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ABSTRACT 

The Internet of Things (IoT) in healthcare relates to implementing interconnected devices and systems for 

collecting and sharing healthcare information in real time. The integration of IoT in healthcare has the 

potential to enhance patient outcomes, reduce healthcare costs, and improve the efficacy of medical 

services. Electrocardiogram (ECG) is a non-invasive heart monitoring method that has become widely 

accessible due to user-friendly, low-cost, and lead-free wearable heart monitors. However, relying on 

overworked caregivers for manual monitoring is inefficient. This study develops a Comprehensive 

Learning Salp Swarm Algorithm with Ensemble Deep Learning (CLSSA-EDL) technique for ECG signal 

classification in IoT healthcare. The objective of CLSSA-EDL is to detect and classify ECG signals to 

support decision-making in the IoT healthcare environment. The CLSSA-EDL approach employs the 

DenseNet201 feature extraction method, with hyperparameters optimally selected by the CLSSA system. 

For ECG signal detection and classification, an ensemble model using a Stacked Autoencoder (SAE), 

Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM) is utilized. The CLSSA-EDL 

technique was evaluated on a benchmark ECG dataset, achieving an accuracy of 98.7%, sensitivity of 

97.5%, and specificity of 99.1%, demonstrating superior performance compared to recent algorithms. 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19492-19500 19493  
 

www.etasr.com Tounsi et al.: Comprehensive Learning Salp Swarm Algorithm with Ensemble Deep Learning-based … 

 

Keywords-Internet of Things; deep learning; ECG signals; healthcare; ensemble models; parameter tuning 

I. INTRODUCTION  

Researchers investigate ways to reduce human effort using 
Artificial Intelligence (AI) and the Internet of Things (IoT). IoT 
is based on sensors, communication technologies, and data 
processing techniques [1]. A hidden pattern is recognized in the 
input data, and its class is assigned using classification 
techniques. This technology might benefit many fields, 
including agriculture, meteorology, industry, and medicine [2, 
3]. To better serve patients, the healthcare industry is exploring 
concepts such as Medical Cyber-Physical Systems (MCPS) that 
combine digital components, such as networks and software, 
with physical ones, such as sensors and human signals. Sensors 
receive readings from the body and send them across a network 
to be analyzed. The software then takes action, such as sending 
a warning, diagnosing, or even treating the patient to improve 
his health. Due to the high cost of in-hospital care, 
telemedicine, home care, sports activity monitoring, and 
assisted living have gained great interest [4]. Home and mobile 
monitoring of physical activities and vital signs allows health 
to be evaluated remotely at any time [5]. The human body has a 
complicated electromechanical mechanism that enables smart 
healthcare devices to monitor different kinds of biomedical 
signals. The classification of Electrocardiogram (ECG) 
heartbeats is a considerable part of smart healthcare services, as 
it can indicate the presence of many cardiovascular problems. 
Diseases cause defects in the ECG signal [6]. Initial 
identification through an ECG allows for choosing appropriate 
cardiac medication and is extremely significant and useful in 
reducing strokes. 

Critical features are derived from ECG signals to recognize 
heart disease [7]. However, noise is introduced into the ECG 
signal during the data transmission and collection process, 
which has a detrimental effect on diagnosis accuracy. Data 
capitalization is a critical function of the IoT cloud. The IoT 
cloud typically provides a data analysis platform to extract the 
appropriate data from ECG signals. Feature Selection (FS), 
classification, and extraction are the main stages in classifying 
the ECG heartbeat structure. Preprocessing raw ECG signals is 
crucial to reducing different noises. Feature extraction is the 
primary step, where the ECG is processed to acquire attributes 
for detecting arrhythmia. FS aims to select appropriate feature 
subsets of ECG data to achieve superior classification 
performance and provide substantial influence in heart disease 
diagnosis [8]. To solve this issue, a subsystem translates the 
pattern into features that become condensed representations of 
patterns with only significant data [9]. Today, research uses 
optimized FS methods to reduce or optimize attributes and 
eliminate redundant, unrelated, or noisy features. 

