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ABSTRACT 

This study presents a nonlinear camera calibration approach based on combining genetic and simulated 

annealing algorithms. This is a global optimization technique, which combines simulated annealing with 

genetic algorithms to find the optimal camera's intrinsic and extrinsic parameters. Since this matter is 

considered an optimization problem by several studies, a novel hybrid approach was developed and 

studied based on two powerful nature-inspired techniques to find the intrinsic and extrinsic parameters of 

the camera. Numerous experiments were conducted to evaluate the efficiency of the proposed approach. 

The results demonstrate that the proposed hybrid approach is robust, reliable, and accurate. 

Keywords-camera calibration; genetic algorithm; simulated annealing; optimization; fitness function; radial 

distortion  

I. INTRODUCTION  

The camera calibration process in 3D image processing and 
graphics refers to modeling the image formation operation, that 
is, determining the connection between the spatial coordinates 
of a point and its corresponding position in the camera image 
[1-6]. The geometric calibration of a camera involves 
identifying the mathematical relationship that exists between 
the 3D coordinates of the points of the scene and the 2D 
coordinates of their projection in the image. 3D reconstruction 

[7-8], recognition, object localization, dimensional control of 
parts, and environmental reconstruction for mobile robot 
navigation are applications of artificial vision that begin with 
the camera calibration stage.  

Different camera calibration methods exist, which fall into 
two categories, analytical techniques and those based on 
metaheuristic algorithms [9]. This study falls into the second 
group based on metaheuristic algorithms. This type formulates 
camera calibration as a problem of optimizing a cost function. 
This article focuses on methods that use the Genetic Algorithm 
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(GA) [10-11] and the Simulated Annealing algorithm (SA) 
[12]. GA belongs to the category of evolutionary algorithms, as 
they are auto-adaptive stochastic search methods [10]. A GA 
creates new people using selection, crossover, and mutation 
operators. It is a global search technique that has been 
effectively used to solve a variety of situations. SA is a 
probabilistic metaheuristic used to approximate global 
optimization in large search spaces, particularly in discrete 
environments [12]. It is effective in finding global optima 
among numerous local optima and can outperform methods 
such as gradient descent when estimating a global solution is 
more important than finding an exact local one. SA, inspired by 
the natural annealing process in metals, is widely used for its 
ability to escape local minima.  

GA-SA, or genetic algorithm-simulated annealing, is a 
hybrid algorithm that combines the best features of both GA 
and SA to offer a novel fast global optimization search method. 
The neighborhood structure in the search process can be 
enhanced by the GA-SA, which also enhances the range of 
values that can be searched. This study discusses the problem 
of nonlinear camera calibration and formulates it as an 
optimization problem. For this purpose, a combined Genetic 
Algorithm Simulated Annealing (GASA) algorithm was 
developed. By improving the results of the camera parameters, 
this method seeks to reduce the reprojection error. In the 
context of camera calibration, it is also demonstrated how the 
integration of distortions influences the cost function by 
comparing the camera calibration with and without distortion. 
Furthermore, GASA was compared to other existing methods. 
The acquisition of a reliable assessment of the extrinsic and 
intrinsic parameters of the camera was made possible by the 
ability of the proposed technique to converge quickly to an 
ideal result and avoid local minima. This study presents several 
important contributions to the field of camera calibration. The 
main contributions are as follows:  

 The proposed method can be applied to the calibration 
problem regardless of the camera model (i.e., whether the 
camera model has distortions or not).  

 Only an image of the target is needed to estimate the 
camera parameters. 

 The combination of the two algorithms takes advantage of 
the complementary strengths of each method to offer a 
more efficient optimization. The GA widely explores the 
solution space by generating a diversity of candidates, 
while the SA refines these solutions by avoiding local 
minima and converging to more precise optima. This 
combination improves the quality of the solutions and 
accelerates convergence. 

