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ABSTRACT 

This study presents an Auto-Encoder Convolutional Neural Network (AECNNs) approach for anomaly 

detection in high-dimensional datasets. Unsupervised learning-based algorithms have a strong theoretical 

foundation and are widely used for anomaly detection in high-dimensional datasets, but some limitations 

significantly reduce their performance. This study proposes an algorithm to address these limitations. The 

proposed AECNN combines various convolutional layers, feature extraction, dimensionality reduction, and 

data preprocessing and was evaluated using accuracy, precision, recall, and F1-score. The performance of 
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the proposed model was evaluated using a large real benchmark dataset. The proposed CNN-based 

autoencoder distinguished anomalies with an AUC score of 0.83 and remarkable accuracy, precision, 

recall, and F1 score. 

Keywords-autoencoders; anomaly detection; high-dimensional data; machine learning; data analysis; model 

evaluation; Convolutional Neural Networks (CNNs); NSL-KDD; UNSW-NB15; MSE 

I. INTRODUCTION 

Anomaly detection is an important element of data 
examination that differentiates data that deviate from predicted 
behavior. These unusual irregularities, known as anomalies in a 
dataset, can indicate important events that require immediate 
attention, such as extortion in financial transactions, restorative 
conditions in healthcare diagnostics, and security breaches in 
cybersecurity frameworks. The primary objective of anomaly 
detection is to recognize unusual and possibly affected 
behavior from normal data [1]. Conventional procedures such 
as rule-based systems and measurable methods have been 
utilized for areas with high data insecurity to secure data over 
the network by avoiding anomalies to handle the complexity 
and high volume of financial data transactions. In [2], a PCA-
based approach was proposed to reduce dimensionality in a 
network dataset. Unusual patterns in crucial healthcare data, 
such as vital signs and symptomatic images, should be quickly 
identified. In any case, the complex nature of clinical records 
and the requirement for high accuracy show progressing 
challenges [3, 4]. 

Clustering and auto-encoders are very important for 
anomaly detection in cybersecurity to avoid numerous threats. 
Cyber attacks can be identified by recognizing unusual system 
behavior. Traditional strategies such as Signature-Based 
Detection (SBD) are used to avoid previously known passive 
attack patterns but leave systems helpless to new and advanced 
active transaction threats. Anomaly discovery methods, 
especially those utilizing ML, offer a more vital tool to 
distinguish deviations from typical behavior, indicating 
malicious activities [5]. Deep Learning (DL)-based models 
have essentially increased the accuracy of anomaly detection. 
DL models, such as Convolutional Neural Networks (CNNs), 
autoencoders, and Generative Adversarial Networks (GANs), 
have appeared to perform satisfactorily in different areas [6]. 
Convolutional Neural Networks (CNNs) are known to extract 
features at various layers and effectively detect irregularities in 
complex and high-dimensional datasets. Deep spatial 
autoencoding models can be used efficiently to capture data 
variability [7]. Nonlinear autoencoders consist of an encoder 
that compresses the data into a lower-dimensional latent space 
and a decoder that recreates the input from this inactive 
representation and avoids irregularities [8, 9]. Variational 
autoencoders and gradient descent along with CNNs can be 
used to reduce data dimensionality and identify anomalies [9, 
10].  

II. LITERATURE REVIEW 

Convolutional layers are used for anomaly detection usually 
based on an encoder and a decoder. CNN-based autoencoders 
are helpful in image processing and the collection of spatial 
information. Ensemble-based ML methods increase the model's 
efficacy and capacity to recognize inconsistencies in complex 

datasets [11, 12]. High-dimensional datasets require 
preprocessing steps, such as overseeing missing values, 
normalization, etc. These preprocessing steps are fundamental 
for the model's execution and information quality [3, 13]. In a 
CNN autoencoder, convolutional layers are used for feature 
extraction. Hyperparameters are used to optimize this 
procedure and ensure the detection of outliers or 
inconsistencies in the data [4]. CNN autoencoders can achieve 
improved accuracy, precision, and F1 score. These metrics 
comprehensively assess the model's ability to recognize quality 
and irregularities in various datasets. This study focuses on a 
CNN-based autoencoder for anomaly detection, tested and 
verified using a standard benchmark dataset. 

III. METHOD 

A. Dataset Description and Preprocessing 

This study used the PTB Suggestive ECG Dataset [14], 
which comes from Physionet and is openly available. 14,552 
samples were used, divided into two classes: those with 
ordinary pulses (Normal) and those with cardiovascular 
varieties (Anomalous). The full dataset consists of 21,837 
samples, but using it would require more processing power and 
dividing it into three classes, which is left for future research. 
The ECG signals are assessed at 100 Hz, giving significant 
standard information that is reasonable for point-by-point 
assessment and model readiness. Table I shows the description 
of the dataset. Data preprocessing included standardization by 
segregating the data information into various testing sets. 

