presents the hyperparameters investigated for the 
XGBoost model. It includes the default values and the range of 
values set when applying the GA to determine the optimal 
hyperparameters of the XGBoost model. 
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TABLE II.  PEAK LOAD VALUES FOR QUEENSLAND 
DATASET   

DATE Peak Load (MW) 

2019-07-01 7353.24 

2019-07-02 7209.22   

2019-07-03 7191.09 

…  

2019-09-28 6693.78 

2019-09-29 6848.42 

2019-09-30 7291.57 

TABLE III.  HYPERPARAMETERS FOR THE XGBOOST 
MODEL 

Hyperparameter Type Range Default 

n_estimators (ne) Interger (1, 500) 100 

learning_rate (lr) Floating-point (0, 0.5) 0.3 

max_depth (md) Interger (1, 15) 6 

subsample (ss) Floating-point (0.5, 1) 1 

colsample_bytree (cb) Floating-point (0.5, 1) 1 

reg_alpha (ra) Floating-point (0, 0.3) 0 

reg_lambda (rl) Floating-point (0, 1) 1 

 

We used the TPOTRegressor syntax for the GA. 
TPOTRegressor is a part of the TPOT (Tree-based Pipeline 
Optimization Tool) library. It automates the machine learning 
pipeline design process using genetic programming to optimize 
the pipelines [25]. The grid value space for the parameters of 
the GA is presented in Table IV. 

TABLE IV.  RANGE OF VALUES FOR THE INVESTIGATED 
PARAMETERS OF THE GENETIC ALGORITHM     

Hyperparameter Type Range Default 

generations Interger [60, 80, 100, 120, 140] 100 

mutation_rate 
floating-

point 
[0.5, 0.6, 0.7, 0.8, 0.9] 0.9 

subsample 
floating-

point 
[0.5, 0.6, 0.7, 0.8, 0.9, 1] 1 

 

B. Evaluation of the Overall Impact of the Genetic Algorithm 

Figure 3 presents the error rate results for the surveyed 
cases set up as shown in Table I.  

 

 
Fig. 3.  Response results of the considered XGBoost models. 

The results shown in Figure 3 demonstrate that the 
hyperparameters play an important role in the performance of 
the XGBoost model. Indeed, when applying the XGBoost 
model with the default hyperparameters, the error rate is 
2.22%. In contrast, using the GA algorithm with its default 
parameters (GA-XGBoost) to determine the optimal 
hyperparameters for the XGBoost model, the obtained results 
have a much lower error rate of 1.62%. Furthermore, the 
response of the GA algorithm when changing its parameters 
(GS-GA-XGBoost) yields much better results. Specifically, the 
values for the GS-GA-XGBoost model are minimum at 1.16%, 
with the first quartile at 1.33%, the second quartile at 1.39%, 
and the third quartile at 1.54%, all of which are lower than the 
value of the GA-XGBoost model of 1.62%. 

C. Effect of Individual Parameters of the Genetic Algorithm 

Figure 4 presents the boxplot chart of MAPE error rates of 
the XGBoost models according to the varying values of the 
generation parameter of the GA algorithm. Table V presents 
the corresponding statistical results of Figure 4. The analysis 
results in Figure 4 and Table V show that the model's error 
decreases gradually when changing the generation values from 
the default value of 100 (with statistical values Min: 1.1737, 
Q1: 1.3342, Q2: 1.3939, Q3: 1.5352, Max: 1.7870) to a value 
of 150 (with statistical values Min: 1.1640, Q1: 1.3260, Q2: 
1.3857, Q3: 1.5092, Max: 1.7860). 

 

 
Fig. 4.  Error rate according to the generation parameter. 