Integrating IoT into healthcare systems has significantly 
improved patient monitoring and healthcare delivery. Among 
various healthcare applications, continuous monitoring of 
cardiac health using ECG signals has gained prominence due to 
the increasing prevalence of cardiovascular diseases. 
Traditional ECG monitoring systems rely heavily on manual 
analysis by healthcare professionals, which can be time-
consuming and prone to human error. This study proposes a 

novel Comprehensive Learning Salp Swarm Algorithm with 
Ensemble Deep Learning (CLSSA-EDL) for ECG signal 
classification in a healthcare IoT environment to address these 
challenges. The key contributions of the proposed method 
include: 

 High accuracy: CLSSA-EDL leverages advanced deep 
learning models, such as DenseNet201, for feature 
extraction and an ensemble of Stacked Autoencoder (SAE), 
Gated Recurrent Unit (GRU), and Long Short-Term 
Memory (LSTM) for classification, resulting in superior 
accuracy. 

 Optimized hyperparameters: CLSSA ensures optimal 
selection of hyperparameters, enhancing the performance 
and generalizability of the model. 

 Robustness: The proposed method demonstrates high 
sensitivity and specificity, making it reliable for real-time 
detection and classification of ECG signals. 

 Efficiency: Integration of IoT technology facilitates real-
time data collection and processing, reducing the burden on 
healthcare professionals and improving patient outcomes. 

This study presents the CLSSA-EDL technique for ECG 
signal classification in IoT. The objective of this system is 
mainly to detect and classify ECG signals for decision-making 
in the IoT healthcare environment. To accomplish this, the 
proposed system employs the DenseNet201 feature extraction 
approach and optimally chooses its hyperparameters. For ECG 
signal detection and classification, an ensemble model is used, 
utilizing three DL systems: GRU, LSTM, and SAE. The 
CLSSA-EDL technique was tested using a benchmark ECG 
dataset, and the results of several measures were examined. 

In [10], the optimal ECG features were investigated to 
implement a personal authentication mechanism using 
reinforcement learning. In [11], another user authentication 
mechanism was proposed, based on ECG signals and utilizing 
DL methods. In [12], current ML and Metaheuristic 
Optimization (MHO) were used to detect arrhythmia. In [13], a 
modular 1D-CNN model was proposed for ECG arrhythmia 
analysis in fog-cloud environments. In [14], a novel method 
was introduced for detecting SVCA utilizing ECG signals, and 
the Fixed Frequency Range Empirical Wavelet Transform 
(FFREWT) filter was introduced for multiscale analysis of 
ECG signals. In [15], a new detection technique was presented, 
using raw ECG signals from wearable telehealth mechanisms. 
In [16], an ensemble-oriented classification method combined 
the efficiency of CNNs with bio-inspired and linear methods, 
such as KNN, RF, and SVM. The studies in [17-21] highlight a 
strong emphasis on using advanced computational techniques 
for classification tasks across diverse domains. 

Continuous monitoring of cardiac health using ECG signals 
is crucial due to the increasing prevalence of cardiovascular 
diseases. Various conventional techniques have been developed 
for ECG signal classification, but each has limitations. For 
example, SVMs are sensitive to parameter selection and can be 
computationally intensive, KNN suffers from the curse of 
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dimensionality, leading to decreased performance as the 
number of features increases, Artificial Neural Networks 
(ANNs) are prone to overfitting and can be difficult to 
interpret, making them less suitable for real-time applications, 
and Convolutional Neural Networks (CNNs) require 
substantial computational resources and are challenging to 
deploy in resource-constrained IoT environments. This study 
attempts to address these limitations. The proposed approach 
combines the strengths of various deep learning models and an 
optimization algorithm to achieve high accuracy, robustness, 
and efficiency. Specifically, the proposed method: 

 Utilizes DenseNet201 for effective feature extraction, 
leveraging its ability to capture intricate patterns in ECG 
signals. 

 Employs an ensemble model comprising SAE, GRU, and 
LSTM to enhance classification performance by capturing 
spatial and temporal features. 

 Optimizes hyperparameters using CLSSA, ensuring optimal 
model configuration and improving generalizability. 

 Demonstrates superior performance with an accuracy of 
98.7%, sensitivity of 97.5%, and specificity of 99.1%, 
outperforming recent state-of-the-art methods. 

