
Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18453-18458 18453  
 

www.etasr.com Nirmal & Murugan: Dynamic Arithmetic Optimization Algorithm with Deep Learning-based Intrusion … 

 

Dynamic Arithmetic Optimization Algorithm 

with Deep Learning-based Intrusion Detection 

System in Wireless Sensor Networks 
 

K. Nirmal 

Krishnasamy College of Engineering and Technology, Cuddalore, India 

nirmalphd21@gmail.com (corresponding author) 

 

S. Murugan 

Dr. M.G.R. Government Arts and Science College for Women, Villupuram, India 

smuruganmpt79@gmail.com 

Received: 14 August 2024 | Revised: 26 August 2024 | Accepted: 4 September 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8742 

ABSTRACT 

A Wireless Sensor Network (WSN) encompasses interconnected Sensor Nodes (SNs) that interact 

wirelessly to collect and transfer data. Security in the context of WNS refers to protocols and measures 

implemented for the overall functionality of the network, along with protecting the availability, 

confidentiality, and integrity of data against tampering, unauthorized access, and other possible security 

risks. An Intrusion Detection System (IDS) utilizing Deep Learning (DL) and Feature Selection (FS) 

leverages advanced methods to enhance effectiveness in the detection of malicious activities in a network 

by enhancing relevant data features and leveraging the power of Deep Neural Networks (DNNs). This 

study presents a Dynamic Arithmetic Optimization Algorithm within a DL-based IDS (DAOADL-IDS) in 

WSNs. The purpose of DAOADL-IDS is to recognize and classify intrusions in a WSN using a 

metaheuristic algorithm and DL models. To accomplish this, the DAOADL-IDS technique utilizes a Z-

score data normalization approach to resize the input dataset in a compatible format. In addition, 

DAOADL-IDS employs a DAOA-based FS (DAOA-FS) model to select an optimum set of features. A 

Stacked Deep Belief Network (SDBN) model is employed for the Intrusion Detection (ID) process. The 

hyperparameter selection of the SDBN model is accomplished using the Bird Swarm Algorithm (BSA). A 

wide experimental analysis of the proposed DAOADL-IDS method was performed on a benchmark 

dataset. The performance validation of the DAOADL-IDS technique showed an accuracy of 99.68%, 

demonstrating superior performance over existing techniques under various measures. 

Keywords-intrusion detection system; deep learning; bird swarm algorithm; wireless sensor network; feature 

selection 

I. INTRODUCTION  

Today, WSNs support smart IoT applications, and their 
reliability is significant for various real-time applications such 
as industry, military, environmental monitoring factors, wide-
area surveillance, and healthcare [1]. WSNs play a vital role in 
the Industry 4.0 revolution and are crucial to collecting data 
using SNs [2]. Due to the short battery life of SNs, optimal 
energy consumption is a challenging task, and the energy 
efficiency of SNs plays an important role due to their limited 
resources in communication and processing [3]. Therefore, it is 
important to suggest effective energy consumption procedures 
to extend the life and stability of WSNs. In addition, optimal 
energy utilization in WSNs is needed to achieve a longer life 
and enhance WSN performance [4]. Thus, the combination of 
sensors in groups is used to minimize dissipation and increase 
the expandability of the network. Each network cluster has one 
head called a Cluster Head (CH) that links with other CHs [5]. 

In grouped WSNs, a routing protocol is used to identify the 
optimal route between CHs and BS and reduce energy 
consumption [6]. Routing protocols feature trustworthiness, 
error tolerance, scalability, data accretion, etc. Due to its 
impromptu behavior, a WSN can attract numerous internal and 
external attacks [7]. Some standard attacks used are black and 
gray holes, wormholes, and DDoS. Therefore, the use of an 
IDS in a WSN is important [8]. WSNs are not able to provide 
the sufficient data that IDSs require and are not directly 
functional to WSNs. Therefore, the construction of an easy and 
lightweight WSN IDS has become an essential topic in the 
WSN security area. Thus, it is vital to precisely detect 
numerous attacks. Some recently proposed IDS methods are 
based on techniques such as Random Forest (RF), Naive Bayes 
(NB), Convolutional Neural Networks (CNN), Decision Tree 
(DT), and other Machine Learning (ML) models [9]. 
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This study presents a Dynamic Arithmetic Optimization 
Algorithm within a DL-based IDS (DAOADL-IDS) in WSN. 
DAOADL-IDS utilizes a Z-score data normalization approach 
to resize the input dataset into a compatible format. In addition, 
the proposed technique employs the DAOA-based FS (DAOA-
FS) model to select an optimum set of features. A Stacked 
Deep Belief Network (SDBN) model is employed for the 
Intrusion Detection (ID) process. Finally, the hyperparameter 
selection of the SDBN model is accomplished by utilizing the 
Bird Swarm Algorithm (BSA). The key contributions of the 
proposed DAOADL-IDS technique are as follows: 

