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ABSTRACT 

Object detection serves as a crucial element in computer vision, increasingly relying on deep learning 

techniques. Among various methods, the YOLO series has gained recognition as an effective solution. This 

research enhances object detection by merging YOLOv7 with MobileNetv3, known for its efficiency and 

feature extraction. The integrated model was tested using the COCO dataset, which contains over 164,000 

images across 80 categories, achieving a mAP score of 0.61. Additionally, confusion matrix analysis 

confirmed its accuracy, especially in detecting common objects such as 'person' and 'car' with minimal 

misclassifications. The results demonstrate the potential of the proposed model to address the complexities 

of real-world scenarios, highlighting its applicability in various scientific and industrial domains. 

Keywords-real-time object detection; deep learning; YOLOv7; MobileNetv3; computer vision   

I. INTRODUCTION  

Detecting objects is a key function in computer vision, 
supporting various applications such as autonomous driving, 
healthcare, security systems, and facial recognition. These 
scenarios often require fast and accurate detection in real-time, 
especially in environments with limited computational 
resources, including mobile and embedded systems. Initial 
methods such as the Viola-Jones algorithm [1] and the 
Histogram of Oriented Gradients (HOG) technique [2] laid the 
foundation for object detection. However, these approaches 
faced challenges with handling scale variations and delivering 
real-time performance, which made them less suitable for 
applications requiring rapid detection. The rise of deep learning 
brought about a major transformation in object detection 
through the use of Convolutional Neural Networks (CNNs). 
The R-CNN (Region-based CNN) family [3] significantly 
improved detection accuracy by employing a dual-phase 
approach which initially identifies regions of interest before 

classification. Despite additional enhancements in approaches 
such as Fast R-CNN [4] and Faster R-CNN [5], they remained 
computationally intensive, making real-time applications on 
devices with limited processing power difficult. 

To address the demand for quicker and more efficient 
detection, one-stage detection models such as the Single Shot 
Detector (SSD) [6] and RetinaNet [7] were introduced. These 
models bypassed the region proposal step, resulting in faster 
detection times. However, they faced challenges in balancing 
speed with accuracy, particularly when detecting smaller 
objects in complex environments. The YOLO (You Only Look 
Once) series [8] introduced an innovative technique by 
analyzing the full image in one forward sweep through the 
network, which enabled real-time detection capabilities. 
Although the initial version, YOLOv1, achieved processing 
speeds of up to 45 fps, it faced challenges in accurately 
detecting smaller objects. Subsequent versions, YOLOv2 [9] 
and YOLOv3 [10], introduced multiscale predictions and more 
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sophisticated backbone architectures such as Darknet-53, 
which improved detection performance. YOLOv4 [11] and 
YOLOv5 [12] brought in additional strategies, such as mosaic 
augmentation and Cross-Stage Partial (CSP) connections, to 
further enhance both speed and accuracy. However, the 
significant computational resources required by these models 
continued to restrict their usability on devices with limited 
processing capabilities. YOLOv7 [13] marked a notable 
advancement by incorporating features such as convolution 
reparameterization and efficient long-range attention 
mechanisms (E-ELAN), resulting in an improved trade-off 
between speed and detection precision. Despite these 
enhancements, its computational demands still make it difficult 
to deploy in mobile and embedded systems. 

To overcome these limitations, MobileNet architectures 
emerged as lightweight alternatives suitable for real-time 
applications. MobileNetV1 [14] introduced depthwise 
separable convolutions, effectively reducing computational 
complexity, while MobileNetV2 [15] improved efficiency with 
the addition of inverted residuals and linear bottlenecks. 
MobileNetV3 [16], optimized through Neural Architecture 
Search (NAS), further enhanced performance using Squeeze-
and-Excitation (SE) blocks and the H-swish activation 
function, making it particularly suitable for integration into 
systems that require real-time detection. 

Previous efforts to combine YOLO models with MobileNet 
architectures yielded efficiency improvements but did not 
achieve high accuracy in real-time applications. In contrast, 
MobileNetv3 strikes an ideal balance between lightweight 
design and effective feature extraction, making it an excellent 
candidate for integration with YOLOv7 to address challenges 
in computational performance and precision. This study 
introduces the integration of YOLOv7 with MobileNetV3, 
aiming to develop an object detection model that is tailored for 
real-time use on mobile and embedded platforms. By merging 
YOLOv7's advanced detection capabilities with MobileNetV3's 
efficient architecture, the proposed model delivers strong 
accuracy without compromising speed and resource efficiency. 
The key innovation of this study lies in achieving cutting-edge 
performance with lower computational demands, rendering it a 
practical solution for real-time object detection applications. 

