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ABSTRACT 

Bug resolution and maintenance are the most critical phases of the software development life cycle. The 

traditional bug triaging concept refers to the manual assignment of bugs to the appropriate developer after 

reading the bug details from the bug tracker and further resolving it. The advent of machine learning 

algorithms provides various solutions for automated bug triaging. Machine learning algorithms can be 

used to classify bugs and assign each to a developer. Reducing manual efforts optimizes bug-triaging by 

utilizing manpower in other software development processes. Furthermore, machine learning Large 

Language Models (LLMs) can be used to take advantage of their natural language processing features and 

capabilities. This study proposes a machine learning-based embed chain LLM approach for automatic bug 

triaging. This approach is used to automatically classify bug reports. Based on the results, the appropriate 

developer is recommended. In addition, the proposed approach is used to automatically predict the 

priority of bug reports. This paper also discusses the strengths and challenges of the proposed approach. 

Keywords-bug triaging; machine learning; large language model; embed chain   

I. INTRODUCTION  

Software development includes various steps starting from 
requirement gathering, design, implementation (coding), 
software testing, and maintenance. Software testing is one of 
the most crucial phases in which all requirements are tested by 
feeding the input and comparing the expected and actual 
outputs. The variation of expected and actual outputs is referred 
to as a bug. Software malfunctions are referred to as bugs [1]. 
The bug triaging process consists of evaluating and prioritizing 
reported software bugs to resolve the most critical and 
prioritized issues at an early stage. This process helps to ensure 
that software development teams are addressing the most 
crucial problems promptly and that end-users can receive fixes 
for these issues. The steps in bug triaging typically include 
receiving and studying the bug report, reproducing the issue, 
checking the priority and severity of the bug, assigning the bug 
to the appropriate developer, and monitoring the progress to 
ensure that the issue is fixed promptly. An automated bug-
triaging process can increase the efficiency of the process [2-3]. 
The main objective of bug triaging is to streamline the process 
of fixing software bugs and improve the overall quality of the 
software. The bug triaging process starts with the birth of a 
bug, that is when the tester reports a bug, and then the bugs are 

assigned to the developer for resolution [4-5]. Once the bugs 
are resolved, the bug status is changed to resolved. The 
verification of the bug resolution is performed before the bug is 
declared to be resolved. The completion of this whole cycle 
from the new state to the verified state must be completed 
promptly so that bugs can be fixed at high speed [6-7]. Some 
bugs have high severity or security-related issues that directly 
impact business. 

A bug report is a formal document that includes 
information and attributes of the bug, such as title, description, 
steps to reproduce the bugs, severity, priority, etc. The format 
of the bug report varies from project to project. The 
significance of the bug report is to aid the bug-triaging process 
by prioritizing and fixing the bug efficiently [8-9]. Figure 1 
shows the bug lifecycle or the states a bug undergoes 
throughout the software development process. These are: 

 New: The tester reports the bug. 

 Assigned: After reading the bug details, the bug is assigned 
to the appropriate developer. 

 In progress: The bug is not resolved yet. 

 Fixed/Resolved: Denotes the final resolution of the bug. 
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Fig. 1.  States of a bug. 

Figure 2 demonstrates the bug report template of GitHub's 
bug tracking tool, which acts as an issue-tracking system to 
keep a log of all bugs and their statuses. All bugs reported by 
testers are recorded to manage and keep track of. The most 
popular bug-tracking software are GitHub, Jam, Bugzilla, and 
Jira. 

 

 

Fig. 2.  Bug report template. 

The study in [10] analyzed the total time consumed for bug-
fixing open-source software by calculating the bug-fixing time 
for simple bugs that can be resolved in one line of code. In 
addition, it examined the relationship between the time 
required to fix the bug and the day of the week the bug report 
was issued. The traversal method was used to find the defect 
that was introduced initially or first into the projects. In [11], 
Ant Colony Optimization (ACO) was applied for bug-triaging 
feature selection. The major contribution of this study was to 
optimize the bug assignment step in bug triaging compared to 
other approaches. The experiments were carried out on 
Mozilla, Eclipse, and JBoss. In [12], the DENATURE 
approach was introduced to identify duplicate bugs in a crash, 
aiming to reduce the bug triaging time and improve software 
quality. 