 The DAOADL-IDS model standardizes the input dataset 
utilizing Z-score normalization. This preprocessing step 
contributes to enhanced model accuracy and consistency by 
confirming that features are on a uniform scale. 

 The DAOA-FS approach is implemented to detect and 
choose the most relevant features. This approach improves 
performance by focusing on the most crucial attributes, 
resulting in enhanced accuracy and efficiency for data 
processing tasks. 

 The DAOADL-IDS technique integrates SDBN for ID, 
employing DL models to detect anomalies with high 
accuracy. This method improves the detection process by 
learning intricate patterns and relationships in the data. The 
use of SDBN contributes to more efficient and precise ID. 

 The BSA model is used for fine-tuning. This method 
optimizes the model settings, improving accuracy and 
effectiveness. Systematic hyperparameter adjustment 
through BSA confirms that the model performs optimally 
across diverse scenarios. 

 The DAOADL-IDS method improves the effectiveness and 
efficiency of the model by incorporating advanced 
preprocessing, FS, DL, and optimization models. Its 
novelty relies on the cohesive use of these techniques to 
enhance overall model performance and adaptability. 

II. LITERATURE REVIEW 

In [10], a fuzzy-assisted ant colony optimizer was proposed 
to improve the security of a routing protocol (F-ACO-
SQoSRP). In [11], an ANFIS-based clustering method was 
used and a DBN was applied for efficient ID. In [12], a Deep Q 
Network (DQN) based on the Taylor Competitive Multi-Verse 
Optimizer (Taylor CMVO) technique was proposed. In this 
approach, PSO-based machines manage CHS, Particle-Water 
Wave Optimization (P-WWO) handles routing with Canberra 
distance for FS, and IDS is used with DQN trained using a 
model that integrates CMVO with Taylor sequence. In [13], an 
IDS was introduced based on the density-assisted Spatial 
Clustering of Application with Noise (DBSCAN) cluster 
procedure. In [14], an IoT-based Cluster-Based Routing (CBR) 
process was introduced for an information-centric WSN. This 
model used a BWO-based clustering model for CH selection 
and an Oppositional ABC (OABC) routing technique for path 
selection. In [15], a classification structure was proposed that 
incorporated signature and ID with MLP-NN by clustering. 

In [16], an AI-based energy-aware IDS and routing 
technique was proposed, based on a game theory decision 
model and an ad-hoc on-demand distance vector procedure. In 
[17], the Double Adaptive Weighting Arithmetic Optimization 
Algorithm with DL (DAWAOA-DL) approach was introduced, 
which involved DAWAOA for FS, CNN-GRU for ID, and 
Adam optimizer for fine-tuning. In [18], the Secure DL-based 
Energy-Efficient Routing (SDLEER) model was proposed, 
which combined energy-efficient routing, optimized CH 
selection, preprocessing, PCA, and Smish-activated RNN-
based classification. In [19], a Restricted Boltzmann Machines 
(RBMs) model was introduced, which utilized a two-tier 
method with a Chaotic Ant Optimization (CAO) model. In 
[20], a DL-based IDS was proposed, which used chaotic 
optimization, data cleansing, extended synthetic sampling, 
kernel-assisted PCA, chaotic Honey Badger Optimization 
(HBO), and Dugat-LSTM for classification. 

Existing approaches face challenges with scalability and 
computational efficiency, particularly in parameter tuning and 
overhead. Anomaly detection models can be sensitive to 
parameter settings, while cluster-based routing methods may 
face difficulties with dynamic networks. Conventional 
signature-based systems often overlook growing threats. 
Research gaps include improving scalability, real-time 
performance, adaptability, and managing computational 
demands. 

 

 

Fig. 1.  Workflow of DAOADL-IDS model. 
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III. THE PROPOSED MODEL 

This study presents a novel DAOADL-IDS method to 
enhance security in WSNs. The objective is to detect and 
classify intrusions using a metaheuristic method and DL 
models. The DAOADL-IDS technique applies Z-score data 
normalization, DAOA-FS, SDBN classification, and BSA-
based tuning. Figure 1 illustrates the structure of the proposed 
DAOADL-IDS approach. 

