
Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18357-18362 18357  
 

www.etasr.com Sankhe & Bhosale: Vessel Detection in Satellite Images using Deep Learning 

 

Vessel Detection in Satellite Images using Deep 

Learning 
 

Darshana Sankhe 

Department of Electronics and Telecommunication Engineering., D. J. Sanghvi College of Engineering, 

Mumbai, Maharashtra, India 

darshana.sankhe@djsce.ac.in  

 

Snehal Bhosale 

Department of Electronics and Telecommunication Engineering, Symbiosis Institute of Technology, 

Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, India 

snehal.bhosale@sitpune.edu.in (corresponding author) 

Received: 16 August 2024 | Revised: 17 September 2024 | Accepted:4 October 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8755 

ABSTRACT 

Maritime surveillance and monitoring have emerged as crucial components, serving various purposes such 

as security, environmental protection, and economic activities. This paper focuses on utilizing Synthetic 

Aperture Radar (SAR) satellite imagery to detect and track vessels in maritime regions. SAR technology 

provides notable advantages in imaging capabilities, enabling effective vessel detection under diverse 

weather conditions and during both day and night. Deep learning (DL) models are trained employing 

annotated SAR images, including multiple vessel patterns, sizes, and orientations. The enhancement of 

model generalization and robustness is accomplished by applying transfer learning techniques and data 

augmentation strategies, ensuring reliable detection performance across different environmental 

conditions and vessel types. By leveraging SAR imagery, this paper aims to contribute to enhanced 

maritime situational awareness, enabling timely identification of small vessels, including those involved in 

illegal fishing, smuggling, or other illicit activities. The results of this research hold promise for bolstering 

maritime security, aiding search and rescue operations, and facilitating effective regulation of maritime 

traffic.  
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I. INTRODUCTION  

Maritime regions present a vast and dynamic landscape, 
teeming with diverse activities ranging from legitimate 
commerce to illicit endeavors, posing challenges for effective 
surveillance and monitoring. In recent years, the fusion of 
cutting-edge technologies has emerged as a pivotal approach to 
enhance maritime security and surveillance. Among these 
technologies, SAR satellite imagery, with its unparalleled 
capacity for all weather conditions and day-and-night imaging, 
stands as a transformative tool for comprehensive maritime 
monitoring. With the advancements in SAR technology, the 
integration of DL techniques has revolutionized the realm of 
image analysis and pattern recognition. The combination of 
SAR imagery and DL algorithms demonstrates a compelling 
approach for the precise and effective identification of ships 
within the complex and congested maritime domain [1]. 

The present research explores the synergy between SAR 
satellite imagery and DL methodologies to address the pressing 
need for developing vessel detection and monitoring. Small 
vessels, often engaged in multiple  activities including but not 
limited to fishing, smuggling, terrorist activities, and illegal 

trafficking, pose a challenge to conventional surveillance 
systems due to their size, mobility, and ability to blend with 
their maritime surroundings. The use of extensive data 
provided by SAR imagery and the capabilities of DL models 
along with training the corresponding models are deployed to 
detect the vessels and landmasses successfully. This will 
revolutionize maritime surveillance capabilities, empowering 
authorities with advanced tools to detect, monitor, and respond 
to activities involving small vessels. Such advancements will 
fortify maritime security, mitigating illicit maritime activities, 
and fostering safer and more efficiently managed maritime 
domains. This research aims to refine vessel detection methods 
while also envisioning a fundamental change in maritime 
surveillance, ushering in a new era of comprehensive and 
proactive monitoring facilitated by the integration of SAR 
satellite imagery and DL methods [2-5]. The proposed system 
is inspired by the basic thought of You Only Look Once 
(YOLO) [6–9].  

YOLO is a series of DL models designed for fast object 
detection. The objective of the YOLO series is to rapidly detect 
the locations and classifications of objects by analyzing the 
entire image simultaneously. By consolidating the detection 
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process into one single neural network, YOLO enables direct 
optimization of the detection performance from start to finish. 
In this paper, three models from this series are utilized: 
YOLOv3 [10-12], YOLOv4 [13-15], and YOLOv4-tiny [16].  

