
Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18557-18562 18557

www.etasr.com Chhabra & Chadha: Automatic Bug Triaging Process: An Enhanced Machine Learning Approach …

Automatic Bug Triaging Process: An Enhanced

Machine Learning Approach through Large

Language Models

Deepshikha Chhabra

Department of Computer Science and Engineering, Chandigarh University, Mohali, Punjab, India

114deepshikha@gmail.com (corresponding author)

Raman Chadha

Department of Computer Science and Engineering, Chandigarh University, Mohali, Punjab, India

dr.ramanchadha@gmail.com

Received: 28 August 2024 | Revised: 27 September 2024 | Accepted: 5 October 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8829

ABSTRACT

Bug resolution and maintenance are the most critical phases of the software development life cycle. The

traditional bug triaging concept refers to the manual assignment of bugs to the appropriate developer after

reading the bug details from the bug tracker and further resolving it. The advent of machine learning

algorithms provides various solutions for automated bug triaging. Machine learning algorithms can be

used to classify bugs and assign each to a developer. Reducing manual efforts optimizes bug-triaging by

utilizing manpower in other software development processes. Furthermore, machine learning Large

Language Models (LLMs) can be used to take advantage of their natural language processing features and

capabilities. This study proposes a machine learning-based embed chain LLM approach for automatic bug

triaging. This approach is used to automatically classify bug reports. Based on the results, the appropriate

developer is recommended. In addition, the proposed approach is used to automatically predict the

priority of bug reports. This paper also discusses the strengths and challenges of the proposed approach.

Keywords-bug triaging; machine learning; large language model; embed chain

I. INTRODUCTION

Software development includes various steps starting from
requirement gathering, design, implementation (coding),
software testing, and maintenance. Software testing is one of
the most crucial phases in which all requirements are tested by
feeding the input and comparing the expected and actual
outputs. The variation of expected and actual outputs is referred
to as a bug. Software malfunctions are referred to as bugs [1].
The bug triaging process consists of evaluating and prioritizing
reported software bugs to resolve the most critical and
prioritized issues at an early stage. This process helps to ensure
that software development teams are addressing the most
crucial problems promptly and that end-users can receive fixes
for these issues. The steps in bug triaging typically include
receiving and studying the bug report, reproducing the issue,
checking the priority and severity of the bug, assigning the bug
to the appropriate developer, and monitoring the progress to
ensure that the issue is fixed promptly. An automated bug-
triaging process can increase the efficiency of the process [2-3].
The main objective of bug triaging is to streamline the process
of fixing software bugs and improve the overall quality of the
software. The bug triaging process starts with the birth of a
bug, that is when the tester reports a bug, and then the bugs are

assigned to the developer for resolution [4-5]. Once the bugs
are resolved, the bug status is changed to resolved. The
verification of the bug resolution is performed before the bug is
declared to be resolved. The completion of this whole cycle
from the new state to the verified state must be completed
promptly so that bugs can be fixed at high speed [6-7]. Some
bugs have high severity or security-related issues that directly
impact business.

A bug report is a formal document that includes
information and attributes of the bug, such as title, description,
steps to reproduce the bugs, severity, priority, etc. The format
of the bug report varies from project to project. The
significance of the bug report is to aid the bug-triaging process
by prioritizing and fixing the bug efficiently [8-9]. Figure 1
shows the bug lifecycle or the states a bug undergoes
throughout the software development process. These are:

 New: The tester reports the bug.

 Assigned: After reading the bug details, the bug is assigned
to the appropriate developer.

 In progress: The bug is not resolved yet.

 Fixed/Resolved: Denotes the final resolution of the bug.

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18557-18562 18558

www.etasr.com Chhabra & Chadha: Automatic Bug Triaging Process: An Enhanced Machine Learning Approach …

Fig. 1. States of a bug.

Figure 2 demonstrates the bug report template of GitHub's
bug tracking tool, which acts as an issue-tracking system to
keep a log of all bugs and their statuses. All bugs reported by
testers are recorded to manage and keep track of. The most
popular bug-tracking software are GitHub, Jam, Bugzilla, and
Jira.

Fig. 2. Bug report template.