A. Z-Score Normalization 

This technique is implemented to normalize the input data 
and is also known as standardization. It is a statistical model 
applied to rescale and center a dataset by converting data points 
into a standard unit deviation in relation to the mean of the 
entire dataset. This procedure includes dividing by the standard 
deviation and subtracting the mean. This is widely used in data 
preprocessing to facilitate comparisons between different 
parameters with varying scales, promoting a comparable and 
standardized representation of data across various features. 

B. Feature Selection Using the DAOA-FS Technique 

The DAOA-FS method is exploited to select an optimal set 
of features. AOA is a new metaheuristic approach used to 
leverage the distributional property of arithmetical operators to 
find the optimum element from the pool of candidate results 
and includes two main phases: exploitation and exploration 
[21]. At first, a population of � solutions is initialized with a �‐
dimension search range represented by �� = ����, ��
, ⋯ ���
,  � = 1,2, ⋯ , �. Then, the phase of the method is defined by a 
Math Optimizer Accelerated (MOA) function. Next, MOA is 
evaluated by the following equation, where ��  is a random 
integer within [0,1]. If �� > ���, then exploration takes place. 
If �� < ���, then exploitation takes place. 

��������� = ��� + ���� � � ! " ��# �$%&'() *  (1) 

where ���� is the current iteration count, ��������� denotes 
the ��� value at that iteration, and ����+,-  is the maximum 
iteration count. �.� and ��� are the maximum and minimum 
values of the ���  function, set to 1 and 0.2, respectively. 
Division and multiplication calculations produce distribution 
values that enhance exploration. 

��,/������ =
⎩⎪
⎨
⎪⎧

45678,9��$%&���:;<=� ×
?@?AB/ − DB/E × F + DB/GE if �
 < 0.5�M%N$,/������ × ��O ×@?AB/ − DB/E × F + DB/G otherwise

 (2) 

where ��,/  denotes the position of �$W  individual in the X$W 

dimension of optimal solution at ���� iteration, �M%N$,/ indicates 

the position of the X$W dimension of the optimum individual at ���� th
 iteration, �
 represents a random value within [0, 1], Y 

denotes a small positive value that averts the divisor from 

becoming 0, F adjusts the control variable fixed as 0.5, and AB/  

and DB/ are the upper and lower limitations at X$W parameter: 

��O������ = 1 − �$%& Z[
�$%&\]^

Z[    (3) 

Here, ��O  denotes the math optimizer probability, with _ 
fixed at 5 to control exploitation accuracy. During exploitation, 
addition and subtraction operators are used for their low 
dispersion and simplicity in achieving targets. �M%N$,/������ is 

the best solution for dimension X at iteration ����. ��O is the 

modification parameter, and AB/  and DB/  are the upper and 

lower bounds for dimension X . F  is a scaling factor and �̀  
denotes the random number within [0, 1]. 

��,/������ =
⎩⎪
⎨
⎪⎧�M%N$,/������ − ��O ×

�?AB/ − DB/E × F + DB/*  if �̀ < 0.5�M%N$,/������ + ��O ×
�?AB/ − DB/E × F + DB/*  otherwise

 (4) 

The DAOA model uses evolutionary optimization for 
various tasks, including forecasting, routing, and portfolio 
management. Using stochastic and probabilistic searches, it 
refines solutions to converge on local optima and is applicable 
in fields such as image processing, scheduling, robotics, and 
ML/AI. The individual upgrade formula for DAOA is: 

���� + 1�  = ����� + . × ?�M%N$��� − �����E +  a ×?����� − �bc&N$���E    (5) 

where �����  refers to the location at time � , �M%N$���  and �bc&N$��� are the place of optimum and worst individuals in 
the population at � time, and the parameters . and a switch the 
exploitation and exploration performance of the model. 

Algorithm 1: Pseudocode of DAOA 

1: Set parameters of the optimization  

   problem 

2: Produce an arbitrary initial solution 

3: Estimate current solution 

4: Repeatedly change solution parameters 

5: Check union measures to select if 

   the algorithm has united 

6: If the algorithm has united, stop, or 

   else return to Step 2. 