II. THE PROPOSED MODEL 

The objective of CLSSA-EDL is to detect and classify ECG 
signals for decision-making in the IoT healthcare environment. 
The CLSSA-EDL system encompasses DenseNet201 feature 
extraction, CLSSA-based hyperparameter tuning, and ensemble 
learning-based classification to accomplish this. 

A. Data Preprocessing 

Six image processing parameters were considered to 
prevent data loss and distortion: center crop, hue, gamma, 
saturation, and contrast [22]. 

B. Feature Extraction 

The DenseNet-201 architecture was applied in this study to 
develop a collection of feature vectors. In TL, a pre‐training 
method, previously trained on a larger database for a particular 
task can be exploited for other downstream tasks [23]. The 
DenseNet201 architecture is trained on the ImageNet dataset 
and consists of three transition layers, four dense blocks, max-
pooling, and convolution layers. It increases the data flow 
amongst the layers and allows the method to remove and 
capture the features efficiently, defined as follows: �� = ������� �	, … , �|	��   (1) 

where � shows the layer, and ���, �	,…/��	� denotes the feature 
concatenation. ��  denotes a composite function, which includes 
a 3 × 3 convolutional operation, BN, and ReLU activation. A 
dense block was included in the architecture to adjust the size 
of feature maps. The transition layer performs an 1 × 1 
convolutional layer followed by 2 × 2 avg-pooling. The small 
growth rate has defined the effect of all the layers to include 
new data to the network's incorporated knowledge. 

C. CLSSA-based Hyperparameter Tuning 

CLSSA was used to fine-tune the hyperparameters of 
DenseNet-201. A swarm optimizer approach, introduced by 
SSA, encourages salps to cluster together in water [24]. As a 
starting point, the method introduces a salp population. The �-
salp swarm � is described as a 2D matrix. 

�� =
⎣⎢
⎢⎡�		 ��	 … ��	�	� ⋱ ⋱ ���⋮ ⋱ ⋱ ⋮�	! ��	 … ��!⎦⎥

⎥⎤   (2) 

��	 = %&� + (	��)*� − �*��(� + �*�� (- ≥ 0.5&� − (	��)*� − �*��(� + �*�� (- < 0.5 (3) 

where &3  shows the food location in the jth dimension, ��	 
represents the location of chain salps leader in the jth 
dimension, (� and (- are two random numbers, and �*3 and )*3 
denote the lower and upper limitations of the salps position. 
From this iteration procedure, the key control parameter is (	, 
stabilizing the exploitation and exploration stages, expressed as 
follows: 

(	 = 245 678 9:; <=
    (4) 

where >?@� represents the maximal number of rounds, and A 
denotes the existing iteration. The followers' position can be 
updated using: 

��3 = 	� B ∗ AD?4� + E�AD?4   (5) 

for D ≥ 2, where ��3 denotes the location of the jth salp in the ith 
dimension. E� denotes an initial speed with: 

B = FGHIJKFL        (6) 

where EM�!N� = OOLP�QR , and AD?4 denotes the time. In this work, 

the iteration counts denote the amount of time required.  

At first, in every cycle, the particle population can be 
divided arbitrarily into two groups of equivalent size. Next, 
competition is introduced among the particles from all the 
groups. The particle with the maximum fitness value can be 
declared a winner, and then it can be suddenly developed for 
subsequent iterations. After learning the winner, the loser 
modifies the velocity and location. The mathematical 
expression of the location and velocity of the loser is given as: S�PT	 = U	PS�P + U�P ��VP − ��P� + WU-P��P − ��P� (7) ��PT	 = ��P + S�PT	    (8) 

where A  denotes the existing iteration, U	P ,  U�P ,  U-P  show the 
randomly created vector within �0,1�!, and �VP   and ��P specify 
the winner and loser particles, respectively. �P represents the 
mean location of the existing swarm at A  iteration, and W 
represents the control parameter of �P.  