II. MATERIALS AND METHODS 

A. Coco Dataset 

The COCO (Common Objects in Context) dataset [17], a 
well-known and extensive resource for tasks involving object 
detection, image segmentation, and caption generation, was 
used in this study. Developed by Microsoft, this dataset 
provides a diverse collection of realistic images representing 
various real-world scenarios, making it an excellent tool for 
evaluating the effectiveness of object detection models. This 
study employed the 2017 version of the COCO dataset, which 
contains more than 164,000 images, all annotated with 80 
distinct object categories. These categories cover a broad 
spectrum of objects, from everyday household objects and 
animals to vehicles. The dataset is organized into several 
subsets, with approximately 118,000 images allocated for 
training, 5,000 for validation, and another 20,000 for testing. 

These detailed annotations include bounding boxes and 
instance segmentation masks, which facilitate accurate object 
localization. What sets the COCO dataset apart is its 
complexity and diversity, as it contains images with multiple 
objects of varying sizes and degrees of occlusion. This 
diversity makes it an ideal benchmark for assessing the 
adaptability and effectiveness of object detection algorithms, 
such as the integrated YOLOv7-MobileNetV3 model used in 
this study. The COCO dataset is offered under the CC BY 4.0 
license [18], which allows reuse and modification, provided 
appropriate credit is given. This study used the COCO dataset 
to train and validate the proposed object detection model. 

B. MobileNetv3 

MobileNetv3 [16] represents a pivotal development in the 
evolution of deep learning architectures, emerging from a 
comprehensive Network Architecture Search (NAS). This 
model incorporates key features from its predecessors, utilizing 
depth-wise separable convolutions from MobileNetv1 [14] 
while embracing the linear bottleneck and residual setups found 
in MobileNetv2 [15]. A notable enhancement in MobileNetv3 
is the integration of Squeeze-and-Excitation (SE) blocks within 
its bottleneck structures, elevating both its operational 
efficiency and effectiveness. Furthermore, it introduces an 
improvement by substituting the conventional swish activation 
with the h-swish activation function, showcasing a crucial 
advancement in refining neural network designs. The switch 
from swish to h-swish is motivated by practical considerations. 
Sigmoid computations, which are essential to the swish 
function, tend to be computationally demanding, especially on 
mobile devices with limited resources. In contrast, h-swish 
serves as a more efficient alternative to sigmoid, making it 
ideal in situations where fast processing is essential. 
Additionally, MobileNetv3 incorporates the ReLU activation 
function, recognized for its adaptability. ReLU is widely 
supported across various software and hardware platforms, 
maintains accuracy during quantization, and performs 
effectively within deep neural network architectures. These 
attributes make ReLU a reliable option in MobileNetv3's 
design, enhancing its overall efficiency and robustness.  

MobileNetv3 is specifically designed for computer vision 
applications, emphasizing streamlined object detection and 
image classification. Its design strategically balances 
computational efficiency with accuracy, enabling it to perform 
at a high level while consuming fewer computational resources. 
This efficiency makes MobileNetv3 exceptionally suitable for 
applications in environments with limited computational 
resources. Equation (1) provides the details of the swish 
function, while (2) outlines the h-swish formula, emphasizing 
the network's adaptability to diverse computational 
environments and its commitment to maintaining high 
precision in challenging scenarios. 

����ℎ � =  � ·  	(�)    (1) 

where � represents the function's input, and 	(�) denotes the 
sigmoid function applied to �. 

ℎ − ����ℎ =  � ·  [�����(� � �)

�
]   (2) 
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where �  is the argument of the function. In this equation, 
����6(�)  represents a rectified linear unit function with a 
maximum output capped at 6, ensuring boundedness within a 
specific range. 

 

 

Fig. 1.  Principal architectural structure of MobileNetv3. 