II. BACKGROUND 

A. Camera Model 

Camera calibration involves developing equations that 
describe the relationship between the 3D coordinates of known 
feature points and their corresponding 2D coordinates in an 
image. By solving these equations, intrinsic and extrinsic 
camera parameters are obtained. Figure 1 shows the frequently 
used pinhole model 

 

Fig. 1.  The pinhole imaging model. �� � �� , ��, ��  is the world coordinate system, � � �, 	 
is the image coordinate system, and �
 � �
 , �
 , �
  is the 
camera coordinate system. In line with this model, the 
following formula can be used to convert a point � in the world 
coordinate system to the pixel coordinate system �′: ��~�����     (1) 

Intrinsic parameters describe the camera's optical and 
geometrical properties, including the center of the image 
represented by ���, 	�� (principal point), and the effective size 
of pixels represented by ���, ��� . The mathematical 
representation of the camera's intrinsic parameters is given by 
the following matrix: 

�� � ��� 0 �� 00 �� 	� 00 0 1 0�   (2) 

where �� � �� �� , �� � ���� , ��  is the focal length, and �� 
and ��  represent the scaling factors. Regarding the extrinsic 
matrix �� , the transformation from 3D world coordinates to 
camera coordinates is defined by a rotation matrix  , and a 
three-element translation vector, !, as follows: 

�� � �"## "#$ "#%"$# "$$ "$%"%# "%$ "%%� . �'(')'* �   (3) 

Using (2) and (3), the transformation matrix �  can be 
reformulated as: 

� � ��� 0 �� 00 �� 	� 00 0 1 0� . �"## "#$ "#%"$# "$$ "$%"%# "%$ "%%� . �'(')'*� (4) 

The following equation can be deduced: 

+,�,�, -  � ��� 0 �� 00 �� 	� 00 0 1 0� . ."## "#$ "#% '("$# "$$ "$% ')"%# "%$ "%% '*0 0 0 1 / . .������1 / (5) 

and the following equation can be obtained [13]: 

0� � �� 122345612738561293:56;<192345619738561993:56;= > ��	 � �� 172345617738561793:56;?192345619738561993:56;= > 	�   (6) 

The relationship between an object's 3D coordinates and 
their corresponding 2D coordinates on an image is described by 
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the condition of collinearity, which ensures that the camera's 
projection center, the object's points, and the image's points are 
all oriented on the right. 

B. Genetic Algorithm 

GA [10] is part of evolutionary algorithms and aims to 
approximate solutions to optimization models and search 
problems. It is a bioinspired optimization approach that 
replicates evolutionary processes by randomly selecting new 
individuals from the current population each time. Figure 2 
presents the flowchart of the GA. 

 

 
Fig. 2.  Flowchart of GA. 

The application of these genetic principles uses three 
fundamental evolution operators: 

 Selection: This involves choosing the most suitable 
individuals from the population based on their adaptation to 
the problem. 

 Crossover: Combining traits from selected individuals to 
create new solutions. 

 Mutation: Introduces random changes to an individual's 
traits to explore new potential solutions. 

By leveraging these principles and operators, GAs 
iteratively evolve populations of solutions toward increasingly 
optimal approximations of the problem's solution. 

C. Simulated Annealing 

SA [12] is a probabilistic optimization algorithm inspired 
by the annealing process in metallurgy, where materials are 
heated and then cooled slowly to eliminate defects and reduce 
the strength of the process. It is easy to implement and applies 
to various optimization problems. However, it can be resource-
intensive due to the high number of iterations required, and its 
efficiency strongly depends on the chosen parameters and 
cooling schedule. The main considerations are explained as 
follows. 

 Initial State ,�: The starting point of the algorithm. 

 Energy Function ��,�: A function that evaluates the cost or 
quality of a solution ,.  

 Neighbor Function @�,� : A function that generates a 
neighboring solution ,′ from the current solution ,. 

 Temperature !: A parameter that controls the probability of 
accepting worse solutions. It decreases over time according 
to the cooling schedule. 