The winner can be updated based on the SSA, which 
ensures a high‐quality novel searching agent and a simple 
update of the winner. Hence, the competition mechanism 
comprises CL‐SSA, which separates the solution as a loser and 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19492-19500 19495  
 

www.etasr.com Tounsi et al.: Comprehensive Learning Salp Swarm Algorithm with Ensemble Deep Learning-based … 

 

a winner. Next, the competition‐based learning strategy updates 
the loser particle, allowing the loser to explore the search 
space. Finally, SSA updates the winning particle to upgrade 
and enhance all the winning particles. CL‐SSA is initiated by a 
first population of X  individuals. The upper and lower 
boundaries can limit an individual's search space by: 

��3 = �*� + Y@�Z × �)*� − �*�   (9) 

where D  shows the amount of arbitrary candidate solutions D ∈ {1,2, … , �}  from the searching spaces, ^  indicates the 

problem size ^ ∈ {1,2, … , Z}, and ��3 denotes the initial search 
agent. The upper and lower limitations are represented as )*� 
and �*� , respectively. In the CL‐SSA technique, a pairwise 
competition process can segregate the solution into different 
classes of losers and winners. A better fitness level 
characterizes the winner, whereas the defeated party shows a 
lesser fitness level. S�PT	 = U	PS�P + U�P ��VP − ��P� + WU-P��P − ��P�  (10) ��PT	 = ��P + S�PT	    (11) 

where A  represents the existing iteration, U	P , U�P , and U-P  are 
random vectors within �0,1�!, �VP  and ��P represent the winner 
and loser particles, correspondingly, W  denotes the control 
parameter of �P  influence, and �P  specifies the mean 
location of the existing swarm at the A iteration. Furthermore, 
implicit multiplication represents Hadamard's component‐wise 
vector multiplication operation. Then, the loser individual is 
updated, and the SSA upgrades the winner individually. 

�VPT	 = _�*4EA + (	 5`)*3 − �*3a(� + �*3< (- ≥ 0.5
�*4EA − (	 5`)*3 − �*3a(� + �*3< (- < 0.5 (12) 

where �VPT	 signifies the winner's location in the jth dimension, �*3  and )*3 show the lower and upper boundaries, respectively, �*4EA  shows the better location, and (�  and (-  indicate two 
random numbers within �0,1�. The key control parameter is (	, 
stabilizing the exploration and exploitation stages. 

The decreased classification error rate can be an FF, as 
represented in:  �DA�4EE���� = b�@EED�D4YcYYdYU@A4���� =  

    = ef.  fM Q�Fg�NFF�M�R� �!FPN!gRFhfPN� ef.  fM �!FPN!gRF ∗ 100  (13) 

D. Ensemble Classification Model 

In this work, ensemble DL models, such as GRU, LSTM, 
and SAE, perform the ECG signal classification process. Using 
distinct methods, majority voting can be assumed to be easier 
and more productive when integrating the forecasts achieved. 
Every class vote can be counted on the input classification, and 
the majority class can be chosen [25].  

Assume a trained set and group of classifiers as ℎ	, ℎ�, . . . , ℎ!, and each classifier is trained on a training set. 
Thus, the classifier makes predictions. The classifier ℎ	 creates 
the prediction j	, classifier ℎ� prediction j�, and classifier ℎ! 
prediction j!. Next, voting is used to reach the last prediction. 
Voting decreases �-classes forecasts to a single data point as a 

single class. This process can be applied to get the last vote, 
expressed in: jM =  ?dZ4{ℎ	���, ℎ����, . . . , ℎ!���}  (14) 

Considering ℎ����  =  j����, applying majority voting is the 
same as asking a collection of experts to vote for a certain 
decision. In this method, the possibility of making any 
prediction errors can be negligible. 

1) GRU 

GRU is a simplified and optimized version of LSTM. The 
GRU approach improves the input and forget gates in the 
LSTM model by single update gates [26]. The GRU model has 
numerous benefits over LSTM, involving improved forecasting 
performance, reduced training parameters, and fast learning 
time.  YP = k��PlOm + �P	lnm + *m�   (15) oP = k��PlOp + �P	lnp + *p�  (16) �qP =  tanℎ��PlnO + UP ⊙ �P	lnn + *n� (17) �P = �1 − oP� ⊙ �P	 + oP ⊙ �qP  (18) 

where ⊙  represents the component‐wise multiplication,  k 
denotes a sigmoid activation function with the output ranging 
within [0, 1], �P	 is previous data, UP indicates the reset gate, oP denotes the update gate, and �qP  denotes a candidate's hidden 
state. 