TABLE I.  MOBILENETV3 NETWORK PARAMETER 
INFORMATION 

Input 

size 
Operation 

Expansion 

size 

Output 

Channels 

SE 

Module 
Activation Stride 

50176
×3 

Convolution 
2D 

Not 
Applicable 

16 No HS 2 

12544

×16 

Bottleneck, 3x 

repeats 
16 16 No RE 1 

1254× 

16 

Bottleneck, 3x 

repeats 
64 24 No RE 2 

3136× 

24 

Bottleneck, 3x 

repeats 
72 24 No RE 1 

3136× 

24 

Bottleneck, 5x 

repeats 
72 40 Yes RE 2 

784× 

40 

Bottleneck, 5x 

repeats 
120 40 Yes RE 1 

784× 

40 

Bottleneck, 5x 

repeats 
120 40 Yes RE 1 

784× 

40 

Bottleneck, 3x 

repeats 
240 80 No HS 2 

196× 

80 

Bottleneck, 3x 

repeats 
200 80 No HS 1 

196× 

80 

Bottleneck, 3x 

repeats 
184 80 No HS 1 

196× 

80 

Bottleneck, 3x 

repeats 
184 80 No HS 1 

196× 

80 

Bottleneck, 3x 

repeats 
480 112 Yes HS 1 

196× 

112 

Bottleneck, 3x 

repeats 
672 112 Yes HS 1 

196× 

112 

Bottleneck, 5x 

repeats 
672 160 Yes HS 2 

49× 

160 

Bottleneck, 5x 

repeats 
960 160 Yes HS 1 

49× 

160 

Bottleneck, 5x 

repeats 
960 160 Yes HS 1 

49× 

160 

Convolution 

2D, 1x1 

Not 

Applicable 
960 No HS 1 

49× 

960 
Pooling 7x7 

Not 

Applicable 

Not 

Applicabl

e 

No None 1 

1×960 
Convolution 

2D, 1x1, NBN 

Not 

Applicable 
1280 No HS 1 

1× 

1280 

Convolution 

2D, 1x1, NBN 

Not 

Applicable 
k No HS 1 

 

The MobileNetv3 block diagram in Figure 1 illustrates the 
sequence of operations that contribute to the network's 
efficiency. Beginning with a 1×1 convolution for channel-wise 
feature recalibration, the process then moves to a depthwise 
3×3 convolution (Dwise), which is crucial for spatial feature 
extraction while maintaining low computational cost. The SE 
blocks, indicated where applicable, further refine the feature 
maps by dynamically adjusting features across channels, 
greatly enhancing the network's representational power. In 
addition to the diagram, Table I offers a detailed summary of 
the MobileNetV3 architecture. It presents each stage of the 
network, specifying the input size, type of operation, expansion 
size for bottleneck layers, the number of output channels, along 
with the presence of the SE block, the activation function used, 
and the stride. This table effectively encapsulates the design 
elements of MobileNetV3, highlighting its aim to achieve both 
computational efficiency and model accuracy. 

C. YOLOv7 

The YOLOv7 model [13], an improved version of the 
YOLO object detection algorithm series, introduces several 
advanced techniques to achieve an optimal equilibrium 
between detection precision and operational performance. This 
equilibrium is reached by incorporating innovative elements 
such as convolution reparameterization [19], scaling using 
concatenation-based models, and the Extended Efficient Long-
range Attention Network (E-ELAN) [20]. Figure 2 illustrates 
how YOLOv7 retains the fundamental principles of YOLO 
detection while building on the groundwork established by 
earlier versions, YOLOv4 and YOLOv5. 

 

 
Fig. 2.  The architecture of the original YOLOv7 network. 

YOLOv7 is organized into four primary components: input, 
backbone, head, and prediction, each meticulously crafted to 
deliver optimal performance. The input component adjusts the 
size of incoming images to fit the requirements of the 
backbone, which comprises convolutional layers, including E-



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19181-19187 19184  
 

www.etasr.com Ennaama et al.: Enhanced Real-Time Object Detection using YOLOv7 and MobileNetv3 

 

ELAN and MPConv [13], with particular emphasis on the 
BConv [13] segment. This section combines a convolution 
layer with Batch Normalization (BN) and the LeakyReLU 
activation function [21], which is essential for effectively 
capturing features at multiple scales. 

At the core of YOLOv7, the head module utilizes a Feature 
Pyramid Network with Path Aggregation (PAFPN) [22] to 
combine features from different depths, improving the model's 
capacity to analyze images at various scales. The prediction 
module, the final component, is responsible for refining the 
channel counts for features P3, P4, and P5, optimized with the 
REP block [19]. This results in the use of a 1×1 convolution 
layer specifically designed to accurately predict confidence 
scores, object categories, and anchor box details. 

The detection of an input image requires a model that can 
deliver both real-time processing and high accuracy. 
Recognizing the impressive equilibrium between detection 
precision and speed, YOLOv7 was chosen as the foundational 
model to meet these demanding requirements. 

D. Improving Yolov7 Using MobileNetv3 

YOLO is widely recognized for its outstanding speed, 
accuracy, and high-quality performance, making it one of the 
leading approaches in object detection. YOLOv7, an advanced 
deep-learning version, builds on this reputation by performing 
object detection on images in just one forward pass, enabling it 
to identify multiple objects simultaneously while providing 
precise bounding-box coordinates. This blend of speed and 
accuracy sets YOLOv7 apart from many other object detection 
models, making it the model of choice for a wide range of real-
time applications [13]. 