TABLE I.  DATASET DESCRIPTION 

Feature Description 

Number of samples 14,552 

Number of categories 2 (Normal, Anomalous) 

Sampling frequency 100 Hz 

Data source Physionet's PTB diagnostic database 

 

B. Proposed Autoencoder Convolutional Neural Network 
(AECNN) Architecture 

An efficient AECNN architecture was proposed to detect 
anomalies, including various convolutional layers for feature 
extraction, clustering layers for data compression, and 
upsampling layers for data reconstruction. The encoder 
compresses the input data into a lower-dimensional 
representation, capturing essential features while discarding 
noise. The decoder reconstructs them from this representation, 
with the reconstruction error used to identify anomalies. 

��������	��
�� ����� = ∥ X − X� ∥�   (1) 

where � is the original input and X� is the reconstructed output. 
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1) Encoder 

 Input layer: Accepts the ECG signal data with a shape of 
(None, 125). 

 Convolutional layer 1: 32 filters, kernel size 3, activation 
function ReLU. 

 MaxPooling layer 1: Pool size 2. 

 Convolutional layer 2: 64 filters, kernel size 3, activation 
function ReLU. 

 MaxPooling layer 2: Pool size 2. 

2) Decoder 

 Dense layer: 125 neurons, ReLU activation function, 
conforms the output to the dimensions of the input. 

 UpSampling layer 1: Upsamples the information to match 
the result size of the principal MaxPooling layer. 

 Convolutional Transpose Layer 1: 64 channels, size 3, 
ReLU activation function. 

 UpSampling Layer 2: Upsamples the information to match 
the result size of the second MaxPooling layer. 

 Convolutional Transpose Layer 2: 32 channels, size 3, 
ReLU activation function. Hyperparameter tuning was used 
to optimize its performance by minimizing the loss function 

Loss Function = �

�
∑  �

��� ��� − ����
�
  (2) 

where N is the number of samples. 

 

 
Fig. 1.  Proposed Autoencoder Convolutional Neural Network (AECNN). 

C. Evaluation Metrics 

The effectiveness of the CNN autoencoder model was 
evaluated using various metrics, including accuracy, precision, 
recall, F1-score, and Mean Squared Error (MSE). 

���	���� =  !" �
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed model was proficient in differentiating the 
two classes. Its AUC score [15] was close to 1, showing that it 

achieves a high True Positive Rate (TPR) and a low False 
Positive Rate (FPR), ensuring that irregularities and issues in 
the dataset can be easily rectified using the proposed 
autoencoder. The confusion matrix indicates that the model had 
a high TPR and a moderately low FNR, demonstrating 
compelling inconsistency recognition capacities. 7604 
(72.38%) of TP anomalies were correctly identified, but there 
were 267 FN (6.60%). This can be confirmed by the confusion 
matrix shown in Figure 2. 

 

 

Fig. 2.  Confusion matrix for AECNN. 

A. Distribution of Reconstruction Errors 

The reconstruction error plot provides a reasonable 
perception of how the CNN autoencoder model recognizes 
ordinary and irregular information. The cut-off point for 
identifying anomalous instances is 0.020, which is the 
threshold for anomaly detection. For the preparation of typical 
information, there is a high centralization of low recreation 
errors, showing that the model successfully learns and recreates 
ordinary examples during preparation. The Receiver Operating 
Characteristic (ROC) curve, which plots the TPR against the 
FPR at different limit settings, is a graphical representation of a 
model's detection ability.  

 

 

Fig. 3.  ROC curve. 

The capacity of the CNN autoencoder to distinguish 
between typical and atypical data is demonstrated by its AUC 
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of 0.83. Figure 3 shows the ROC curve for a random classifier 
and the one proposed. The model's strength and steadfastness 
in the detection of real-world inconsistencies are reflected 
within the AUC of 0.83. 

Figure 4 shows the reconstruction error distribution, which 
is a critical metric to assess an autoencoder's performance in 
anomaly detection, showing three different curves: test normal, 
train normal, and anomaly. High reconstruction errors typically 
indicate anomalies. Anomalies can be detected with a high 
degree of accuracy by evaluating the reconstruction error. This 
differentiation is essential for the model's reliability in practical 
applications. The fact that the test normal data have a similar 
distribution indicates that the model can be applied to unseen 
normal data with ease and has a low reconstruction error. 
Figures 5 and 6 show that the CNN autoencoder model is 
trained on data by improving its presentation and keeping up 

with its adequacy when applied to irregular data. The results 
show normal losses of 0.010, 0.015, 0.013, 0.011, and 0.185. 

 

Fig. 4.  Reconstruction error distribution. 

 

 

Fig. 5.  Sample plots: actual vs. reconstructed by the proposed AECNN. 