In [13], a bug triaging mechanism was examined in a 
distributed environment, where several developers and testers 
work together remotely from several locations. Using topic 
modeling and fuzzy sets, the relationship between developers 
and bugs was developed, and the results were compared with 
existing machine-learning models. In [14], a self-bug triaging 
approach using reinforcement learning was proposed. This 
approach acts like a recommendation system to assign the bug 

to the appropriate developers. Open-source datasets were used 
and a comparative analysis was performed with state-of-the-art 
approaches, which the reinforcement learning approach 
outperformed. In [15], an approach was developed using the 
text encoding technique to precisely assign bugs to developers. 
It used open-source software such as Mozilla and Eclipse and a 
comparative analysis was performed. 

In [16], a raking framework approach was proposed, in 
which the bug reassignment history was studied and the bug 
was assigned to the appropriate developer with comparatively 
fewer tossing events. This method also analyzed the similarity 
among the textual properties of bug reports. In [17], a bug-
triaging method was introduced that correlated the relationship 
between different bugs. This method implemented Natural 
Language Processing (NLP) and focused on bugs that had not 
been resolved for a long time. It used LibreOffice and Mozilla 
datasets and tried to decrease the bug-fixing time to half of the 
initial period, giving main priority to blocked bugs. In [18], an 
effective approach to the deep triage strategy was proposed, 
which speeded up the training process by adding a dense layer 
to perform classification. The implementation was done with 
Gated Recurrent Units (GRUs). This method combined 
different datasets to perform transfer learning, showing 
promising results. 

In [19], a mechanism for the detection of security-related 
bugs was proposed, as ignoring these bugs can lead to security 
breaches or sensitive data exposures. In [20], a collaboration 
framework was combined with random forest, achieving 
promising results in bug assignment. This research could be 
expanded by considering the interactions between the 
developer and the tester to make the bug-triaging process more 
accurate. In [21], a bug-triaging method was proposed, in 
which a token value was generated for each bug based on some 
parameters. Then, these token values were used to sort and 
prioritize the bugs. The study in [22] experimented with the 
concept that the efficiency of bug resolution can be increased if 
the developer is free to choose the bug related to his expertise. 
This approach helped to differentiate between active and 
inactive developers. Additionally, this study proposed using a 
blockchain-decentralized framework to reduce bug-fixing time. 
In [23], a method was proposed to determine the appropriate 
amount of bugs that developers can fix before the next release 
date of the project considering the time taken to fix the bugs. 
This method can be called a release-aware bug triaging method. 

In [24], a two-step deep neural network algorithm was 
proposed, comparing the accuracy of bug assignments to the 
team and the developer. This study implemented a multi-label 
classification approach from the previous history trend of the 
bug. In [25], automated bug triaging was performed across nine 
Ericsson products. A novel approach was developed that 
triaged the bugs with high confidence. In addition, an analysis 
of log reports was performed to clear crashes. This approach 
assigned bugs to the developer team and not to individual 
developers. Unlike other approaches, this study worked on 
realistic datasets. The main focus in [26] was to resolve the 
problems of the Bag Of Words (BOW) model, which does not 
focus on bug semantics. This study provided a new Deep 
Bidirectional Recurrent Neural Network with Attention 
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(DBRNA) approach, which tried to improve accuracy by 
considering the title as well as the description, unlike the 
previous models that focused only on the title of the bug report. 
In [27], an algorithm for automatic bug triaging was presented 
using topic modeling as an extension of LDA. The various 
components affected by the bug were also considered. This bug 
triaging method was followed to list the most eligible 
developer that can fix the bug. Table I provides details on 
recent contributions to bug triaging. 

TABLE I.  RECENT STUDIES ON BUG TRIAGING. 

Ref. Contribution Outcomes measured 

[28] 

The proposed model used a heterogenous 

graph representation technique that had 

better performance compared to other 

word-word weighting methods. 

