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ABSTRACT 

As big data technology has developed, so have complex applications that require increasing resources. The 

need for high-performance reading and writing increases the usage of NoSQL (MongoDB) databases. As 

the number of queries in a given amount of time negatively affects the performance of the database, an 

automated index selection strategy should be used to improve the database performance. This study 

proposes an Optimized Deep Deterministic Policy Gradient (ODDPG) to select the optimal index. The 

Adaptive Crocodile Optimization Algorithm (ACOA) is used to improve DDPG's decision-making 

performance. The ACOA algorithm is used to receive the best action sequences of a DQN. Simulation 

results showed that the proposed method achieved better results than the existing DDPG model by 2.3% in 

Average Time Of Query (ATQ) executed, 10% in Query Per Hour (QPH), and 11% in throughput. 
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I. INTRODUCTION  

Big data can be effectively stored and processed using 
cloud computing databases, and NoSQL databases are part of 
these technological advances. NoSQL databases use different 
data models for different purposes, including key-value, wide-
column, and document models. NoSQL is used in modern web-
scale databases because of its performance, availability, and 
scalability. For the past 3 to 4 decades, larger organizations and 
enterprises have been using conventional databases, such as 
Relational Databases (RDBs), to store and analyze data. RDBs 
have a structural model and support SQL (Structured Query 
Language). Traditional RDBMSs, constructed to obtain 
structured data, perform poorly when dealing with unstructured 
data [1, 2]. Thus, HDFS and MongoDB have gained attention 
in cloud data storage, as they can obtain a larger count of nodes 
containing complex data and show high fault tolerance and 
scalability. Therefore, some cloud applications store data in 
NoSQL databases [3]. 

NoSQL databases introduce two important issues. The first 
is that databases are increasingly difficult to provide efficient 
data management, as using a KnOBD is more complicated for 
common users [4-6]. The second is their large amounts of 
resource consumption in calculating statistical properties. 
These statistical properties are often difficult to obtain in large 
databases. Index selection should be applied to all possible 

indexes and workloads, which is a complicated issue [7, 8]. 
Several techniques have been presented to improve the 
performance of NoSQL databases. In [3], a spontaneous 
method (DRLISA) was introduced to achieve index selection in 
a NoSQL database. DRLISA established the optimal index 
using a deep reinforcement learning method that was adapted 
to the dynamic change in workloads. In various workloads, this 
approach spontaneously obtains the required indices and 
parameters to increase the database learning process. 
Experimental results showed the high efficiency of DRLISA in 
dynamic workloads. In [9], an advanced method for 
CANDECOMP/PARAFAC (CP) rank selection was proposed, 
based on deep reinforcement learning. The Deep Deterministic 
Policy Gradient (DDPG) algorithm was used to automate and 
improve index selection. This method was used to handle the 
Decomposition Game (DecG) single-player game structure. 
The pre-trained model was used to confuse and reassemble 
different historical data that were given as network inputs. 
However, these methods still face challenges, such as 
insufficient robustness. 

In [10], security problems were investigated in pattern 
formats in NoSQL databases. A pattern-based approach can be 
used to understand other significant but underexplored areas in 
NoSQL databases. In [11], an optimum index selection method 
was proposed to choose cattle breeds. The optimum index 
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depends not only on the breeding values but also on their 
squares. The characteristics allocated for selection aim to 
stabilize and maximize the expected total profit for the 
offspring, without focusing on increasing the short-term 
process. In [12], cooperative information criteria were used for 
optimal group selection in air quality forecasting. This study 
suggested a selection method that relied on cooperative 
information rules to find optimal forecasting sets from different 
individual models. 

II. OPTIMAL INDEX SELECTION USING 

OPTIMIZED DEEP DETERMINISTIC POLICY 

GRADIENT FOR NOSQL 

A. Overview  

Figure 1 shows the general design of the proposed method, 
where W denotes the workload and G denotes the index 
configurations given as input. The input sets are denoted as the 
state vector S, and A defines the group of actions combined 
with the state vector. Therefore, in Deep Deterministic Policy 
Gradient (DDPG) methods, the set of S and A is put as input. 
Depending on the input sets, the DDPG structure is evaluated 
and the output is estimated as Q values. Based on the Q values, 
optimal action sequences are selected using the ACOA 
algorithm. The ACOA algorithm summarizes discounted 
return, which examines a fitness function used to select the 
optimal action sequence. This optimizes storage in the DDPG 
structure. The optimal action segment received provides input 
to another stage that proposes an optimized DDPG structure. 
This reduces the loss function of the output in ODDPG, and 
every level is upgraded until the optimal index configuration is 
found. 