 Cooling Schedule !A � B ⋅ !A � 1: A function that reduces 
the temperature ! over time, typically a geometric decay 
where B is between 0 and 1. 

 Acceptance Probability: If the new solution ,′ has a lower 
energy, it is always accepted. If ,′ has a higher energy, it is 

accepted with a probability DEF�G∆IJ �
, where K�  is the 

difference in energy between ,′ and ,. 

The SA algorithm is described as follows. 

Algorithm1: Simulated Annealing (SA) !← !� // !� is the temperature initialized  
// at a large value. , ← ,� ; ,� is an initial solution. LD,' ← ,; 
While (, � LD,' && ! N  OPE && ! Q 0) do 
  " ← ,′ where ,�

∈ @�,� // N(s) Indicates  
  // the neighbors of a solution R. 
  B ← "PSTUO �0,1� 
  if ���"�  V ��,� U" B V  DG�W�1� G W�X��/Z�� then 
   , ← " 
  endif 

  if (��,�  V  ��[D,'�) then 
   [D,' ← , 
  endif 

  decrease ! ← B! 
EndWhile 

 

D. Related Works  

There are certain applications for the hybrid algorithm [14], 
in image processing. In [15], the aim was to distinguish ice-
covered cables from their background in low-contrast images, 
which are crucial to monitoring power lines under snow. A 
method was proposed that combined the 2D Otsu algorithm 
with a simulated annealing genetic algorithm, optimized for 
more accurate segmentation and faster search. In [16], an 
innovative hybrid technique was proposed, which combined 
GA with SA to optimize Fractal Image Compression (FIC). 
This technique sought to reduce the complexity of searching 
for range and domain block matching while decreasing the high 
computational time often associated with FIC. 

1) Analytical Methods 

The analytical method using linear perspective projection 
extracts intrinsic and extrinsic parameters but lacks precision 
and robustness. In [17], an adaptable method was proposed for 
rapid camera calibration using a planar pattern viewed in at 
least two different orientations. This approach combined a 
closed-form solution with nonlinear refinement based on 
maximum likelihood criteria. In [18], a novel method was 
proposed for 3D camera calibration using standard TV cameras 
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and lenses. This approach computed the camera's position and 
orientation first, followed by internal parameters such as focal 
length and radial lens distortion, ensuring efficient calibration 
relative to the object reference system. In [19], a four-step 
calibration process was presented. One step was used for fixing 
the distorted picture coordinates and another to account for 
distortion brought on by circular features. An empirical inverse 
model was used for image rectification to address tangential 
and radial distortions, with parameters determined through a 
linear approach. 

2) Metaheuristic Algorithm-based Techniques  

In [20], the standard genetic algorithm's encoding technique 
was improved by using an adaptive adjustment function of 
variable intervals. An improved genetic procedure can ensure 
sufficient encoding precision while maintaining an appropriate 
search space. In [21], the Particle Swarm Optimisation (PSO) 
algorithm was used to determine the intrinsic characteristics of 
the camera. In [22], a new approach was proposed for 
concurrently determining 19 RGB and depth camera calibration 
parameters. Deep optimization can use metaheuristic 
techniques, including GA, PSO, Colonial Competitive 
Algorithm (CCA), and Shuffled Frog Leaping Algorithm 
(SFLA) to estimate all intrinsic, extrinsic, and lens distortion 
parameters of cameras.  