A. YOLOv 3 

YOLOv3 is a state of art DL model designed for real-time 
object detection. It is renowned for its efficiency and accuracy, 
making it a popular choice in various fields like surveillance, 
image analysis and autonomous driving. At its core, YOLOv3 
processes an input image through a darknet backbone and 
extracts meaning features from an image, which are then used 
by the detection head to predict bounding boxes and class 
probabilities for the objects being present [17]. The YOLOv3 
architecture is optimized for real-time object detection with a 
balance of speed and precision. At its core is the Darknet-53, a 
53-layer Convolutional Neural Network (CNN) that 
incorporates residual connections to facilitate gradient flow and 
reduce the risk of vanishing gradients. The model operates at 
three distinct scales-high, medium, and low resolution-allowing 
it to detect objects of varying sizes with the help of predefined 
anchor boxes. YOLOv3 also utilizes an FPN-like structure that 
merges feature maps from different layers, improving the 
detection of both small and large objects. Each grid cell 
predicts multiple bounding boxes with associated confidence 
scores and class probabilities, with non-max suppression 
applied to eliminate overlapping boxes. A combination of loss 
functions-bounding box regression, confidence scores, and 
classification-is used to fine-tune the model's accuracy across 
scales. 

B. YOLOv4  

It is a real-time object detection model developed to address 
the limitations of previous YOLO versions like YOLOv3 and 
other object detection models. Unlike other CNN based object 
detectors, YOLOv4 is not only applicable for recommendation 
systems, but also for stand-alone process management and 
human input reduction. Its operation on conventional GPUs 
allows for mass usage at an affordable price, and it is designed 
to work in real-time on a conventional GPU while requiring 
only one such GPU for training. The YOLOv4 architecture 
improves upon YOLOv3 by enhancing both accuracy and 
speed for object detection tasks. It utilizes a CSPDarknet53 
backbone, which incorporates Cross Stage Partial (CSP) 
connections to reduce computational costs without sacrificing 
accuracy. YOLOv4 improves feature extraction with a Path 
Aggregation Network (PANet), which allows better 
information flow across layers, aiding in the detection of both 
small and large objects. It also introduces various optimization 
techniques, such as Mish activation, Mosaic data augmentation, 
and DropBlock regularization to enhance training efficiency. 
The model continues to use multi- scale predictions to detect 
objects of different sizes, along with anchor boxes and non-
max suppression to refine the detection process. These 
advancements make YOLOv4 well-suited for real-time object 
detection with higher performance [18]. 

C. YOLOv4 - Tiny 

It is a light variant version of the YOLOv4 object detection 
model designed for deployment on resource-constrained 

devices, such as embedded systems and cellular phones. It not 
only maintains the core principles of YOLOv4, but also 
prioritizes efficiency through modifications to the architecture 
[19]. The YOLOv4-tiny model is a streamlined version of 
YOLOv4, optimized for faster object detection while reducing 
computational demands, making it well-suited for use in 
resource-limited environments. It simplifies the architecture by 
using fewer convolutional layers and CSP connections to 
maintain efficient feature extraction. Unlike the full version, 
YOLOv4-tiny focuses on two prediction scales instead of three, 
prioritizing speed with some loss in accuracy, especially for 
smaller objects. The model continues to utilize anchor boxes 
and non-max suppression to refine detections and incorporates 
techniques like Leaky ReLU activation and batch 
normalization to ensure stable training. YOLOv4-tiny is 
particularly effective in real-time applications, such as 
embedded systems and mobile devices, where processing speed 
is crucial. 

II. SYSTEM IMPLEMENTATION 

A custom dataset was created using images from Sentinel-
1. Sentinel-1 is a radar imaging satellite operated by the 
European Space Agency and its design allows images to be 
captured in all weather conditions. Due to its ability to 
penetrate clouds, it provides high resolution images and is 
widely used for maritime applications. This dataset has over 
2500 SAR images, with each of them having dimensions of 
1200 by 800 pixels, covering approximately an area of about 5 
km by 5 km. Furthermore, all the images are manually 
annotated to detect small vessels as well as land, which is 
further utilized for distance calculation [20]. Some samples can 
be seen in Figure 1. 

 

 

Fig. 1.  Sample images in image dataset.  

Once all the images are annotated, the dataset is structured 
to include both the original SAR images and corresponding 
annotations. Data processing techniques are also applied to the 
dataset, which includes augmentation as well to identify and 
remove images that are not clear or contain excessive noise 
[21-23]. As evidenced in Figure 2, by annotating, the algorithm 
identifies and labels the objects within an image, and in this 
case, the annotation task involves the detection of small vessels 
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as well as the annotation of land areas, which will be used to 
calculate the distance between the vessels and the land. 
Moreover, this task is performed deploying software called 
labeling, which marks where a region of interest is located. 
Each image is carefully annotated to differentiate land and 
vessels.  