 
In the DAOA-FS method, the objectives are assimilated 

into a single objective so that a predetermined weight detects 
each objective importance [22]. Here, an FF is utilized that 
incorporates both FS objectives: 

d����ee��� = _ ⋅ g��� + h �1 − |j||k|*  (6) 

In (6), the fitness value of the subset is represented as d����ee(�). The error rate of the classifier by using the factors 
selected in the � subset is denoted by g���. The feature count 
chosen and the new feature count from the dataset are |l| and |�|, respectively, the classifier error weight and the reduction 
ratio are _ and h, where _ ∈ [0,1] and h = �1 − _�. 

C. ID utilizing SDBN 

The SDBN model employs DBNs for ID, employing a 
multi-layered probabilistic structure with parameters for model 
learning. DBNs consist of a Visible Layer (VL) and a Hidden 
Layer (HL), where the HL captures the distribution of visible 
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variables, and the layers are symmetrically connected, though 
not interlinked within the same layer. The hierarchical 
processing of stacking RBM is utilized to create the DBN 
model. RBM is used for encoding the joint probability 
dispersion via the energy function, the noticeable data is p, the 
hidden data is ℎ, and r is the weight: 

g�p, ℎ, s� =  

− ∑ ∑ r�/ / � p�ℎ/ − ∑ a��u� � p� − ∑ a/�W� / ℎ/  (7) 

v�p, ℎ|s� =  w-x �"y�u,W|z�{|}{~}w-x �"y�u�,W�|z�   (8) 

The rules are presented for updating the primary state so 
that any update provides a low-energy state and finally settles 
into a balance: 

v�p� = 1|ℎ, s� = �?∑ r�/ / ℎ/ + a��u�E  (9) 

v�ℎ� = 1|p, s� = �?∑ r�/ � p� + a/�W�E  (10) 

The VL receives the input data to train the RBM model, 
adjusting the s  parameter to maximize the likelihood of the 
observed data, thereby enhancing the model's ability to 
generate accurate data. A Contrastive Divergence (CD) model 
trials the HL's new value with the existing input to provide an 
entire sample �p� $ , ℎ� $ �. Moreover, it generates samples 
for the VL and then for the HL. The model sample �p�c�%� , ℎ�c�%�� is used to update the weights by: 

�r�/ = �?p�,� $ ℎ/,� $ − p�,�c�%�ℎ/,�c�%�E (11) 

Stacked DBNs excel in unsupervised feature learning and 
are widely used in signal processing and image recognition, 
benefiting from their distributed and hierarchical 
representations. Pretraining and fine-tuning layers for specific 
tasks enhance their versatility in machine learning applications. 

D. Hyperparameter Tuning Using BSA 

Finally, the hyperparameters of the SDBN method were 
chosen using BSA. The BSA model pretends the bird's 
performance in vigilance, foraging, and flight [23]. This 
technique consists of four different foraging mechanisms. The 
BSA model was chosen due to its effective balance between 
exploration and exploitation, enabling it to effectively navigate 
complex search spaces and find optimal parameter settings. Its 
biologically inspired model improves adaptability and 
convergence speed, making it suitable for fine-tuning models 
across various scenarios. 

1) Foraging Behavior 

Each agent forages for food based on its location and the 
swarm's optimal position, as illustrated in: 

��,/�$<�� = ��,/$ + ?v�,/ − ��,/$ E × � × �.����, 1� +    ?�/ − ��,/$ E × � × �.���0, 1�   (12) 

whereas � and � denote the social and cognitive coefficients, �.���0, 1�  creates a random real amount among �0, 1� , �/ 

refers to the best location attained by the swarm, and v�/ 

denotes the preceding location of �$Wagent. 

2) Vigilance Behavior 

The agent's effort to move to the swarming center is 
formulated by:  

��,/�$<�� = ��,/$ + ���?r�% #,/ − ��,/� E × �.���0, 1� +         �
?v�,/ − ��,/$ E × �.���−1,1�   (13) 

�� = .� × ��v �− ���8,������$<= × �*  (14) 

�
 = .
 × ��v �� ���8,�"���8,�����8,�"���8,�<=�� × k×���8,������$<=� (15) 

where .� and .
 fall in [0, 2], � represents a random number in 

[1, �] such that � ≠ �, vd��/ denotes the optimal value of the �$W  agent, ���d��  signifies the total fitness of the swarm, ��.�/  is the average position in the X$W  dimension, and Y 

prevents division errors. The ��  product must not exceed 1, 
and �
  indicates the interference effect affecting the swarm's 
center. 