Other studies proposed a complete GASA-based camera 
calibration method to combine the benefits of SA and GA. In 
[23], a complete GASA-based camera elaboration method was 
proposed that combined the benefits of a simulated circuit and 
a GA. This algorithm was applied to optimize the camera 
elaboration results. In [24], an enhanced adaptive genetic SA 
approach based on the sigmoid function was developed to 
increase the accuracy of camera calibration, with a focus on the 
camera imaging problem of the stereo vision system of a 
marine unmanned ship. In [25], a method for camera 
calibration was proposed using a hybrid neural network with a 
rotational weight matrix and a self-adaptive GA algorithm. 
Two types of structured neural networks estimated the extrinsic 
and intrinsic parameters of the camera, accounting for both 
radial distortion and no distortion. Performance was evaluated 
using the 2-norm of the difference between projected retinal 
coordinates and network outputs. The GA adjusted the 
crossover and mutation probabilities, refining the camera 
parameters with radial distortion as the system approached 
equilibrium. 

III. PROPOSED METHOD 

In this study, the camera calibration problem involves the 
optimization of intrinsic and extrinsic parameters of the 
camera. This requires the use of algorithms that are capable of 
efficiently exploring the search space. For this reason, a hybrid 
approach was developed by combining GA and SA. GA is 
capable of performing a global search in large and complex 
solution spaces. It uses mechanisms such as crossover and 
mutation to avoid local minima and maintain a diverse set of 
solutions, thus improving exploration. Moreover, GA can be 
applied to a wide range of optimization problems without 
requiring detailed prior knowledge of the problem. SA is 
another powerful optimization technique known for its 

efficiency in exploring complex solution spaces. It is 
particularly adept at avoiding local minima by using a 
probabilistic approach that allows occasional acceptance of 
worse solutions, which can help escape local optima. GA 
enables a rapid and diverse exploration of the solution space, 
while SA refines this exploration. 

A. Problem Formulation 

Radial distortions are the most common kind caused by 
camera lenses. They are typically taken into account by the 
computer vision scientific community, notably with the work 
of [18]. These distortions use the image coordinates of the 
optical axis center as a reference point, creating a non-linear 
relationship with the distance from this reference point to any 
image point. To achieve high-accuracy calibration, it is 
essential to consider and model lens distortion. The correction 
made to a point ��, 	� , expressed in a frame whose origin 
coincides with the center of the radial distortions, is carried out 
by moving this point by a vector defined by: 

]∆�^ � � _  � `#"$ >  `$"a > ⋯ � � �c ∑ `#"$�e�f#∆	^ � 	 _ � `#"$ > `$"a > ⋯ � � 	c ∑ `#"$�e�f#    (7) 

with: �c � �� � ���     (8) 	c � �� � 	��     (9)  " � √�$ > 	$    (10) 

The use of a single radial distortion coefficient, which is 
frequently mentioned as `#, is an easy and effective method to 
calibrate cameras. This coefficient is used to correct radial 
distortion that deforms objects at the periphery of the camera. 
By focusing on this single parameter, the main distortion can 
be addressed while keeping the model simple, making it 
suitable for many applications. For first-degree radial 
distortion, the following model is obtained [13]: 

0� � �� 122345612738561293:56;<192345619738561993:56;= > �� > `#�c"$
	 � �� 172345617738561793:56;?192345619738561993:56;= > 	� > `#	c"$  (11) 

B. Estimation of Camera Parameters by GASA  

This section presents a GASA algorithm that brings 
together two metaheuristic algorithms, GA and SA, for the 
estimation of camera parameters. The process of estimation 
involves the minimization of a non-linear cost function that 
calculates the Euclidean distance between the estimated and 
real 2D points. The GA and SA stages of GASA are shown in 
Figure 3. First, GA produces the starting population randomly 
using the enhanced hybrid method. After assessing the original 
population, GA applies three genetic operators to the 
population to generate a new population. The top individual is 
sent by GA to SA for additional development after every 
generation. Once the individual has completed their further 
development, SA transfers it to GA for the following 
generation. This procedure keeps going until the algorithm's 
termination condition is satisfied. Based on Figure 3, a detailed 
description of some components related to the two stages is 
provided below. 
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1) Phase I: The GA Optimal Process 