A rectangular box is utilized to denote the position of an 
object within an image. This box typically includes the 
coordinates of its center (x, y), width (w), and height (h). The 
coordinates of the box are often normalized to values between 
0 and 1, representing the relative position within the image. For 
instance, x and y might range from 0 to 1, while w and h 
represent the width and height as fractions of the total image 
size. Each annotated object in YOLO format is associated with 
a category label, indicating the type of the object being present. 
In this study, the category label might be a vessel and a land 
indicated by a class index in the format given below. Thus, 0 
represents the vessel while 1 represents the land. YOLO 
annotations are commonly stored in text files. Each annotated 
image corresponds to a separate text file containing the object 
annotations. The annotations within a YOLO file typically 
follow a specific format, specifying the object class and its 
bounding box coordinates. For example, the format might be: 
class-index x-center y-center width height. The YOLO format 
presents each vessel annotation with its normalized bounding 
box coordinates, relative to the image’s width and height, and 
the category label for identification purposes. 

 

 
Fig. 2.  Annotation architecture. 

A. Steps for Training YOLOv3  

A Google Colab notebook is opened and GPU acceleration 
enabled to expedite model training. Darknet is cloned and built 
from AlexeyAB's GitHub repository, configuring the Makefile 
to enable OPENCV and GPU for Darknet. Google Drive is 
mounted to the notebook to run detections. To create a custom 
YOLOv3 detector, the following components are required: 
labeled custom dataset, custom .cfg file, obj.data and obj.names 
files, and train.txt and test.txt files. Next, a dataset containing a 
large number of satellite images with annotated vessels is built 
and uploaded to the drive. Regarding the custom configuration 
file, the .cfg file is crucial in defining the object detection 
model's architecture and training parameters. The .cfg file is 
modified to suit the object detector needs. The max batch is set 
to 64 and subdivisioned to 16. The number of classes is 
changed to 2, as there are two classes to be detected: vessel and 
land. The obj.names file containing the class names, and the 
obj.data file is created specifying the backup path for model 
weights and the number of classes. 

The pre-trained YOLOv3 weights, which have been trained 
on the COCO dataset with 80 classes, are leveraged to run 
YOLOv3 on these pre-trained classes and obtain detections. 
The custom object detector is trained and the Mean Average 
Precision, which in this case is 74.82%, is calculated. 

B. Τraining YOLOv4  

A Google Colab notebook is utilized to train the YOLOv4 
model. GPU acceleration is enabled within the notebook to 
enhance the training speed. Darknet is cloned and built from 
AlexeyAB's GitHub repository, with the Makefile adjusted to 
enable OPENCV and GPU for Darknet, followed by the build 
process. Helper Functions are defined to display the images in 
the Colab Notebook after running the detections. A dataset 
comprising numerous satellite images is created, with vessels 
annotated and uploaded to the drive. 

The .cfg file plays a crucial role in defining the object 
detection model's architecture and training parameters. The .cfg 
file is edited to suit the specific needs of the object detector. 
The Max batch is set to 64, and the subdivision is set to 16. The 
number of classes is changed to 2, as there are two classes to be 
detected: vessel and land. A new file, obj.names, is created, 
containing the names of the classes to be detected. Another file, 
obj.data, is created, which includes the backup path to save the 
model weights and number of classes. 

Pre-trained YOLOv4 weights are downloaded. YOLOv4 
has already been trained on the COCO dataset, which has 80 
classes that it can predict. These pre-trained weights are 
utilized to run YOLOv4 and obtain detections. The Custom 
Object Detector is then trained, and the accuracy of the model 
is tested, achieving 82.96% in this case. 

C. Τraining YOLOv4-Tiny 

The darknet Git repository is cloned onto the Colab virtual 
machine. Within the 'yolo4-tiny' folder, a new directory named 
'training' is created to store the trained weights, as specified in 
the 'obj.data' file that will be uploaded later. Next, the labeled 
custom dataset is uploaded as an 'obj.zip' file to the 'yolov4-
tiny' folder on the drive. To create this 'obj.zip' file, the 'obj' 
folder is compressed, which should contain both the input 
image files in '.jpg' format and their corresponding YOLO 
format label files in '.txt' format. Helper functions are defined 
to enable image display in Colab Notebook after running the 
detections. 

Regarding the custom configuration file, the '.cfg' file plays 
a crucial role in defining the object detection model's 
architecture and training parameters. As per the needs of the 
object detector, the '.cfg' file must be modified. The maximum 
batch size is set to 64, and the sub-divisions are set to 16. The 
number of classes has been changed to 2, as there are two 
classes to be detected: vessel and land. A new file named 
'obj.names' is created, containing the names of the classes to be 
detected. Additionally, an 'obj.data' file has been created, which 
specifies the backup path to save the model's weights and the 
number of classes. 

The pre-trained YOLOv4-tiny weights are downloaded and 
the custom object detector is trained. The performance is 
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evaluated by checking the mean average precision, which is 
achieved to be 69.31%. 