Top k accuracy metric 

[29] 

A novel contextual mutation operator 

enables real-time or live tracking of bugs in 

the code. 

Quality of test suites and 

the development of bugs 

that are realistic and 

closely resemble errors 

made by developers. 

[30] 

An ML algorithm was implemented using 

the reference data from the previously 

tested versions. The output was used to 

analyze the functional as well as non-

functional values of the next versions. 

Accuracy 

[31] 

Techniques for feature modification can 

boost confidence while developing bug 

prediction models and considerably 

increase prediction accuracy. 

Recall values 

[32] 

A novel adaptive bug localization 

algorithm was evaluated on publicly 

available datasets. 

Accuracy and required 

computational resources 

[33]  
A model was proposed to predict bug 

referrals to the designer 

Bug triage deep learning 

convolution 

[34] 
A tool for bug triage automation was 

proposed. 
Severity-prediction  

[35] 
A detailed study on Android mobile app 

bugs reproduction. 

Information for 

reproducing the bugs. 

[14] 

Online bug assignment to the developer 

based on the features selected. It calculated 

the inefficient developers based on the bug 

resolution count, and the bugs were 

assigned to efficient developers. It used 

monthly statistics of active developers. 

Top k accuracy metric 

[36] 

Automated the task of bug reassignment or 

bug tossing using a multilevel approach, in 

which the CNN model output was fed to a 

short-term memory network.  

Accuracy and F measure 

[37] 

Two of the most well-known ML 

frameworks were used in a fault load 

benchmark that comprised 113 defects 

reported by ML developers using GitHub 

and Stack Overflow 

Reproducibility and 

verifiability of the bugs in 

machine learning-based 

systems 

 
The main contributions of this study are the following: 

 Proposes a hybrid approach of Embedchain and LLM that 
leverages the vector embeddings determined by the 
Embedchain model to further classify the bug report. 

 The model was also used to classify the priority of bug 
reports as high, low, and medium. 

II. PROPOSED FRAMEWORK  

To improve the efficiency of classifying bugs, a technical 
approach was proposed that combined Embedchain and an 
additional LLM model. This framework simplifies the task of 
managing and testing bug reports by incorporating 
sophisticated machine-learning techniques. By combining the 
Embedchain model of data manipulation storage with the 
expertise of the LLM model in logic and query processing, this 
approach automates and accelerates the error classification 
process with faster error reporting processes and better 
accuracy in classification and testing results, leading to 
improved error handling. Figure 3 presents the proposed 
algorithm and describes the flow of the data, i.e., the bug 
reports to the Embedchain-LLM model. 

 

 
 

Fig. 3.  Proposed Embedchain LLM model for automatic bug triaging. 

The proposed method automatically classifies bugs using 
the Embedchain and LLM models. The steps to perform bug 
triaging are as follows: 

1. Import the data from the Eclipse project sourced from 
Kaggle. 

2. Imported data are input into the Embedchain-LLM model. 

3. A specific prompt/query is provided and actions are taken 
based on this query. 

4. Data are processed by the Embedchain and LLM models. 

The imported bug report is cleaned, eliminating irrelevant 
information. The Embedchain model employs a neural network 
to identify patterns and establish relationships among bugs in 
imported reports. Each report is divided into smaller segments. 
The segments are then connected to form a chain and 
transformed into vectors that are stored in a vector database. 
The vectors are indexed using the vector indices. The resulting 
set of vectors represents the data in a numerical format. The 
prompt/query from Step 3, processed along with the previously 
converted vector set, is sent to the LLM model. The proposed 
approach can be summarized as the conversion of bug reports 
into vector embeddings. Based on the prompt given by the 
tester, the LLM uses the output of the Embedchain model to 
perform bug-triaging tasks such as classification, predicting the 
priority, etc. 
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III. EXPERIMENTAL RESULTS  

The dataset for the Eclipse project was obtained from [38]. 
Approximately 1,000 reports were used. The bug category was 
determined using the previously described model. This further 
reduces the manual effort needed to identify the category and 
classification of the bugs. The model was further leveraged to 
find the bug's priority. Each bug report was scanned using the 
embedding model 'text-embedding-ada-002', which 
outperformed other models in identifying, comprehending, and 
classifying defects. Additionally, the ChromaDB vector 
database was used to store vectors, chosen for its scalability, 
flexibility, and performance. This ensures that even if the bug 
report contains extensive data, it can automatically process the 
entire report to achieve the desired outcomes, eliminating the 
need to divide the report into smaller segments. Moreover, the 
Azure Open AI GPT-3.5 Turbo model was employed as LLM 
to generate the results. Table II shows some classification 
examples figured out by the model. 