The first population is generated randomly by GA, which 
then applies three genetic operators to the population to create a 
new one. Figure 2 suggests that certain elements related to GA 
should be ascertained, including population size, initial 
population generation, population evaluation, chromosomal 
encoding, genetic operators (selection, crossover, mutation), 
and termination condition. Vector [  contains the camera 
parameters to be optimized:  [ � h ��, 	�, ��, �� , '(, ') , '*, �, i, j, `#k  (12) 

The vector [ is denoted as [ � �[#, [$, … … , [m�, where [m 
represents the previously defined parameters. This vector 
represents a potential solution to the camera calibration 
problem and belongs to the established possible solutions L 

such that L � n[ ∶ [� ∈ q[�G, [�6r; t � 1,2, … , Sv , where the 
limits of the variation interval for each parameter are denoted 

by [�G and [�6. The bounds of each interval are derived from 
our knowledge of the camera, then these bounds are provided 
to the GA as input. For unknown parameters, large bounds can 
be established. The fitness function given by (13) is minimized 
to find the optimal solution for [. Table I shows the range of 
variation for the camera parameters. 

TABLE I.  VARIATION INTERVALS FOR THE CAMERA'S 
PARAMETERS 

Notation Bounds �wxG, wx6� Unit �� q1900,2100r Pixel 	� q1400,1600r Pixel �� q2800,3100r Pixel �� q2800,3100] Pixel � q�~, ~r Radian i q�~, ~r Radian j q�~, ~r Radian '( q�400,400r mm ') q�400,400r mm '* q600,1000r mm `# q�0.5,0.5r - 
 

The primary objective of this approach is to determine the 
intrinsic and extrinsic parameters that give the minimum 
reprojection error using the following cost function: ���� � ∑ q�T��,  ��� � ���² > �D��, ��� � 	��²k3�f#  (13) 

where � is the number of control points, (�� , 	�) are 2D real 
coordinates, and T��, �� ) and D��, �� ) are the 2D estimated 
coordinates, with  t � 1, . . . , @. 

⎩⎨
⎧T��, ��� � �� 122345612738561293:56;<192345619738561993:56;= > �� > `#��_ "$

D��, ��� � �� 172345617738561793:56;?192345619738561993:56;= > 	� > `#	�_"$  (14) 

2) Phase II: The SA's Optimal Process 

The GA will forward its top individual to the SA. The SA 
transfers the best individual to the GA for the following 
generation after the GA has enhanced it. This procedure 
continues until the algorithm's termination condition is 
satisfied. The objective function of SA and GA should be 
merged to minimize the SA objective function. This approach 

maximizes the efficiency of each method and is more effective 
than a nested approach. Certain aspects of the SA algorithm 
should be taken into account when analyzing Figure 3. These 
include selecting the starting temperature, the pace at which the 
temperature decreases as cooling occurs, the number of 
switches at each temperature, and the procedure's termination. 
These elements are crucial to the SA's operation and have to be 
completed with attention. Figure 3 presents the flowchart of the 
proposed method: 

 

 

Fig. 3.  Flowchart of the proposed method. 

 

Fig. 4.  The experimental setup. 



Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 18348-18356 18353  
 

www.etasr.com Khrouch et al.: Monocular Camera Calibration based on Genetic Simulated Annealing Algorithms 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents experiments on real images to 
demonstrate the effectiveness of the proposed approach. As 
shown in Figure 4, the experimental system consists of a 3D 
calibration target with 30×30 mm squares and a CCD camera 
with a resolution of 4000×3000 pixels. Table II presents GASA 
parameters. 