The study in [10] analyzed the total time consumed for bug-
fixing open-source software by calculating the bug-fixing time
for simple bugs that can be resolved in one line of code. In
addition, it examined the relationship between the time
required to fix the bug and the day of the week the bug report
was issued. The traversal method was used to find the defect
that was introduced initially or first into the projects. In [11],
Ant Colony Optimization (ACO) was applied for bug-triaging
feature selection. The major contribution of this study was to
optimize the bug assignment step in bug triaging compared to
other approaches. The experiments were carried out on
Mozilla, Eclipse, and JBoss. In [12], the DENATURE
approach was introduced to identify duplicate bugs in a crash,
aiming to reduce the bug triaging time and improve software
quality.

In [13], a bug triaging mechanism was examined in a
distributed environment, where several developers and testers
work together remotely from several locations. Using topic
modeling and fuzzy sets, the relationship between developers
and bugs was developed, and the results were compared with
existing machine-learning models. In [14], a self-bug triaging
approach using reinforcement learning was proposed. This
approach acts like a recommendation system to assign the bug

to the appropriate developers. Open-source datasets were used
and a comparative analysis was performed with state-of-the-art
approaches, which the reinforcement learning approach
outperformed. In [15], an approach was developed using the
text encoding technique to precisely assign bugs to developers.
It used open-source software such as Mozilla and Eclipse and a
comparative analysis was performed.

In [16], a raking framework approach was proposed, in
which the bug reassignment history was studied and the bug
was assigned to the appropriate developer with comparatively
fewer tossing events. This method also analyzed the similarity
among the textual properties of bug reports. In [17], a bug-
triaging method was introduced that correlated the relationship
between different bugs. This method implemented Natural
Language Processing (NLP) and focused on bugs that had not
been resolved for a long time. It used LibreOffice and Mozilla
datasets and tried to decrease the bug-fixing time to half of the
initial period, giving main priority to blocked bugs. In [18], an
effective approach to the deep triage strategy was proposed,
which speeded up the training process by adding a dense layer
to perform classification. The implementation was done with
Gated Recurrent Units (GRUs). This method combined
different datasets to perform transfer learning, showing
promising results.

In [19], a mechanism for the detection of security-related
bugs was proposed, as ignoring these bugs can lead to security
breaches or sensitive data exposures. In [20], a collaboration
framework was combined with random forest, achieving
promising results in bug assignment. This research could be
expanded by considering the interactions between the
developer and the tester to make the bug-triaging process more
accurate. In [21], a bug-triaging method was proposed, in
which a token value was generated for each bug based on some
parameters. Then, these token values were used to sort and
prioritize the bugs. The study in [22] experimented with the
concept that the efficiency of bug resolution can be increased if
the developer is free to choose the bug related to his expertise.
This approach helped to differentiate between active and
inactive developers. Additionally, this study proposed using a
blockchain-decentralized framework to reduce bug-fixing time.
In [23], a method was proposed to determine the appropriate
amount of bugs that developers can fix before the next release
date of the project considering the time taken to fix the bugs.
This method can be called a release-aware bug triaging method.

In [24], a two-step deep neural network algorithm was
proposed, comparing the accuracy of bug assignments to the
team and the developer. This study implemented a multi-label
classification approach from the previous history trend of the
bug. In [25], automated bug triaging was performed across nine
Ericsson products. A novel approach was developed that
triaged the bugs with high confidence. In addition, an analysis
of log reports was performed to clear crashes. This approach
assigned bugs to the developer team and not to individual
developers. Unlike other approaches, this study worked on
realistic datasets. The main focus in [26] was to resolve the
problems of the Bag Of Words (BOW) model, which does not
focus on bug semantics. This study provided a new Deep
Bidirectional Recurrent Neural Network with Attention

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18557-18562 18559

www.etasr.com Chhabra & Chadha: Automatic Bug Triaging Process: An Enhanced Machine Learning Approach …

(DBRNA) approach, which tried to improve accuracy by
considering the title as well as the description, unlike the
previous models that focused only on the title of the bug report.
In [27], an algorithm for automatic bug triaging was presented
using topic modeling as an extension of LDA. The various
components affected by the bug were also considered. This bug
triaging method was followed to list the most eligible
developer that can fix the bug. Table I provides details on
recent contributions to bug triaging.

TABLE I. RECENT STUDIES ON BUG TRIAGING.

Ref. Contribution Outcomes measured

[28]

The proposed model used a heterogenous

graph representation technique that had

better performance compared to other

word-word weighting methods.