 

Fig. 1.  The overall structure of the proposed approach. 

B. Deep Deterministic Policy Gradient (DDPG) 

Figure 2 shows the DDPG model. The off-policy data point 
gets recollected to utilize the Q-function, where the learn policy 
implies the Bellman equation. In every set, the quality of action 
is given as � ∗ (�), denoting the optimal action-value function 
to resolve the problems. 

� ∗ (�) = ���	�
 �∗  (�, �)  (1) 

 

Fig. 2.  DDPG structure. 

DDPG denotes the learning approximator � ∗ (�, �) with a 
learning approximator � ∗ (�) evaluated especially in relevant 
formats of environments in sustained action spaces. Therefore, 
DDPG is suitable for all environments with sustained action 
space. It gives immediate action that increases a �-value. 
Therefore, a given action space is sustained, and the 
function�(�, �)  is evaluated in various forms regarding the 
action arguments. This helps to create an efficient, gradient-
based learning step for a set � ∗ (�). In the final stage, rather 
than using a high-quality optimization function several 
times, 	�
 � �(�, �)  can be obtained using available 
information. 

	�
 � �(�, �) = �(�, �(�))   (2) 

A Bellman-based equation combines the optimal actions 
and the function value of � ∗ (�, �) as: 

� ∗ (�, �) = ��`~�����, � + � 	�
 � `� ∗ (�`, �`)�� (3) 

The symbol �`~� denotes the other state �` produced from a 
probability distribution � expressing the current state � and the 
action �. The Bellman-based formula is used in the first step of 
constructing a similar function for � ∗ (�, �). A similar neural 
network ��(�, �)  is assumed, with parameter �  and a 
transition set � = (�, �, �, �`,  ), where   represents the state �` 
terminal. A Mean-Squared Bellman Error (MSBE) function is 
built to find how well �� fits the Bellman-based equation: 

!(�, �) = "#(�, �, �, �`,  )~�$×  

     %&��(�, �) − �� + �(1 −  ) 	�
 � `��(�`, �`)�)*+ (4) 

The important algorithms used to learn a DNN to estimate � ∗ (�, �)  depend on the experiences replay buffer that 
compares a group of adventures (�). The buffer replay should 
be large enough to cover a wide area of adventures. The Q-
learning algorithm uses a targeted network as shown in  

� + �(1 −  ) 	�
 � `�� (�`, �`)  (5) 

The MSBE loss can be reduced by the function target, and 
the Q-function is mapped after this reduction. Unfortunately, 
this goal depends on the way that is used to track. MSBE can 
be reduced in various ways. The aim is to use a set of access 
parameters, while in time delay, it reacts with the secondary 
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network defined as a target network with backward as first. The 
target network is represented as �,���. 

�-./ ← 1�-./ + (1 − 1)  �    (6) 

where 1 expresses the high standard form in the middle of 0 
and 1, mostly near 1, known as polyak. DDPG deals with 
network policy that targets the calculation similarly to 

maximize ��-./. 

The target policy-based network is found approximate to 
the target Q-function: it is reached by taking a polyak average 
of the policy parameters in search periods. In the same model, 
Q-learning was used to reduce the MSBE by stochastic 
gradient descent in the below format: 

!(�, �) = �(�,,.,�`,2)~3 45��(�, �) − 6� + �(1 −
 ) ��-./ &�`, �7-./(�`)*89):   (7) 

where �7-./ is the target policy.  

Therefore, the state-value function varied with an ongoing 

action space in parameter ;<  can be improved by using a 

gradient descent. In the derived algorithm, the gradient gets 
searched using the series form: 

=7<> = =?@���A,- , �A,-|;C�=7<���A,-|;<�  (8) 

C. Selection of Optimal Action Sequences  

The ACOA algorithm [13] can solve optimization problems 
using swarm intelligence. ACOA can obtain the optimal 
solution from an information flow where the components get 
combined to supply data. This algorithm is based on the 
chasing attitude of crocodiles, which are of two types: 
ambushers and chasers. Big chasers do not eat fish but send 
them ashore by lashing their tails violently. Ambushers wait in-
depth and try to catch fish. This study combined the ACOA 
with the OBL for the proposed system. OBL helps in 
processing better searching capabilities. Then a perfect action 
sequence is selected to describe formats in ACOA. 