3) Flighting Behavior 

Birds fly to new areas to avoid risks and find food, with 
some seeking new patches while others use existing ones. This 
behavior is calculated by: 

��,/�$<�� = ��,/$ + �.����0, 1� × ��,/$   (16) 

��,/�$<�� = ��,/$ + ?��,/$ − ��,/$ E × dD × �.����0, 1� (17) 

where dD , ranging from 0 to 2, denotes the next producer. 
Fitness selection is crucial in BSA. The encoder computes 
candidate performance, with accuracy values assisting as initial 
conditions for constructing an FF. 

d����ee =  max �O�    (18) 

O = �;�;<�;     (19) 

where �O  and dO  denote the true and false positives, 
respectively. 

IV. RESULTS AND DISCUSSION 

The DAOADL-IDS approach was tested using the dataset 
in [24]. The DAOADL-IDS approach selected 16 features out 
of 23. The simulation was performed by employing Python 
3.6.5 on a PC with an i5-8600K CPU, 250GB SSD, GeForce 
1050Ti 4GB, 16GB RAM, and 1TB HDD. The parameters 
include a learning rate of 0.01, ReLU activation, 50 epochs, a 
dropout of 0.5, and a batch size of 5. 

TABLE I.  DATASET DETAILS 

Type of data Instances 

Normal 340066 

Blackhole 10049 

Grayhole 14596 

Flooding 3312 

Scheduling Attacks 6638 

Overall Instances 374661 

 
Table II compares the DAOADL-IDS approach with recent 

approaches [25-27]. Based on .���  , the DAOADL-IDS 
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model presents higher a .���   of 99.68% while the KNN, 

C4.5, CART, RBN, RF, FFNN, and RNN models exhibited 
lower values of 99.52%, 98.96%, 97.50%, 97.85%, 96.56%, 
96.67%, and 94.95%, respectively. According to v���# , the 
DAOADL-IDS model achieved a higher v���#  of 92.18% 
while the KNN, C4.5, CART, RBN, RF, FFNN, and RNN 
models achieved 91.38%, 89.22%, 91.19%, 89.66%, 89.47%, 
91.90%, and 89.69%. With ���.� , the DAOADL-IDS 
technique achieved a greater ���.�  of 98.11% while the KNN, 
C4.5, CART, RBN, RF, FFNN, and RNN methods achieved 
96.56%, 90.55%, 94.85%, 92.09%, 90.71%, 92.80%, and 
93.23%. On dN¡c&% , the DAOADL-IDS technique achieved 
95% while the KNN, C4.5, CART, RBN, RF, FFNN, and RNN 
methods achieved 93.59%, 92.63%, 93.19%, 95.90%, 94.80%, 
91.23%, and 92.16%, respectively. 

TABLE II.  RELATIVE EVALUATION OF THE DAOADL-IDS 
MODEL WITH OTHER METHODS 

Model ¢££¤¥ ¦§¨£© ª¨£«¬ ­®£¯§¨ 

DAOADL-IDS 99.68 92.18 98.11 95.00 

KNN 99.52 91.38 96.56 93.59 

C4.5 98.96 89.22 90.55 92.63 

CART 97.50 91.19 94.85 93.19 

RBN 97.85 89.66 92.09 90.95 

RF 96.56 89.47 90.71 94.80 

FFNN 96.67 91.90 92.80 91.23 

RNN 94.95 89.69 93.23 92.16 

 
These results demonstrate the improved effectiveness of the 

DAOADL-IDS method. 

V. CONCLUSION 

This study introduced the novel DAOADL-IDS method to 
improve security in WSNs. The aim was to detect and classify 
intrusions in WSN. The DAOADL-IDS technique utilizes Z-
score data normalization, DAOA-FS, SDBN-based 
classification, and BSA-based parameter tuning. The 
DAOADL-IDS technique employs the DAOA-FS method to 
select a better feature set. The SDBN model is used for the ID 
process. Finally, the hyperparameter selection of the SDBN 
model is performed using BSA. A widespread experimental 
analysis of the DAOADL-IDS technique was performed on a 
benchmark dataset to validate its ID performance. The 
performance validation of the DAOADL-IDS technique 
showed a superior accuracy of 99.68% compared to existing 
techniques under various measures. The DAOADL-IDS model 
may face scalability and parameter sensitivity issues, with 
future work needed to address these challenges and enhance 
adaptability to dynamic environments. 
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