Top k accuracy metric

[29]

A novel contextual mutation operator

enables real-time or live tracking of bugs in

the code.

Quality of test suites and

the development of bugs

that are realistic and

closely resemble errors

made by developers.

[30]

An ML algorithm was implemented using

the reference data from the previously

tested versions. The output was used to

analyze the functional as well as non-

functional values of the next versions.

Accuracy

[31]

Techniques for feature modification can

boost confidence while developing bug

prediction models and considerably

increase prediction accuracy.

Recall values

[32]

A novel adaptive bug localization

algorithm was evaluated on publicly

available datasets.

Accuracy and required

computational resources

[33]
A model was proposed to predict bug

referrals to the designer

Bug triage deep learning

convolution

[34]
A tool for bug triage automation was

proposed.
Severity-prediction

[35]
A detailed study on Android mobile app

bugs reproduction.

Information for

reproducing the bugs.

[14]

Online bug assignment to the developer

based on the features selected. It calculated

the inefficient developers based on the bug

resolution count, and the bugs were

assigned to efficient developers. It used

monthly statistics of active developers.

Top k accuracy metric

[36]

Automated the task of bug reassignment or

bug tossing using a multilevel approach, in

which the CNN model output was fed to a

short-term memory network.

Accuracy and F measure

[37]

Two of the most well-known ML

frameworks were used in a fault load

benchmark that comprised 113 defects

reported by ML developers using GitHub

and Stack Overflow

Reproducibility and

verifiability of the bugs in

machine learning-based

systems

The main contributions of this study are the following:

 Proposes a hybrid approach of Embedchain and LLM that
leverages the vector embeddings determined by the
Embedchain model to further classify the bug report.

 The model was also used to classify the priority of bug
reports as high, low, and medium.

II. PROPOSED FRAMEWORK

To improve the efficiency of classifying bugs, a technical
approach was proposed that combined Embedchain and an
additional LLM model. This framework simplifies the task of
managing and testing bug reports by incorporating
sophisticated machine-learning techniques. By combining the
Embedchain model of data manipulation storage with the
expertise of the LLM model in logic and query processing, this
approach automates and accelerates the error classification
process with faster error reporting processes and better
accuracy in classification and testing results, leading to
improved error handling. Figure 3 presents the proposed
algorithm and describes the flow of the data, i.e., the bug
reports to the Embedchain-LLM model.

Fig. 3. Proposed Embedchain LLM model for automatic bug triaging.

The proposed method automatically classifies bugs using
the Embedchain and LLM models. The steps to perform bug
triaging are as follows:

1. Import the data from the Eclipse project sourced from
Kaggle.

2. Imported data are input into the Embedchain-LLM model.

3. A specific prompt/query is provided and actions are taken
based on this query.

4. Data are processed by the Embedchain and LLM models.

The imported bug report is cleaned, eliminating irrelevant
information. The Embedchain model employs a neural network
to identify patterns and establish relationships among bugs in
imported reports. Each report is divided into smaller segments.
The segments are then connected to form a chain and
transformed into vectors that are stored in a vector database.
The vectors are indexed using the vector indices. The resulting
set of vectors represents the data in a numerical format. The
prompt/query from Step 3, processed along with the previously
converted vector set, is sent to the LLM model. The proposed
approach can be summarized as the conversion of bug reports
into vector embeddings. Based on the prompt given by the
tester, the LLM uses the output of the Embedchain model to
perform bug-triaging tasks such as classification, predicting the
priority, etc.

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18557-18562 18560

www.etasr.com Chhabra & Chadha: Automatic Bug Triaging Process: An Enhanced Machine Learning Approach …

III. EXPERIMENTAL RESULTS

The dataset for the Eclipse project was obtained from [38].
Approximately 1,000 reports were used. The bug category was
determined using the previously described model. This further
reduces the manual effort needed to identify the category and
classification of the bugs. The model was further leveraged to
find the bug's priority. Each bug report was scanned using the
embedding model 'text-embedding-ada-002', which
outperformed other models in identifying, comprehending, and
classifying defects. Additionally, the ChromaDB vector
database was used to store vectors, chosen for its scalability,
flexibility, and performance. This ensures that even if the bug
report contains extensive data, it can automatically process the
entire report to achieve the desired outcomes, eliminating the
need to divide the report into smaller segments. Moreover, the
Azure Open AI GPT-3.5 Turbo model was employed as LLM
to generate the results. Table II shows some classification
examples figured out by the model.