1) Initialization 

The random solutions for basic populations are initialized 
using: 

D = ! + ��E × (G − !)   (9) 

where D expresses a random solution, ! and G express a lower 
and an upper bound of the variable, respectively, and ��E  

expresses a random number in �-./#0,1$. The group of Q-

values is designed to solve the problems. The population �- 
expresses the total number of the solution I at , 

as: 

�- = #DJ , D), … , DL$-     (10) 

The problem in DL is expressed as: 

DL = #�A$L     (11) 

Therefore: 

�A = {�(�A , �AJ), … , �(�A , �AN)}  

2) OBL 

All original results should be generated using contrast 
results. A contrast result is expressed as: 

D = � + P − D    (12) 

whereas D ∈ #�, P$ is a real number. 

3) Fitness Calculation 

The fitness is calculated for every initial solution. The 
discount returned (R) is expressed as the fitness function. The 
sequence of actions is the sum of all credits as: 

RA = ∑ TNUV�(�A , �V)NVWJ    (13) 

and the fitness function is: 

XY,A = Z�
(RA)    (14) 

Accordingly, the optimal action sequence (13) is denoted as 
a result of the largest discount getting a refund. Therefore, the 
solution becomes better when the steps are updated and 
discovered. The numerical definition of hunting is shown 
below. 

4) Chasing the Prey 

Here, the first step is exciting the chasers. Therefore, the 
chasers are very close to food, and the first 50% of crocodiles 
(solutions) team up to chase. The other 50% of the solution 
includes the ambushers. Comparing both the chasers and 
ambushers groups, the latter is more away from the food. 
Therefore, a conclusion is made to find the length between the 
food and the crocodiles. A chaser is closer to the food, but 
ambushers may be far away from the prey. The behavior of 
capturing food is formulated in the following equations. 

 = [D\.]^- − D_ℎ�].A,- [∀Y    (15) 

D_ℎ�].A,-aJ = �D_ℎ�].A,- − b�̄.  �    ∀Y < f   (16) 

D_ℎ�].A,-aJ = (D̄.g2 − b�̄.  )    ∀Y ≥ f   (17) 

where D\.]^-  denotes the prey placed in iteration , , D_ℎ�].A,-
 is 

the Y  crocodile at iteration , , D̄.g2  is the random vector 
location, b is the equal allocation changing within range 0 and 
3, � is a random value within the range 0-1, and   is the space 
interval within the Yth

 chaser and the prey. 

Every, chaser moves toward its food with a positive 
coefficient of (16) if  < f. Random search is agreed if  ≥ f. 
Thus, the chasers attack their food when it is close to them, 
otherwise, the random approach is followed.  

5) Attacking the Prey 

Chasers attack the prey at its final place in the area. 
Attacked forms are expected using the following equations: 

 = [D\.]^- − DVij�ℎ].A,- [   ∀Y   (18) 

� = \_a\a\.]^\k�A-Akg
l    (19) 

DVij�ℎ].A,-aJ = � . mn�(2�) + D\.]^- �   ∀Y < f (20) 

DVij�ℎ].A,-aJ = &DA,- − b�p − DA,-�*   ∀Y ≥ f (21) 
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where DA,-
 denotes the position of the Yth

 ambusher at iteration ,,   is the distance between the ambushers and the prey, �1m 
denotes the chasers' average position, and �1�  denotes the 
ambusher's average position. Motion depends on the results of 
(19). If  < f , the ambusher swims over the prey. This 
depends on the average status of every class of chasers, the 
ambushers, and the prey. The location of ambushers is 
upgraded using (20). 

6) Termination Criteria 

These steps are repeated until finding the optimal solution. 
Then, the algorithm ends. This optimal action sequence is used 
to attain an optimal index configuration.  