2) LSTM 

LSTM is a variant of RNNs, which can be integrated with 
the concepts of gates and memory cells to store and control the 
data flow [27]. The input data flow passes among ℎP	 and �P, 
and by managing the forget, input, and output gates of the 
memory unit, and (P	  and ℎP	  are upgraded to (P  and ℎP , 
obtaining the neuron output. The calculations are given as: �P = EDv?dDZ`wM ⋅ �ℎP	��P� + *Ma  (19) 

DP = EDv?dDZ�⋅ �ℎP	��P� + *��   (20) 0P = EDv?dDZ�w� ⋅ �ℎP	� �P� + *��  (21) (̃P =  tanh �wg ⋅ �ℎP	��P� + *g�   (22) (P = �P ⊙ (P	 + DP ⊙ (P   (23) ℎP = 0P ⊙ tanh �(P�    (24) 

where tanh  and k  define the tangent and sigmoid  activation 
functions, correspondingly. The outcome range of tanh  is 
within �−1,1� to normalize the output. The outcome level of 
sigmoid among 0 and 1 is applied to simulate the gate opening. ℎP ∈ �−1,1�n indicates the Hidden Layer (HL) vector. �P ∈ ℝ� 
denotes the input vector of the LSTM model, DP ∈ �0,1�n 
represents the input or upgrade gate activation vector,  �P ∈�0,1�n is the activation vector of the forget gate, OP ∈ �0,1�n 
represent the activation vector of the output gate, (P} ∈ �−1,1�n 
represents the input activation vector of cells, and (P ∈ ℝn 
signifies the cell state vector. 
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3) SAE Model 

SAE is an autoencoder configuration that increases the 
sparsity boundary for the loss function. Simultaneously, some 
HL nodes are active, so the whole autoencoder network is 
designed sparsely [28]. Let us use the sigmoid HL activation 
function. The HL output uses one to represent an active node 
and zero for an inactive node. According to this, the ~� 
dispersion is established to measure the similarity among the 
average activation result of a specific HL node and sparsity � 
as: 

~���|���3a = � log ���� + �1 − ��log 	�	���  (25) 

��3 = 	Q ∑ @3Q��	 ����    (26) 

where ��3 signifies the average sparse activation, �3 refers to the 
trained samples, and ? denotes the count of trained samples. @3��� stands for the response output of the jth node of the HL to 
the ith sample. 

Usually, the sparsity coefficient �  is fixed to 0.1. The 
higher the ~� divergence, the larger the variance among � and ��3 , and a ~� divergence equal to 0 means that the two have 
been entirely equivalent. The ~� dispersion is the additional 
consistent term to use in the autoencoder function for 
constraining the sparse rows of the whole autoencoder: ���c �l, *� = ����l, *� + � ∑ ~�Q3�	 ��|���3a (27) 

where � implies the weighted coefficient of sparse constraints. 

III. RESULTS AND DISCUSSION 

This section examines the results of the CLSSA-EDL 
method on the MIT–BIH Arrhythmia Database [29-34]. The 
dataset comprises 6000 instances with three classes, as shown 
in Table I. 

 

 

TABLE I.  DATASET DETAILS 

Classes No. of Instances 

Left Bunch Bundle Block (LBBB) 2000 
Normal (N) 2000 

Right Bunch Bundle Block (RBBB) 2000 
Total Number of Instances 6000 

 
Figure 1 shows the confusion matrices of the CLSSA-EDL 

system at 80:20 TRP/TSP on ECG signal classification. Table 
II and Figure 2 show the ECG signal classification analysis 
using the CLSSA-EDL method at 80:20 TRP/TSP. The 
CLSSA-EDL system effectively classified ECG signals under 
the three class labels. For 80 % of TRP, the CLSSA-EDL 
system achieved average @(()� of 98.76%, �Y4(! of 98.17%, E4�E�  of 98.14%, E�4(� of 99.07%, and &FgfmR  of 98.15%. For 
20% of TSP, the CLSSA-EDL system achieved average @(()� 
of 99.33%, �Y4(! of 98.99%, E4�E�  of 99%, E�4(� of 99.50%, 
and &FgfmR  of 98.99%. Figure 3 illustrates the @(()�  of the 
CLSSA-EDL system in training and testing, indicating that the 
CLSSA-EDL technique obtains higher @(()�  as epochs 

increase. The maximal validation @(()�  shows that CLSSA-
EDL attained proficiency with 80:20 of TRP/TSP. 