TABLE II. CLASSIFICATION OF BUG REPORTS

Group 1: User Interface Defects

- Defect ID: 550153, 550158

Group 2: Performance Defects

- Defect ID: 550156

Group 3: Server Adapter Defects

- Defect ID: 550159

Group 4: Code Completion Defects

- Defect ID: 550160

Group 5: Debugging Defects

- Defect ID: 550165

Group 6: Language Support Defects

- Defect ID: 550166

Group 7: Multi-threading Defects

- Defect ID: 550167

Group 8: Project Navigation Defects

- Defect ID: 550168

Group 9: Build and Compilation Defects

- Defect ID: 550164

Group 10: Dependency Management Defects

- Defect ID: 551129

Group 11: License and Target Update Defects

- Defect ID: 551130

Group 12: Automated Error Reporting Defects

- Defect ID: 551136

Group 13: Memory Management Defects

- Defect ID: 551145

Group 14: Git Setup Defects

- Defect ID: 551141

Group 15: Patch and Update Defects

- Defect ID: 551146

Group 16: User Interface Defects

- Defect ID: 551149

Figure 4 shows the classification distribution of

bugs/defects as performed by the Embedchain-LLM model.
Figure 5 shows the bug priority distribution using the proposed
model, based on the bug description. The model bifurcates bug
reports into low, medium, and high priority.

Fig. 4. Classification of bugs using the proposed method.

Fig. 5. Priority classification with bug counts.

IV. CONCLUSION

This paper used a hybrid approach based on Embedchain
and an LLM for automatic bug triaging. This approach was
used to automatically classify bugs and assign priorities. The
strengths of both Embedchain and LLM models were used to
make the system robust and suitable for real-world
applications. Complex high-dimensional data, hierarchical
understanding, and enhanced interpretability are the advantages
provided by using a hybrid of Embedchain and LLM. This
model was also used to classify bug reports and figure out
detailed categories. The model provides fault tolerance, making
it suitable for noisy and uncertain environments. Second, the
model predicts the priority of the bugs based on the context of
the bug report, further reducing the cost of manual priority
classification. Existing models for bug triaging have certain
limitations, such as that they are trained on limited datasets and
are not capable of providing on-the-fly results. Additionally,
previous techniques that used LLM had fixed token lengths. If
the bug report contains more words, the results provided will

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18557-18562 18561

www.etasr.com Chhabra & Chadha: Automatic Bug Triaging Process: An Enhanced Machine Learning Approach …

be inconsistent. The proposed model tries to curb all existing
loopholes by providing faster triaging through NLP and vectors
to improve accuracy. Furthermore, the model can be enhanced
by considering the developer's bug resolution history to assign
it to the developer.

Along with these positive results, there are some limitations
and challenges, which include complexity in the integration of
the model and security vulnerabilities. The LLM used needs to
be fine-tuned for accurate prediction. The dataset (bug reports)
needs to be well documented for appropriate results. In
addition, high computational power is needed to use the
proposed hybrid of Embedchain and LLM. In some of the
cases, balancing between LLM response and Embedchain
embeddings may be inconsistent due to poor vector
embeddings. An increase in latency may further degrade the
performance of the system, making it less responsive. This
approach may face problems in calculating the severity of bug
reports. Assessment of severity requires a deep understanding
of the bug report context, which can be challenging in some
cases. These challenges and limitations must be handled
carefully to maximize the strengths and benefits of the model.

REFERENCES

[1] R. Wang, X. Ji, S. Xu, Y. Tian, S. Jiang, and R. Huang, "An empirical
assessment of different word embedding and deep learning models for
bug assignment," Journal of Systems and Software, vol. 210, Apr. 2024,
Art. no. 111961, https://doi.org/10.1016/j.jss.2024.111961.

[2] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, "Not all bugs are
the same: Understanding, characterizing, and classifying bug types,"
Journal of Systems and Software, vol. 152, pp. 165–181, Jun. 2019,
https://doi.org/10.1016/j.jss.2019.03.002.