TABLE II.  CLASSIFICATION OF BUG REPORTS 

Group 1: User Interface Defects 

- Defect ID: 550153, 550158 

Group 2: Performance Defects 

- Defect ID: 550156 

Group 3: Server Adapter Defects 

- Defect ID: 550159 

Group 4: Code Completion Defects 

- Defect ID: 550160 

Group 5: Debugging Defects 

- Defect ID: 550165 

Group 6: Language Support Defects 

- Defect ID: 550166 

Group 7: Multi-threading Defects 

- Defect ID: 550167 

Group 8: Project Navigation Defects 

- Defect ID: 550168 

Group 9: Build and Compilation Defects 

- Defect ID: 550164 

Group 10: Dependency Management Defects 

- Defect ID: 551129 

Group 11: License and Target Update Defects 

- Defect ID: 551130 

Group 12: Automated Error Reporting Defects 

- Defect ID: 551136 

Group 13: Memory Management Defects 

- Defect ID: 551145 

Group 14: Git Setup Defects 

- Defect ID: 551141 

Group 15: Patch and Update Defects 

- Defect ID: 551146 

Group 16: User Interface Defects 

- Defect ID: 551149 

 
Figure 4 shows the classification distribution of 

bugs/defects as performed by the Embedchain-LLM model. 
Figure 5 shows the bug priority distribution using the proposed 
model, based on the bug description. The model bifurcates bug 
reports into low, medium, and high priority. 

 

 

Fig. 4.  Classification of bugs using the proposed method. 

 

Fig. 5.  Priority classification with bug counts. 

IV. CONCLUSION 

This paper used a hybrid approach based on Embedchain 
and an LLM for automatic bug triaging. This approach was 
used to automatically classify bugs and assign priorities. The 
strengths of both Embedchain and LLM models were used to 
make the system robust and suitable for real-world 
applications. Complex high-dimensional data, hierarchical 
understanding, and enhanced interpretability are the advantages 
provided by using a hybrid of Embedchain and LLM. This 
model was also used to classify bug reports and figure out 
detailed categories. The model provides fault tolerance, making 
it suitable for noisy and uncertain environments. Second, the 
model predicts the priority of the bugs based on the context of 
the bug report, further reducing the cost of manual priority 
classification. Existing models for bug triaging have certain 
limitations, such as that they are trained on limited datasets and 
are not capable of providing on-the-fly results. Additionally, 
previous techniques that used LLM had fixed token lengths. If 
the bug report contains more words, the results provided will 
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be inconsistent. The proposed model tries to curb all existing 
loopholes by providing faster triaging through NLP and vectors 
to improve accuracy. Furthermore, the model can be enhanced 
by considering the developer's bug resolution history to assign 
it to the developer.  

Along with these positive results, there are some limitations 
and challenges, which include complexity in the integration of 
the model and security vulnerabilities. The LLM used needs to 
be fine-tuned for accurate prediction. The dataset (bug reports) 
needs to be well documented for appropriate results. In 
addition, high computational power is needed to use the 
proposed hybrid of Embedchain and LLM. In some of the 
cases, balancing between LLM response and Embedchain 
embeddings may be inconsistent due to poor vector 
embeddings. An increase in latency may further degrade the 
performance of the system, making it less responsive. This 
approach may face problems in calculating the severity of bug 
reports. Assessment of severity requires a deep understanding 
of the bug report context, which can be challenging in some 
cases. These challenges and limitations must be handled 
carefully to maximize the strengths and benefits of the model. 
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