TABLE II.  PARAMETERS OF GASA  

Parameter Value 

Population size 500 

Crossover probability 0.7 

Crossover type Uniform 

Mutation probability 0.1 

Mutation type Uniform 

Selection type Linear-Ranking 

Temperature 1000 

Step size 0.01 

Number of iterations 10000 

 

A. Accuracy of the Proposed Method 

The proposed method aims to minimize the cost function, 
which is crucial as it provides a quantitative measure of the 
calibration's accuracy. By minimizing the cost function, it is 
ensured that the estimated camera parameters produce 
projections that closely match the observed image points. 
Figure 5 presents the evolution of the fitness function. 
Applying the optimization model results in three development 
phases aiming at maximizing population performance. The first 
phase involves an initial period of rapid development. The 
second phase indicates a slowdown in evolution. The third 
phase reveals a stagnation in the cost function. Therefore, it can 
be concluded that GASA converges effectively. Table III 
shows the camera parameters estimated by GASA under 
undistorted and distorted conditions. 

The 2D coordinates ��′, 	′� of the camera parameters are 
derived from the transformation relationship between the 
camera calibration model and the 3D spatial coordinates 

��� , ��, ���. Then, they are compared with the real image 
coordinate ��, 	� obtained by applying the Canny filter [26], 
making it possible to validate the precision and dependability 
of the camera calibration approach. Tables IV and V show the 
real and estimated values of the 2D coordinates of the obtained 
corner under undistorted and distorted conditions, respectively. 
The coordinates �’  and 	’  represent the estimated 2D 
coordinates, although � and 	 denote the real 2D coordinates. 

 

 

Fig. 5.  Evolution of the fitness function of GASA. 

TABLE III.  COMPARISON OF CAMERA PARAMETERS 
UNDER UNDISTORTED AND DISTORTED CONDITIONS 

Parameter 
Value (GASA 

undistorted conditions) 

Value (GASA distorted 

conditions) �� (Pixel) 1.92420. 10% 1.92173. 10% 	� (Pixel) 1.42683. 10% 1.42838. 10% �� (Pixel) 3.04859. 10% 3.04414. 10% �� (Pixel) 3.04336. 10% �. �����. ��� '( (mm) 7.278. 10# 7.165. 10# ') (mm) �1.8641. 10$ �1.8676. 10$ '* (mm) 8.9475. 10$ 8.9116. 10$ � (Radian) 4.3. 10G% 4.3. 10G% i (Radian) �8.3. 10G# �8.0. 10G# j (Radian) 3.19. 10G$ 3.0. 10G$ `# 0 1.1. 10G� 

 

TABLE IV.  RELIABILITY VERIFICATION RESULTS OF GASA (UNDISTORTED CONDITIONS) ����� ����� ����� � ��x����� �’ ��x����� |� � �′| � ��x����� �’ ��x����� |� � �′| 
90 180 0 2334.085 2327.301  6.784 1412.470 1412.338  0.132 

90 240 0 2328.046 2320.542  7.504 1604.887 1602.064  2.823 

150 240 0 2439.601 2431.729  7.872 1600.015 1598.271  1.744 

0 270 90 1914.385 1915.955  1.570 1687.584 1684.328  3.256 

0 120 150 1800.149 1795.537  4.612 1211.735 1210.964  0.771 

0 120 60 2002.865 2003.436  0.571 1203.503 1205.119  1.616 

30 90 0 2196.229 2197.015  0.786 1911.211 1911.397  0.186 

TABLE V.  RELIABILITY VERIFICATION RESULTS OF GASA (DISTORTED CONDITIONS) ����� ����� ����� � ������ � �’ ������ � |� � �′| � ������ � �’ ������ � |� � �′| 
90 180 0 2334.085 2333.734 0.351 1412.470 1412.387  0.083 

90 240 0 2328.046 2327.530 0.516 1604.887 1604.787  0.100 

150 240 0 2439.601 2438.720 0.881 1600.015 1601.136  1.121 

0 270 90 1915.954 1915.955 0.001 1687.584 1687.568  0.016 

0 120 150 1800.149 1799.305 0.844 1211.735 1211.306  0.429 

0 120 60 2002.865 2002.679 0.186 1203.503 1204.150  0.647 

30 90 0 2196.229 2196.000  0.229 1911.211 1911.197  0.014 
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As shown in Tables IV and V, after incorporating 
distortions into the calibration process, the results show 
improved accuracy. Integrating distortion parameters into the 
camera calibration model significantly enhances the precision 
of projecting 3D points onto the image. By including these 
parameters, the model adjusts the projected coordinates to 
compensate for lens-induced distortions, thereby minimizing 
deviations between the projections and the actual point 
locations.  