[3] R. Chen, S.-K. Guo, X. Z. Wang, and T. L. Zhang, "Fusion of Multi-
RSMOTE With Fuzzy Integral to Classify Bug Reports With an
Imbalanced Distribution," IEEE Transactions on Fuzzy Systems, vol. 27,
no. 12, pp. 2406–2420, Sep. 2019, https://doi.org/10.1109/TFUZZ.2019.
2899809.

[4] G. Parthasarathy, D. C. Tomar, and B. John, "Analysis of Bug Triage
using Data Preprocessing (Reduction) Techniques," International
Journal of Computer Applications, vol. 125, no. 9, pp. 8–15, 2015.

[5] M. N. A. Khan, A. M. Mirza, R. A. Wagan, M. Shahid, and I. Saleem,
"A Literature Review on Software Testing Techniques for Smartphone
Applications," Engineering, Technology & Applied Science Research,
vol. 10, no. 6, pp. 6578–6583, Dec. 2020, https://doi.org/10.48084/
etasr.3844.

[6] S. Q. Xi, Y. Yao, X. S. Xiao, F. Xu, and J. Lv, "Bug Triaging Based on
Tossing Sequence Modeling," Journal of Computer Science and
Technology, vol. 34, no. 5, pp. 942–956, Sep. 2019, https://doi.org/
10.1007/s11390-019-1953-5.

[7] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, "Towards more
accurate severity prediction and fixer recommendation of software
bugs," Journal of Systems and Software, vol. 117, pp. 166–184, Jul.
2016, https://doi.org/10.1016/j.jss.2016.02.034.

[8] B. S. Neysiani and S. M. Babamir, "New labeled dataset of
interconnected lexical typos for automatic correction in the bug reports,"
SN Applied Sciences, vol. 1, no. 11, Oct. 2019, Art. no. 1385,
https://doi.org/10.1007/s42452-019-1419-y.

[9] D. Dreyton, A. A. Araújo, A. Dantas, R. Saraiva, and J. Souza, "A
Multi-objective Approach to Prioritize and Recommend Bugs in Open
Source Repositories," in Search Based Software Engineering, Raleigh,
NC, USA, 2016, pp. 143–158, https://doi.org/10.1007/978-3-319-47106-
8_10.

[10] E. Eiroa-Lledo, R. H. Ali, G. Pinto, J. Anderson, and E. Linstead,
"Large-Scale Identification and Analysis of Factors Impacting Simple
Bug Resolution Times in Open Source Software Repositories," Applied

Sciences, vol. 13, no. 5, Jan. 2023, Art. no. 3150, https://doi.org/
10.3390/app13053150.

[11] A. Kukkar et al., "ProRE: An ACO- based programmer recommendation
model to precisely manage software bugs," Journal of King Saud
University - Computer and Information Sciences, vol. 35, no. 1, pp. 483–
498, Jan. 2023, https://doi.org/10.1016/j.jksuci.2022.12.017.

[12] R. Chauhan, S. Sharma, and A. Goyal, "DENATURE: duplicate
detection and type identification in open source bug repositories,"
International Journal of System Assurance Engineering and
Management, vol. 14, no. 1, pp. 275–292, Mar. 2023, https://doi.org/
10.1007/s13198-023-01855-x.

[13] R. R. Panda and N. K. Nagwani, "Topic modeling and intuitionistic
fuzzy set-based approach for efficient software bug triaging,"
Knowledge and Information Systems, vol. 64, no. 11, pp. 3081–3111,
Nov. 2022, https://doi.org/10.1007/s10115-022-01735-z.

[14] Y. Liu, X. Qi, J. Zhang, H. Li, X. Ge, and J. Ai, "Automatic Bug
Triaging via Deep Reinforcement Learning," Applied Sciences, vol. 12,
no. 7, Jan. 2022, Art. no. 3565, https://doi.org/10.3390/app12073565.

[15] T. W. W. Aung, Y. Wan, H. Huo, and Y. Sui, "Multi-triage: A multi-
task learning framework for bug triage," Journal of Systems and
Software, vol. 184, Feb. 2022, Art. no. 111133, https://doi.org/10.1016/
j.jss.2021.111133.

[16] Y. Su et al., "Reducing Bug Triaging Confusion by Learning from
Mistakes with a Bug Tossing Knowledge Graph," in 2021 36th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), Melbourne, Australia, Nov. 2021, pp. 191–202,
https://doi.org/10.1109/ASE51524.2021.9678574.