TABLE II.  ECG SIGNAL CLASSIFIER OUTCOME OF CLSSA-
EDL SYSTEM ON 80:20 OF TRP/TSP 

Class  ����� ����� ����� ����� ��� �� 

Training Phase (80%) 

Left Bunch Bundle Block 
(LBBB) 

98.96 98.19 98.68 99.09 98.44 

Normal (Normal) 98.90 99.42 97.23 99.72 98.31 
Right Bunch Bundle Block 

(RBBB) 
98.44 96.89 98.51 98.40 97.70 

Average 98.76 98.17 98.14 99.07 98.15 
Testing Phase (20%) 

Left Bunch Bundle Block 
(LBBB) 

99.75 99.26 100.00 99.62 99.63 

Normal (Normal) 99.17 99.50 98.05 99.75 98.77 
Right Bunch Bundle Block 

(RBBB) 
99.08 98.20 98.96 99.14 98.58 

Average 99.33 98.99 99.00 99.50 98.99 

 

 
Fig. 1.  Confusion matrices of CLSSA-EDL system (a) 80% of TRP and (b) 20% of TSP. 
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Fig. 2.  Average results of CLSSA-EDL with 80:20 TRP/TSP. 

 
Fig. 3.  Accuracy of CLSSA-EDL algorithm under 80:20 of TRP/TSP. 

Table III and Figure 4 show the ECG signal classification 
results of the CLSSA-EDL approach at 70:30 TRP/TSP. The 
results show that CLSSA-EDL obtained effectual classification 
of ECG signals under 3 class labels. Based on 70% of TRP, the 
CLSSA-EDL method attained average @(()�  of 97.43%, �Y4(!  of 96.17%, E4�E�  of 96.13%, E�4(�  of 98.07%, and &FgfmR  of 96.14%. On 30% of TSP, the CLSSA-EDL system 
attained average @(()� of 98.04%, �Y4(! of 97.05%, E4�E�  of 
97.07%, E�4(� of 98.53%, and &FgfmR  of 97.05%. 

TABLE III.  ECG SIGNAL CLASSIFIER OUTCOME OF CLSSA-
EDL SYSTEM ON 70:30 OF TRP/TSP  

Class  ����� ����� ����� ����� ��� �� 

Training Phase (70%) 

Left Bunch Bundle Block 
(LBBB) 

97.40 95.03 97.49 97.36 96.25 

Normal (N) 97.48 97.35 94.97 98.72 96.15 
Right Bunch Bundle Block 

(RBBB) 
97.40 96.14 95.93 98.12 96.03 

Average 97.43 96.17 96.13 98.07 96.14 
Testing Phase (30%) 

Left Bunch Bundle Block 
(LBBB) 

98.00 96.01 97.71 98.13 96.85 

Normal (N) 98.17 98.32 96.22 99.16 97.26 
Right Bunch Bundle Block 

(RBBB) 
97.94 96.82 97.28 98.30 97.05 

Average 98.04 97.05 97.07 98.53 97.05 

 
Fig. 4.  Average results of CLSSA-EDL with 70:30TRP/TSP. 

Figure 5 shows the @(()�  of CLSSA-EDL through the 
training and validation with 70:30 TRP/TSP, indicating that it 
achieved higher accuracy values over increasing epochs. 
Moreover, the increased validation @(()�  over the training @(()� shows that CLSSA-EDL is efficient at 70:30 TRP/TSP. 
Figure 6 shows the loss investigation of the CLSSA-EDL 
method during training and validation with 70:30 TRP/TSP. 
These results show that the CLSSA-EDL approach reaches 
closer training and validation loss values. Thus, the CLSSA-
EDL method learns efficiently with 70:30 of TRP/TSP. 

 

 
Fig. 5.  �(()� curve of CLSSA-EDL with 70:30 TRP/TSP. 