 

 
Fig. 3.  The network structure of the MobileNetv3-YOLOv7 model. 

Incorporating MobileNetv3 into YOLOv7 represents a 
crucial modification at the heart of the object detection 
framework. Within deep learning for object detection, the 
backbone structure is a key component in determining the 

model's performance. MobileNetv3 was selected to replace 
YOLOv7's initial backbone, tasked with the critical roles of 
processing incoming images and extracting vital features. This 
decision to replace the original backbone with MobileNetv3 is 
driven by several compelling reasons. MobileNetv3 is known 
for its distinct advantages, including computational efficiency, 
minimal memory footprint, and exceptional suitability for real-
time and resource-constrained scenarios. This efficiency is 
achieved through the utilization of depth-wise separable 
convolutions, which significantly minimize the computational 
load while preserving feature extraction capabilities. Moreover, 
MobileNetv3 uses efficient building blocks, allowing an 
optimal balance between model accuracy and computational 
resources, a crucial consideration for real-time applications.  

By adopting MobileNetv3 as the new backbone, the 
YOLOv7 model harnesses the benefits of both YOLOv7's 
object detection prowess and MobileNetv3's efficiency. The 
result is a hybrid model that achieves exceptional speed and 
accuracy in object detection while optimizing resource 
utilization. This integration exemplifies the dynamic nature of 
deep learning, where innovative combinations of architectures 
enable the development of models that meet the diverse 
demands of modern computer vision applications. Whether it is 
in autonomous vehicles, surveillance systems, or robotics, the 
potential for achieving outstanding performance in real-time 
object detection tasks while maintaining compatibility with 
resource-constrained platforms, such as embedded devices, is 
demonstrated. 

III. RESULTS AND DISCUSSION 

A. Model Evaluation Criteria 

This study evaluated the effectiveness of the MobileNetv3-
YOLOv7 architecture for object detection using several key 
metrics, including precision (P), F1 score, mean average 
precision (mAP), and recall (R) [23]. The mAP is determined 
through an Intersection over Union (IoU) threshold of 0.5 as 
the main criterion for evaluation. Precision is measured 
according to (3), recall is determined by (4), F1 score is 
computed using (5), and the method for calculating mAP is 
described in (6). 

�������� =  
!"

#!" � $"%
    (3) 

����&'' =  
!"

#!" � $(%
    (4) 

)* =  
+!"

#+!" � $(� $,%
    (5) 

-.� = /01

2
     (6) 

where Tp (True Positives) denotes correct detections, Fp (False 
Positives) refers to instances where non-objects are mistakenly 
classified as objects, and FN (False Negatives) describe 
instances where actual objects fail to be recognized. 
Calculating the AP (Average Precision) involves determining 
the region beneath the curve generated by mapping precision 
(P) values against recall (R), with n representing the number of 
unique object categories. 
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Fig. 4.  Confusion matrix. 

 
Fig. 5.  (a) F1 score curve, (b) Precision plot, (c) Precision-Recall Graph, (d) Recall plot. 

  



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19181-19187 19186  
 

www.etasr.com Ennaama et al.: Enhanced Real-Time Object Detection using YOLOv7 and MobileNetv3 

 

B. Results and Analysis 

The MobileNetv3-YOLOv7 model was trained and tested 
on an online platform using the PyTorch framework on a server 
powered by an NVIDIA RTX 3090 GPU with 24 GB of RAM 
and CUDA 11.2 for parallel computing. Image inputs were 
standardized to an image resolution of 640×640 pixels, paired 
with a batch size of 16, carefully selected to balance training 
efficiency with memory limitations. A minimal confidence 
threshold of 0.001 was applied to filter out detections, while an 
IoU threshold of 0.65 was used to ensure accurate bounding 
box predictions, optimizing the equilibrium between accuracy 
and processing speed. The effectiveness of the proposed model 
was evaluated on the COCO dataset, and a detailed 
examination of the results was performed to evaluate the 
influence of multiple factors, including object size and scene 
complexity, on detection accuracy and efficiency. The 
confusion matrix (Figure 4) confirmed that the model 
accurately detected frequently occurring objects such as 
'person,' 'car,' and 'bicycle,' with minimal misclassifications, 
showcasing robustness in real-world applications. 