[17] H. Jahanshahi, K. Chhabra, M. Cevik, and A. Baþar, "DABT: A
Dependency-aware Bug Triaging Method," in Evaluation and
Assessment in Software Engineering, Trondheim Norway, Jun. 2021, pp.
221–230, https://doi.org/10.1145/3463274.3463342.

[18] E. Tüzün, A. Çetin, and E. Doğan, "An Automated Bug Triaging
Approach using Deep Learning: A Replication Study," European
Journal of Science and Technology, no. 21, pp. 268–274, Jan. 2021,
https://doi.org/10.31590/ejosat.781341.

[19] A. D. Sawadogo, Q. Guimard, T. F. Bissyandé, A. K. Kaboré, J. Klein,
and N. Moha, "Early Detection of Security-Relevant Bug Reports using
Machine Learning: How Far Are We?" arXiv, Dec. 19, 2021,
https://doi.org/10.48550/arXiv.2112.10123.

[20] H. Wu, Y. Ma, Z. Xiang, C. Yang, and K. He, "A spatial–temporal graph
neural network framework for automated software bug triaging,"
Knowledge-Based Systems, vol. 241, Apr. 2022, Art. no. 108308,
https://doi.org/10.1016/j.knosys.2022.108308.

[21] A. Goyal and N. Sardana, "Feature Ranking and Aggregation for Bug
Triaging in Open-Source Issue Tracking Systems," in 2021 11th
International Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, Jan. 2021, pp. 871–876,
https://doi.org/10.1109/Confluence51648.2021.9377053.

[22] C. Gupta and M. M. Freire, "A decentralized blockchain oriented
framework for automated bug assignment," Information and Software
Technology, vol. 134, Jun. 2021, Art. no. 106540, https://doi.org/
10.1016/j.infsof.2021.106540.

[23] Y. Kashiwa and M. Ohira, "A Release-Aware Bug Triaging Method
Considering Developers’ Bug-Fixing Loads," IEICE Transactions on
Information and Systems, vol. E103.D, no. 2, pp. 348–362, Feb. 2020,
https://doi.org/10.1587/transinf.2019EDP7152.

[24] C. A. Choquette-Choo, D. Sheldon, J. Proppe, J. Alphonso-Gibbs, and
H. Gupta, "A Multi-label, Dual-Output Deep Neural Network for
Automated Bug Triaging," in 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA), Boca Raton, FL,
USA, Dec. 2019, pp. 937–944, https://doi.org/10.1109/ICMLA.2019.
00161.

[25] A. Sarkar, P. C. Rigby, and B. Bartalos, "Improving Bug Triaging with
High Confidence Predictions at Ericsson," in 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME),
Cleveland, OH, USA, Sep. 2019, pp. 81–91, https://doi.org/10.1109/
ICSME.2019.00018.

Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18557-18562 18562

www.etasr.com Chhabra & Chadha: Automatic Bug Triaging Process: An Enhanced Machine Learning Approach …

[26] S. Mani, A. Sankaran, and R. Aralikatte, "DeepTriage: Exploring the
Effectiveness of Deep Learning for Bug Triaging," in Proceedings of the
ACM India Joint International Conference on Data Science and
Management of Data, Kolkata, India, Jan. 2019, pp. 171–179,
https://doi.org/10.1145/3297001.3297023.

[27] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
"Improving Automated Bug Triaging with Specialized Topic Model,"
IEEE Transactions on Software Engineering, vol. 43, no. 3, pp. 272–
297, Mar. 2017, https://doi.org/10.1109/TSE.2016.2576454.

[28] S. F. A. Zaidi, H. Woo, and C.-G. Lee, "A Graph Convolution Network-
Based Bug Triage System to Learn Heterogeneous Graph Representation
of Bug Reports," IEEE Access, vol. 10, pp. 20677–20689, 2022,
https://doi.org/10.1109/ACCESS.2022.3153075.

[29] C. Richter and H. Wehrheim, "Learning Realistic Mutations: Bug
Creation for Neural Bug Detectors," in 2022 IEEE Conference on
Software Testing, Verification and Validation (ICST), Valencia, Spain,
Apr. 2022, pp. 162–173, https://doi.org/10.1109/ICST53961.2022.
00027.