 
Fig. 6.  Loss curve of CLSSA-EDL with 70:30 of TRP/TSP 
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Table IV and Figure 7 show an overall comparison of the 
CLSSA-EDL with existing techniques [35]. The results show 
that SVM, ANN, and CNN models obtained lower 
performance with the lowest classification results, while the 
LSTM-CNN and modified U-Net models had better 
classification performance. The ResNet model achieved better 
results with @(()�  of 99.06%, E4�E�  of 93.21%, E�4(�  of 
98.97%, and &FgfmR  of 95.81%. However, the CLSSA-EDL 
method attained better performance with higher  @(()�  of 
99.33%, E4�E�  of 99%, E�4(�  of 99.50%, and &FgfmR  of 
98.99%. Therefore, the CLSSA-EDL technique can be 
employed to produce an accurate classification process. 

TABLE IV.  COMPARISON ANALYSIS OF CLSSA-EDL WITH 
OTHER APPROACHES   

Methods ����� ����� ����� ��� �� 

SVM 87.45 90.95 96.70 82.19 
ANN 89.49 92.82 97.18 84.98 
CNN 91.92 94.40 97.95 88.93 

LSTM-CNN 98.10 97.50 98.95 89.30 
ResNet 99.06 93.21 98.97 95.81 

Modified U-Net 97.32 94.44 98.78 89.96 
CLSSA-EDL 99.33 99.00 99.50 98.99 

 

 
Fig. 7.  Comparison of CLSSA-EDL model with other approaches. 

IV. DISCUSSION 

Table IV compares the proposed CLSSA-EDL technique 
with existing methods, including SVM, ANN, CNN, LSTM-
CNN, ResNet, and Modified U-Net. The comparison is based 
on four key performance metrics: accuracy, sensitivity, 
specificity, and F-score. An expanded analysis and discussion 
of the results follow, comparing the proposed with existing 
models. 

A. SVM 

The SVM model achieved 87.45% @(()�, 90.95% E4�E�, 
96.70% E�4(�, and 82.19% &FgfmR. SVMs are powerful linear 
classifiers that can handle non-linear data using kernel 
functions. However, their performance is limited by the choice 
of kernel and parameters, often insufficient to capture complex 
patterns in ECG signals. SVMs cannot handle high-
dimensional and highly non-linear data effectively. They also 

require extensive parameter tuning and are not robust to noise. 
The proposed CLSSA-EDL model overcomes these limitations 
using an ensemble of deep learning models that can capture 
linear and non-linear relationships more effectively. 

B. ANN Model 

The ANN model achieved 89.49% @(()�, 92.82% E4�E�, 
97.18% E�4(�, and 84.98% &FgfmR. ANNs, with their ability to 
learn non-linear representations, perform better than SVMs. 
However, their shallow architecture limits their capacity to 
learn complex hierarchical features. ANNs are prone to 
overfitting, especially with small datasets, and require careful 
regularization and tuning. The CLSSA-EDL method, with its 
comprehensive learning strategy, enhances generalization and 
mitigates overfitting by leveraging multiple models and 
optimized hyperparameters. 

C. CNN 

The CNN model achieved 91.92% @(()�, 94.40% E4�E�, 
97.95% E�4(� , and 88.93% &FgfmR . CNNs excel at extracting 
spatial features from data, making them well-suited for image 
and signal classification tasks. Their ability to capture local 
dependencies in ECG signals contributes to their improved 
performance. However, CNNs may struggle with temporal 
dependencies and require large amounts of labeled data to 
avoid overfitting. CLSSA-EDL addresses these limitations by 
incorporating LSTM networks within the ensemble to capture 
both spatial and temporal features, resulting in better 
performance on ECG signal classification. 

D. LSTM-CNN 

The LSTM-CNN model achieved 98.10% @(()�, 97.50% E4�E�, 98.95% E�4(�, and 89.30% &FgfmR . The combination of 
LSTM and CNN leverages the strengths of both models, 
capturing spatial features with CNNs and temporal patterns 
with LSTMs. This hybrid approach significantly enhances 
performance. However, this approach has increased complexity 
and computational cost due to the integration of two different 
types of neural networks. CLSSA-EDL enhances this approach 
by optimizing the ensemble model's hyperparameters and 
architecture, ensuring a more efficient and accurate 
classification process. 

E. ResNet 

The ResNet model achieved 99.06% @(()� , 93.21% E4�E� , 98.97% E�4(� , and 95.81% &FgfmR . The deep 
architecture and skip connections of ResNet help learn 
complex patterns and mitigate the vanishing gradient problem, 
leading to high performance in classification tasks. However, 
ResNet requires significant computational resources and can be 
prone to overfitting if not properly regularized. The proposed 
CLSSA-EDL technique, with its ensemble approach, provides 
similar benefits in terms of deep feature extraction while also 
enhancing robustness and generalization through 
comprehensive learning and optimization strategies. 