TABLE V.  ERROR RATE BY GENERATION PARAMETER 
VALUES 

Value Min Q1 Q2 Q3 Max 

50 1.1799 1.3515 1.4396 1.5430 1.7986 

75 1.1737 1.3357 1.4012 1.5367 1.7881 

100 1.1737 1.3342 1.3939 1.5352 1.7870 

125 1.1737 1.3334 1.3900 1.5283 1.7860 

150 1.1640 1.3260 1.3857 1.5092 1.7860 

 
Figure 5 presents the boxplot of MAPE error rates 

according to the values of the mutation_rate parameter of the 
GA algorithm and Table VI provides the corresponding 
statistical results. The data analyzed in Figure 5 and Table VI 
indicate that the default value of mutation_rate, which is 0.9 
(with statistical values Min: 1.2605, Q1: 1.3299, Q2: 1.4035, 
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Q3: 1.4885), is not the optimal value for model performance. 
Specifically, a mutation_rate of 0.8 (with statistical values Min: 
1.2599, Q1: 1.3212, Q2: 1.3618, Q3: 1.4880) yields better 
results. 

 

 
Fig. 5.  Error rate according to the mutation_rate parameter. 

TABLE VI.  ERROR RATE BY MUTATION_RATE 
PARAMETER VALUES 

Values Min Q1 Q2 Q3 Max 

0.5 1.3187 1.3445 1.4169 1.6018 1.7871 

0.6 1.1640 1.3619 1.4465 1.5412 1.7881 

0.7 1.2212 1.2974 1.3945 1.5420 1.7368 

0.8 1.2599 1.3212 1.3618 1.4880 1.7986 

0.9 1.2605 1.3299 1.4035 1.4885 1.7049 
 

Similarly, when considering the values of the subsample 
parameter of the GA algorithm, the boxplot of error rates and 
the corresponding statistical data are presented in Figure 6 and 
Table VII. Apparently, the XGBoost model with the default 
subsample value of 1.0 is not optimal (with statistical values 
Min: 1.6096, Q1: 1.7026, Q2: 1.4035, Q3: 1.7860, Max: 
1.7986). The error rate decreases progressively from the default 
subsample value of 1.0 to a subsample value of 0.7 (with 
statistical values Min: 1.2605, Q1: 1.2965, Q2: 1.3202, Q3: 
1.3326, and Max: 1.3665). 

 

 

Fig. 6.  Error rate according to the subsample parameter. 

TABLE VII.  ERROR RATE BY SUBSAMPLE PARAMETER 
VALUES 

Values Min Q1 Q2 Q3 Max 

0.5 1.2599 1.3950 1.4170 1.4658 1.5234 

0.6 1.1640 1.2286 1.3293 1.3471 1.3619 

0.7 1.2605 1.2965 1.3202 1.3326 1.3665 

0.8 1.3548 1.3687 1.3841 1.3942 1.4514 

0.9 1.4689 1.4911 1.5382 1.5562 1.6312 

1 1.6096 1.7026 1.7860 1.7860 1.7986 

 

The above analysis allows concluding that the values of the 
generation, mutation_rate, and subsample parameters of the 
GA algorithm significantly impact the performance of the 
XGBoost model for load forecasting. The default values of 
these parameters result in noticeably higher prediction errors 
than other values. Therefore, choosing GA parameters is 
crucial when applying the XGBoost model to load forecasting 
problems. 

IV. CONCLUSIONS  

In this study, a process is proposed for the investigation of 
the influence of the Genetic Algorithm (GA) parameters on the 
XGBoost model applied to the load forecasting problem. The 
investigated models include the XGBoost model with default 
hyperparameter values, the XGBoost model with 
hyperparameters determined by the default GA, and the 
XGBoost model with hyperparameters determined by the GA, 
but with varying parameters. The performance of the GA is 
also examined for each of its parameters. The results indicate 
that the GA enhances the accuracy of the XGBoost model, and 
the default values of the GA parameters do not correspond to 
the optimal values. The findings emphasize the importance of 
the GA in determining optimal hyperparameters on the 
XGBoost model to solve the load forecasting issue. In addition, 
the obtained results also underline the significance of 
identifying reasonable values for the parameters of these 
optimization algorithms to further improve the model's 
performance. Future research will be expanded to investigate 
the influence of parameters on other optimization algorithms, 
such as PSO, TPE, or Bayesian optimization. Additionally, it 
will be extended to other machine learning models, particularly 
CNN and LSTM, to evaluate the effectiveness of these models 
in load forecasting problems.  
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