III. RESULTS AND DISCUSSION 

Experiments were carried out on a PC with Windows 10, an 
Intel Core i7 processor, 8 GB of RAM, and the Python 
programming language. The proposed method was tested using 
the "Yahoo! Cloud Serving Benchmark" (YCSB). This 
benchmark contains common data manipulation reports such as 
reading, upgrading, inserting, scamming, and Read-Modify-
Write (RMW). The tests of the proposed method varied in 
workloads with different datasets: 20% (Read), 40% (20% 
Read, 20% Insert), 60% (20% Read, 20% Insert, 20% Update), 
80% (20% Read, 20% Insert, 10% Update, 30% Scan), and 
100% (20% Read, 20% Insert, 10% Update, 30% Scan, 20% 
RMW). 

A. Comparison of DDPG, DQN, and Existing Approaches 
with and without Optimization 

1) Average Time of Index Selection (ATIS) 

Figure 3(a) shows the ATIS of the proposed ODDPG. The 
ODQN achieved an ATIS of 3362 ms, while OQ-learning and 
ORandom achieved ATIS of 4335 ms and 6504 ms, 
respectively, for 100% workload. However, compared to 
ODQN, the proposed ODDPG achieved better ATIS at 2875 
ms. Figure 3(b) shows the ATIS of DDPG, which achieved 
3082 ms while DQN, Q-learning, and Random achieved ATIS 
of 3748, 5016, and 7128 ms, respectively. 

2) Average Time Query Execution(ATQ) 

Figure 4(a) shows the ATQ of the proposed ODDPG with 
optimized Q-learning, DQN, and Random selection. Due to the 
optimal action selection using the ACOA algorithm, the ATQ 
of the proposed method in ODDPG was reduced to 4238 ms 
with 20% workload and 8234 ms with 100% workload. Figure 
4(b) shows a comparative analysis of the ATQ of DDPG. 
Compared to other models, DDPG achieved better ATQ of 
4521 ms for 20% and 8635 ms for 100% workload. 

3) Throughput 

Figure 5(a) shows a comparative analysis of the throughput 
of ODDPG combined with optimized Q-learning, DQN, and 
random selection. ODDPG throughput increased to 10%, 19%, 
and 54% than that of ODQN, OQ-learning, and ORandom, 
respectively. Figure 5(c) shows the comparative analysis of the 
ACT for DDPG. Compared to DQN, Q-learning, and Random, 
the ACT of the DDPG was reduced to 17%, 39%, and 64%, 
respectively. 

(a) 

 

(b) 

 

Fig. 3.  (a) ATIS with optimization, (b) ATIS without optimization. 

(a) 

 

(b) 

 

Fig. 4.  (a) ATQ with optimization, (b) ATQ without optimization. 
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(a) 

 

(b) 

 

Fig. 5.  Throughput with (a) and without (b) optimization. 

4) Response Time 

Figure 6(a) shows the response time of the proposed 
ODDPG. ODQN achieved a response time of 6724 ms while 
OQ-learning and ORandom achieved response times of 7602 
ms and 8327 ms, respectively, for 100% of the workload. 
Compared to ODQN, the proposed ODDPG achieved a better 
response time of 5524 ms. Figure 6(b) depicts the response 
time of the DDPG at 6198 ms compared to DQN, Q-learning, 
and Random that achieved 7341 ms, 8124 ms, and 8694 ms, 
respectively, at 100% workload. 

 

(a) 

 

(b) 

 

Fig. 6.  Throughput with (a) and without (b) optimization. 

5) QPH 

Figure 7(a) shows a comparative analysis of the QPH of the 
proposed ODDPG with optimized Q-learning, DQN, and 
Random selection. Due to the optimal action selection using the 
ACOA algorithm, the QPH of the ODDPG increased to 18% 
and 98% for workloads of 20% and 100%, respectively. Figure 
7(b) shows the comparative analysis of QPH, where DDPG 
achieved better QPH of 15% and 95% than existing models for 
workloads of 20% and 100%, respectively. 

 

(a) 

 

(b) 

 

Fig. 7.  Throughput with (a) and without (b) optimization. 

IV. CONCLUSION 

The number of queries in a given amount of time negatively 
affects the performance of NoSQL databases. Automatic index 
selection plays a vital role in improving database performance 
for managing large numbers of queries. This study proposed an 
optimized DDPG for optimal index selection. Using the ACOA 
algorithm, DDPG was able to estimate the optimal action 
format. MongoDB was used to examine the execution of 
current models. The execution of each method was compared 
with the conventional DDPG model. The results show that the 
proposed method increased throughput by 11% compared to 
the conventional DDPG model. Future studies should focus on 
enhancing the security of NoSQL database systems during 
query executions. 
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