B. Comparison with Other Methods 

To evaluate the precision and performance of the proposed 
method, eight images of 4000×3000 pixels of a 3D 
checkerboard were simulated. This target was projected onto 
the images from various viewpoints using a CCD camera. The 
reprojection error was then computed after estimating the 
camera parameters using the proposed method. For 
comparison, the methods in [18], [17], and [3] were also 
implemented. Relative error is a crucial indicator for evaluating 
the performance of an algorithm, particularly when it comes to 
quantifying the gap between the values calculated by the 
algorithm and the reference values. In this study, it was 
calculated for intrinsic parameters (�� , �� , ��  and 	� ). The 
results shown in Figure 6, indicate that the proposed method 
exhibits a significantly lower relative error compared to the 
other approaches. This low relative error rate attests to the 
robustness and precision of the proposed algorithm, indicating 
that it can reproduce the parameters with high accuracy relative 
to the reference values. These results confirm the effectiveness 
of the proposed approach in solving the camera calibration 
problem. 

As part of the performance evaluation of the proposed 
method, the reprojection error was calculated for 2D points. 
This error was determined by measuring the difference 
between the coordinates of the points projected by the 
calibrated model and the coordinates of the points observed in 
the images. To make a proper comparison, the errors obtained 
with the proposed method were compared with those obtained 
using [18], [17], and [3]. 

TABLE VI.  REPROJECTION ERRORS COMPARISON 

 Proposed method [3] [17] [18] 

Reprojection error 0.55 0.60 0.71 0.83 

 
Table VI shows that the reprojection errors of the proposed 

method are considerably reduced compared to those of [18], 
[17], and [3]. The results demonstrate that the proposed 
approach is more efficient than the other methods. A key 
advantage of the proposed method is its flexibility, as it can be 
applied to any vision system or camera, ensuring a more robust 
calibration process without system-specific constraints. 
Furthermore, only a single target image is required to estimate 
the camera parameters. The use of the GASA algorithm further 
optimizes the results.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 6.  Results of camera calibration using the proposed approach, Zhang 

[17], Tsai [18], and Merras [3]: (a) Relative error of ��, (b) Relative error of ��, (c) Relative error of �� , (d) Relative error of 	�. 
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Techniques that use metaheuristic optimization algorithms, 
such as the one in [3], generally offer higher precision and 
reliability compared to traditional methods. The method in 
[17], which uses the Levenberg-Marquardt algorithm, requires 
an initial solution to be sufficiently close to the optimal 
solution to ensure effective convergence. Regarding the 
method in [18], it is typically less accurate than the method in 
[17]. In contrast, the proposed method is more precise than the 
one in [3] because it combines the strengths of GA and SA. 
This combination leverages the global search capabilities of 
GA while incorporating the local adjustments provided by SA, 
enhancing the robustness and effectiveness of the results. 

V. CONCLUSION 

This study presented a combined optimization approach 
applied to camera calibration aimed at determining optimal 
parameters. The GASA method helps avoid local optima and 
overcomes the premature convergence of GA. The results show 
that GASA is a promising technique to address complex 
camera calibration optimization problems, improving both 
precision and robustness. This approach surpasses the 
limitations of existing methods by optimizing distortion 
control, using only a single image regardless of the camera type 
or vision system, and leveraging the strengths of both 
algorithms for better convergence. Although this method takes 
longer to compute, it offers a robust solution for estimating 
camera parameters. To improve computation time, the GASA 
algorithm can be enhanced by dynamically adjusting 
parameters such as mutation rate, step size, and simulated 
annealing temperature. 
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