D. Distance Calculation 

The distance calculation entails determining the Euclidean 
distance between each identified vessel and the nearest 
coastline. This process begins with the application of a 
specialized Machine Learning (ML) model trained for the 
object detection task at hand. The model has been trained on a 
dataset comprising annotated examples of vessels within 
satellite imagery. The model analyzes the input satellite images 
and identifies regions likely to contain vessels. These regions 
are delineated by bounding boxes, which enclose the spatial 
extent of each detected vessel. The bounding boxes essentially 
provide concise information about the location and size of the 
detected vessels within the satellite image. Each bounding box 
is defined by its top-left and bottom-right corner coordinates. 
Similarly, the same ML model is employed to identify 
landmasses using the trained object detection model. This 
model has been applied to satellite images to detect features 
indicative of land areas. Upon analyzing the input images, the 
model identifies regions corresponding to landmasses and 
marks them with bounding boxes. These bounding boxes 
encapsulate the spatial extent of each detected landmass. 

After the vessels and landmasses have been detected and 
their bounding boxes determined, the next step involves 
calculating the centroid of each bounding box. The centroid 
represents the geometric center of the bounding box, and it is 
calculated as the midpoint between the top-left and bottom-
right corner coordinates along both axes. 

With the locations of vessels and landmasses now 
determined, the straight-line, or Euclidean, distance between 
each vessel and the nearest landmass is calculated. Euclidean 
distance refers to the direct distance between two points in a 
Euclidean coordinate system. For each vessel, the distance to 
all the identified landmass center points is computed using the 
Euclidean Distance formula: 

�������� =  �(���� − ����)� +  (����� − �����)� (1) 

The coordinates of the vessel's center and the landmasses' 
center are determined. The distance calculation is repeated for 
each vessel-landmass pair to ascertain the proximity of each 
vessel to the nearest landmass. Ultimately, the computed 
distance is annotated on the corresponding vessel's bounding 
box in the satellite image. This annotation conveys information 
about the spatial relationship between vessels and landmasses. 
Each vessel's bounding box displays the distance from the 
vessel to the nearest landmass. By precisely calculating the 
distance between each vessel and landmasses, the system 
furnishes essential information about the spatial dynamics 
within the satellite imagery, facilitating informed decision-
making for maritime surveillance, environmental monitoring, 
and other relevant applications. 

III. RESULTS AND DISCUSSION 

The performance of YOLO models is decided by their 
mean Average Precision (Map) scores. The mAP uses the 
ground-truth bounding box, compares it to the detected box, 
and returns a score. The higher the mAP score is, the more 

accurate the model is. The mAP score of YOLOv4 model is the 
highest, as displayed in Table I, this means that it has a higher 
probability of detecting vessels and landmasses. Hence, the 
weights of the trained YOLOv4 model are further used to 
calculate the distance between the vessel and the landmasses.  

TABLE I.  MODEL’S MAP SCORE   

Model mAP 

YOLOv3 74.82% 

YOLOv4 82.96% 

YOLOv4 Tiny 69.31% 

 

Figures 3-6 present various cases of output images 
demonstrating ships and the landmasses by using the reference 
dataset [20]. 

 

 
Fig. 3.  Output image indicating vessel and landmass. 

 

Fig. 4.  Output image indicating vessel and landmass. 

  

Fig. 5.  Output image indicating vessel and landmass. 
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Fig. 6.  Output image indicating vessel and landmass. 

IV. CONCLUSION 

The development of Machine Learning (ML) models for 
vessel and landmass detection in satellite imagery, coupled 
with distance calculations between vessels and their nearest 
landmass, represents a significant advancement in the field of 
maritime surveillance. Through the utilization of cutting-edge 
techniques and methodologies, the core objectives of the 
research work have been successfully addressed. The 
implemented system demonstrates robust performance in 
detecting vessels and landmasses within satellite imagery, as 
evidenced by rigorous testing. By leveraging trained Deep 
Learning (DL) models and sophisticated algorithms, the system 
has enabled automated detection and annotation of vessels and 
landmasses, marking them with bounding boxes and annotating 
each of them with its respective labels. Various versions of the 
You Only Look Once (YOLO) algorithms were utilized to 
address the research problem, with YOLO Version 4 
(YOLOv4) demonstrating the highest accuracy after 
implementation. Furthermore, the integration of distance 
calculations enhances system utility by providing valuable 
spatial context. Accurately measuring the distance to the 
nearest landmass offers valuable insights for maritime 
surveillance, coastal management, and environmental 
monitoring initiatives. The scope of this work can be extended 
to real-time monitoring and alert systems, enabling proactive 
responses to maritime incidents, such as vessel collisions, 
illegal fishing, vessel hijackings by pirates, and environmental 
hazards. 
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