The MobileNetv3-YOLOv7 model exhibited strong 
adaptability in handling varying object sizes. It achieved high 
precision for larger objects while also showing improved 
detection rates for smaller objects compared to earlier YOLO 
versions. This enhanced accuracy for smaller objects can be 
attributed to MobileNetv3's efficient feature extraction 
capabilities, which helped the model differentiate finer details 
even in challenging situations. The model also maintained 
robust detection accuracy in scenes with high object density or 
complex backgrounds, effectively distinguishing objects even 
in cases of overlap or occlusion. Further analysis using 
Precision-Recall curves (Figure 5) indicated that the 
MobileNetv3-YOLOv7 model achieved a peak F1 score of 
0.59, demonstrating its ability to maintain high precision as 
recall increased. The model attained a mAP of 0.599 at an IoU 
threshold of 0.5, closely aligning with the final reported mAP, 
which verifies the model's detection performance across 
multiple object categories. For a comprehensive comparison, 
Table II outlines the effectiveness of the MobileNetv3-
YOLOv7 model alongside other leading models on the COCO 
dataset. 

TABLE II.  COMPARATIVE EFFECTIVENESS OF OBJECT 
DETECTION MODELS ON THE COCO DATASET BASED ON 

PUBLISHED BENCHMARKS AND EXPERIMENTAL 
RESULTS 

Model 
mAP 

@0.5 

mAP 

@0.5:0.95 
Unique characteristics 

YOLOv4 0.495 0.33 
Balanced accuracy and speed; relatively 

heavy model 

YOLOv5 0.50 0.35 
Improved accuracy and speed; more 

lightweight than YOLOv4 

YOLOv7 0.556 0.39 
State-of-the-art accuracy with efficient 

architecture 

MobileNetv3

-YOLOv7 
0.607 0.435 

High accuracy and efficiency; 

lightweight architecture for embedded 

devices 

 
The comparison shows that the MobileNetv3-YOLOv7 

model outperformed other models in accuracy, achieving a 
mAP@0.5 of 0.607 while maintaining efficiency. This 

performance demonstrates the model's potential for deployment 
across various practical real-time scenarios, especially in 
resource-constrained environments. The integration of 
MobileNetv3 into YOLOv7 provided a balance between high 
precision and lightweight architecture, making it a highly 
effective solution for object detection tasks across varying 
object sizes and complex scenes. 

Although the MobileNetv3-YOLOv7 model demonstrated 
strong overall performance, it faced challenges in detecting 
smaller objects within densely populated scenes, which is a 
common limitation for object detection models. Future research 
could explore incorporating multiscale feature fusion 
techniques or advanced attention mechanisms to enhance the 
model's accuracy in such scenarios. Additionally, further 
experiments involving more diverse datasets or extended 
training periods could potentially improve detection accuracy 
and robustness, expanding the model's applicability across 
different real-world environments. 

IV. CONCLUSION 

The combination of YOLOv7 with MobileNetv3 constitutes 
notable progress in real-time object detection, overcoming 
limitations from previous YOLO models. This combination 
achieved an mAP of 0.61 on the challenging COCO dataset in 
only 120 training epochs, demonstrating both high accuracy 
and efficiency. This result emphasizes the potential of the 
proposed model in the deployment of real-world applications, 
particularly in resource-constrained environments such as 
mobile and embedded systems. MobileNetv3's lightweight 
architecture played a key part in boosting YOLOv7's 
efficiency, allowing the model to maintain high detection 
accuracy while minimizing computational demands. The 
MobileNetv3-YOLOv7 model outperformed established 
models, such as the YOLOv4, YOLOv5, and even the 
standalone YOLOv7 model, both in terms of accuracy and 
efficiency. Additionally, the analysis revealed that the model 
performed robustly across different object sizes and scene 
complexities, further emphasizing its adaptability to diverse 
real-world scenarios. This flexibility makes it a suitable 
solution for real-time object detection tasks, where balancing 
accuracy and efficiency is critical. In summary, the integration 
of YOLOv7 and MobileNetv3 offers a well-balanced model 
that combines accuracy, efficiency, and adaptability, 
representing a step forward in real-time object detection. As the 
model continues to evolve, it holds the potential for broader 
applications across various domains, reinforcing its role in the 
advancement of computer vision technology. 

Future research could explore experimenting with 
additional lightweight architectures or incorporating more 
advanced attention mechanisms to further improve detection 
accuracy, particularly for smaller objects in complex scenes. 
Additionally, testing the model on different datasets or 
applying it in real-world scenarios beyond COCO could 
provide important perspectives on the model's generalizability 
and resilience, setting the stage for further optimizations and 
broader applicability. 
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