[30] A. Gartziandia et al., "Machine learning-based test oracles for
performance testing of cyber-physical systems: An industrial case study
on elevators dispatching algorithms," Journal of Software: Evolution
and Process, vol. 34, no. 11, 2022, Art. no. e2465, https://doi.org/
10.1002/smr.2465.

[31] S. T. Cynthia, B. Roy, and D. Mondal, "Feature Transformation for
Improved Software Bug Detection Models," in 15th Innovations in
Software Engineering Conference, Gandhinagar, India, Feb. 2022, pp.
1–10, https://doi.org/10.1145/3511430.3511444.

[32] M. Fejzer, J. Narębski, P. Przymus, and K. Stencel, "Tracking Buggy
Files: New Efficient Adaptive Bug Localization Algorithm," IEEE
Transactions on Software Engineering, vol. 48, no. 7, pp. 2557–2569,
Jul. 2022, https://doi.org/10.1109/TSE.2021.3064447.

[33] R. Sepahvand, R. Akbari, B. Jamasb, S. Hashemi, and O. Boushehrian,
"Using word embedding and convolution neural network for bug
triaging by considering design flaws," Science of Computer
Programming, vol. 228, Jun. 2023, Art. no. 102945, https://doi.org/
10.1016/j.scico.2023.102945.

[34] O. Picus and C. Serban, "Bugsby: a tool support for bug triage
automation," in Proceedings of the 2nd ACM International Workshop on
AI and Software Testing/Analysis, Jul. 2022, pp. 17–20,
https://doi.org/10.1145/3536168.3543301.

[35] J. Johnson, J. Mahmud, T. Wendland, K. Moran, J. Rubin, and M.
Fazzini, "An Empirical Investigation into the Reproduction of Bug
Reports for Android Apps," in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), Honolulu,
HI, USA, Mar. 2022, pp. 321–322, https://doi.org/10.1109/
SANER53432.2022.00048.

[36] J. Jang and G. Yang, "A Bug Triage Technique Using Developer-Based
Feature Selection and CNN-LSTM Algorithm," Applied Sciences, vol.
12, no. 18, Jan. 2022, Art. no. 9358, https://doi.org/10.3390/
app12189358.

[37] M. M. Morovati, A. Nikanjam, F. Tambon, F. Khomh, and Z. M. (Jack)
Jiang, "Bug characterization in machine learning-based systems,"
Empirical Software Engineering, vol. 29, no. 1, Dec. 2023, Art. no. 14,
https://doi.org/10.1007/s10664-023-10400-0.

[38] S. Kumara, "Software bugs reports." [Online]. Available:
https://www.kaggle.com/datasets/samanthakumara/software-bug-reports.

AUTHORS PROFILE

Deepshikha Chhabra is currently working as an
Assistant Professor at Chandigarh University,
Mohali, Punjab, India. She has more than 11 years
of experience, including IT and teaching
experience. Her expertise extends to areas such as
Software Engineering, Machine Learning, and AI.
She has also served at Accenture as a software
developer and worked in the business intelligence
domain.

Raman Chadha is a seasoned expert in Computer
Science & Engineering, boasting over 26 years of
academic and professional experience. Currently a
Professor at Chandigarh University, Punjab, India,
he is deeply involved in advancing his field
through active participation in professional bodies
such as the Computer Society of India and the
International Association of Computer Science and
Information Technology. As the Chief Editor of

the Journal of Engineering Design and Analysis, he has contributed
significantly to the academic literature, particularly in emerging technological
domains. He has edited and authored numerous books and holds around 40
patents across computer science, electronics, and mechanical engineering,
reflecting his innovative contributions. With more than 80 research papers
published in reputable journals indexed in Scopus, Web of Science, and UGC
Care, Dr. Chadha's work has garnered recognition, including the Outstanding
Researcher Award at NITTTR Chandigarh for his commitment to sustainable
development. His expertise is also sought after in hackathons and coding
competitions, where he frequently serves as a judge, mentoring aspiring
engineers and developers. Dr. Chadha's dedication to continuous learning is
evident through his professional certifications in areas like Python,
blockchain, full-stack web development, AI, and data science, obtained from
platforms such as Coursera and LinkedIn. These credentials underline his
commitment to staying at the forefront of technological advancements. Dr.
Chadha's illustrious career highlights his contributions to both academia and
industry, making him a respected leader in the field of Computer Science &
Engineering.