 

Fig. 6.  Plots for normal vs anomaly cases. 

Figure 6 shows two plots, where the blue line represents the 
normal peak with low errors for Normal data and the red line 

represents the Anomalous data. The two data instances are 
examined from the benchmark dataset, showing low errors for 
Normal and high recreation errors for Anomalous. This 
examination highlights the model's precision in reproducing 
typical examples and its battle against abnormalities, actually 
recognizing the two because of recreation errors. Two 
dedicated cases were evaluated and tested on the AECNN 
model, showing reasonable results. In normal case 601, the 
reconstruction error was outstandingly low, demonstrating that 
the model precisely recreated the data. Alternately, in the 
anomalous case 865, the recreation error was essentially higher. 
This significant error suggests that there is an anomaly and that 
the model is having trouble accurately reconstructing the input 
data.  
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Figure 7 presents the training and validation loss. The x-
axis represents the epochs, ranging from 0-70, while the y-axis 
represents the loss of Anomalous data that is recognized by the 
reconstruction examination. Reconstruction errors for typical 
data are consistently low, indicating that the model accurately 
captures and imitates typical examples. The model's productive 
limit for learning and reconstruction is visible and consistent. 

 

 

Fig. 7.  Training and validation loss. 

As shown in Figure 7, the training and validation processes 
show the optimization of the model through various epochs and 
adjusting hyperparameters to minimize the reconstruction error 
as shown in (7). 

*��
�
�+ ,��� = �

�
∑  �

��� ∥∥X� � X��∥∥
�
  (7) 

where - is the number of samples, ��  is the original input, and 

��� is the reconstructed output. In addition, the Adam optimizer 
was used for training with a learning rate of 0.001. 

./"� 
 ./ � 0∇23(.)    (8) 

where . represents the model parameters, 0 is the learning rate, 
and 3(.) is the loss function. 

Figure 8 shows a smoothed mean plot for each class, both 
Normal and Anomalous. The model's ability to recognize 
anomalies is exhibited by its expanded changeability and 
reduced errors. Figure 9 presents a histogram, indicating a 
well-defined peak in the lower range that suggests a successful 
reconstruction of Normal and Anomalous instances. 

 

 

Fig. 8.  Smoothed mean plots for each class. 

 
Fig. 9.  Histogram of reconstruction errors with a threshold of 0.012. 

B. Evaluation Matrix 

1) Reconstruction Error  

Reconstruction error was calculated as  

� 
 ∥� � �6∥� 
∥ 71.0,0.9, … = − 70.98,0.87, … = ∥�  

≈ 0.0025  

2) Loss Function 

The training loss function calculates the loss for the number 
of samples - = 14552 

,��� = �

�CDD�
∑  �CDD�

��� (�� � ��
6)� ≈ 0.015  

3) Evaluation Metrics 

The evaluation metrics were calculated based on the values 
shown in the confusion matrix (Figure 2). Table ΙΙ presents the 
evaluation metrics for the proposed model. These metrics show 
the model's enhancement in terms of accuracy by precisely 
recognizing anomalies while keeping a low pace FP and FN. 

Accuracy = KLMC"NKKO

KLMC"NKKO"�PM�"�LK
≈ 0.7821  

Precision = KLMC

KLMC"�PM�
≈ 0.7238  

Recall = KLMC

KLMC"�LK
≈ 0.9641  

F1-Score = �⋅M.K�NO_M.PLC�

M.K�NO"M.PLC�
≈ 0.8261  

Given the provided ROC curve data, the AUC is 
approximately: 

AUC ≈ 0.83  

TABLE II.  EVALUATION METRICS 

Metric Value Metric Value 

Accuracy 78.21% Recall (TPR) 96.40% 

Precision 72.38% F1-Score 82.61% 

 

V. CONCLUSION  

This study demonstrated the effectiveness of using CNN-
based autoencoders for anomaly detection in high-dimensional 
datasets, especially on an available electrocardiography dataset. 
The model combines the qualities of convolutional layers to 
extract features for unsupervised learning. The experimental 
results, highlighted by accuracy, precision, recall, F1-score, and 
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a critical AUC of 0.83, affirm the model's ability to distinguish 
anomalies with high reconstruction errors. The design of the 
proposed CNN autoencoder and data preprocessing were 
essential for robust performance. The ability to capture 
perplexing spatial connections inside the information made the 
CNN autoencoder exceptionally effective, which was tested 
employing a dataset that presents real-world complexities. The 
model's low FN rate and solid execution measurements 
emphasize its potential for applications in fields requiring solid 
anomaly detection, such as restorative diagnostics, finance, and 
cybersecurity. Future work should focus on improving the 
model's architecture, exploring diverse autoencoder types, and 
applying the proposed approach to other high-dimensional 
datasets to advance its strength and extend its applicability. 
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