F. Modified U-Net 

The  modified U-Net model achieved 97.32% @(()� , 
94.44% E4�E� , 98.78% E�4(� , and 89.96% &FgfmR . U-Net, 
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designed for image segmentation, captures detailed features 
and boundaries well. Its architecture is beneficial for tasks 
requiring precise localization and segmentation. Although it is 
effective for segmentation, it may not be as efficient for 
classification tasks where deep feature hierarchies are more 
crucial. CLSSA-EDL leverages the strengths of deep classifiers 
such as ResNet and ensemble learning, providing a more 
targeted and efficient approach for ECG signal classification. 

G. Proposed CLSSA-EDL 

The proposed CLSSA-EDL model achieved 99.33% @(()�, 99.00% E4�E� , 99.50% E�4(�, and 98.99% &FgfmR . The 
CLSSA-EDL technique integrates SSA with ensemble deep 
learning, optimizing hyperparameters and model structures to 
achieve superior performance. Its ability to adapt and fine-tune 
the ensemble model ensures high accuracy, sensitivity, 
specificity, and F-score. This approach enhances exploration 
and exploitation during optimization, leading to better 
solutions. In addition, its ensemble approach aggregates 
predictions from multiple models, improving robustness and 
reducing the risk of overfitting. Furthermore, its 
hyperparameter optimization ensures that the model is fine-
tuned for the specific task, maximizing performance. The 
superior performance of CLSSA-EDL across all metrics 
demonstrates its effectiveness and robustness compared to 
existing methods. Its ability to capture spatial and temporal 
features, combined with optimized hyperparameters and model 
structures, makes it particularly well-suited for ECG signal 
classification. 

H. Relationship Between Research Survey and Comparison 
Targets 

This study serves several critical purposes: 

 Identifying state-of-the-art techniques: Key models were 
identified, which represent the state-of-the-art ECG signal 
classification. These models were chosen as benchmarks for 
comparison to ensure that the evaluation is comprehensive 
and relevant. 

 Highlights gaps and challenges: The survey reveals the 
strengths and weaknesses of existing methods, guiding the 
development of the CLSSA-EDL technique to address 
them. For instance, the proposed method addresses issues 
such as overfitting in ANN models, the complexity of 
LSTM-CNN hybrids, and the computational demands of 
ResNet. 

 Provides a baseline for comparison: The literature surveyed 
establishes a baseline for performance metrics such as 
accuracy, sensitivity, specificity, and F-score. This baseline 
is essential to demonstrate the improvements achieved by 
the CLSSA-EDL technique. 

 Justifies methodological choices: This study highlighted 
effective strategies and techniques used in previous studies. 
For example, combining LSTM and CNN in hybrid models 
inspired the inclusion of LSTM networks in the proposed 
ensemble approach. 

V. CONCLUSION 

This study presents a novel technique, called CLSSA-EDL, 
for ECG signal classification in the IoT healthcare 
environment. The CLSSA-EDL approach achieves remarkable 
performance with an accuracy of 98.7%, sensitivity of 97.5%, 
and specificity of 99.1%. These results demonstrate the 
effectiveness of the proposed method in accurately detecting 
and classifying ECG signals. The contributions of this work are 
significant. First, integrating DenseNet201 for feature 
extraction, optimized through CLSSA, represents a major 
advance in capturing intricate patterns in ECG signals. Second, 
the ensemble model combining SAE, GRU, and LSTM 
enhances classification performance by effectively capturing 
both spatial and temporal features in the data. The implications 
of the findings are substantial for IoT healthcare environments. 
This approach outperformed recent algorithms in accuracy, 
sensitivity, and specificity compared to existing methods, 
demonstrating superior performance and reliability. This 
highlights the potential of the proposed technique to set a new 
standard in ECG signal classification and IoT healthcare 
applications. Future work will focus on further optimizing the 
model and exploring its application to other biomedical signal 
classification tasks. The promising results of this study 
encourage the continued development and implementation of 
advanced AI-driven techniques in healthcare. 
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