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ABSTRACT 

Deep learning is a branch of machine learning with many layers, such as the You Only Look Once (YOLO) 

method. From various versions of YOLO, YOLOv6 and YOLOv7 are considered more prominent because 

they achieve high Mean Average Precision (mAP) values. Both versions of YOLO have been implemented 

into various problems, especially in the waste detection problem. Plastic bottle waste is one of the most 

common types of waste that pollutes Indonesian waters. This study aims to solve this problem by helping to 

sort waste in surface waters by applying YOLOv6 and YOLOv7. FloW-Img was used, obtained on request 

from the Orcaboat website. The dataset consists of 500,000 bottle objects in 2,000 images. The YOLOv6 

and YOLOv7 models were evaluated using mAP and running time. The results show that YOLOv6 and 

YOLOv7 can handle bottle waste detection well, with mAP values of 0.873 and 0.512, respectively. In 

addition, YOLOv6 (4.21 m/s) has a higher detection speed than YOLOv7 (13.7 m/s). However, in tests with 

images that do not have bottle objects, YOLOv7 provides better detection accuracy and consistency 

results, making it more suitable for real-world applications that demand high accuracy in environments 

with much visual noise. 
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I. INTRODUCTION  

Deep learning is a branch of machine learning that consists 
of many layers between input and output. Deep learning 
models can achieve exceptional performance, sometimes 
exceeding that of humans [1-2]. You Only Look Once (YOLO) 
is one of the world's most popular deep-learning methods for 
object detection and is considered a significant and extensive 
method for object identification [3, 4]. YOLO has several 
versions. YOLOv1 is a model for object detection using a 
neural network, where an input image is divided into a grid that 
detects objects within it. YOLOv3 uses the Darknet-53 
architecture by introducing multiscale detection to detect 
objects of various sizes. YOLOv4 is easy to use with various 
features for training, validation, and inference, and can be used 
in various applications. YOLOv5 includes various features 
updated from YOLOv4. YOLOX is a model with optimization 

characteristics from YOLOv4 [5]. PP-YOLOE uses several 
optimization techniques and improvements from YOLO that 
focus on improving efficiency and accuracy [6]. YOLOv6 
performs focused updates with speed and efficiency, achieving 
a balance between accuracy and inference speed, and can be 
used for real-time object detection [7, 8]. YOLOv7 has 
improvements in architecture and performs efficiently in 
computational matters [9, 10]. YOLOv8 is an update of the 
YOLOv5 model by increasing the detection speed to be more 
efficient when used in real-time [11]. In [12], YOLOv6 
achieved higher mean Average Precision (mAP) than other 
YOLO models. Each YOLO version has differences, including 
the YOLOv6 and YOLOv7 series. All YOLO models can be 
utilized in various aspects, such as real-time inspection of fire 
safety equipment, skin lesion detection, item detection, and 
vehicle detection on public roads [8, 13-15]. 
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YOLO can also be used in waste detection. Garbage is one 
of the problems often faced by countries. Indonesia has a water 
surface area of 6,400,000 km

2
. The vastness of Indonesia's 

water area makes waste on the water surface a difficult-to-
address problem. Waste consists of organic and inorganic 
waste. According to data from the Ministry of Environment 
and Forestry, Indonesia is polluted by 35 million tons of waste 
per year, with the most significant waste being plastic waste, 
such as plastic bottles. The waste is spread over land and water 
and ends in the sea. Therefore, waste in Indonesian waters must 
be resolved, and the Indonesian government has set five 
strategies to tackle marine debris. The five strategies 
implemented in the National Action Plan (NAP) for handling 
marine debris are [16, 17]: 

1. Organizing a national movement to socialize the negative 
impacts of marine debris. 

2. Controlling waste in watersheds and controlling plastic 
waste from the upstream and downstream industrial 
sectors. 

3. Managing plastic waste from marine transportation 
activities, activities in marine tourism, marine and 
fisheries, and coastal and small islands. 

4. Diversify funding schemes outside of the state 
budget/APBD, strengthen institutions, and improve the 
effectiveness of supervision and law enforcement. 

5. Encourage innovation in managing and overcoming 
marine debris pollution through research and 
development. 

Based on data from the National Action Plan for Marine 
Debris Management, Indonesia reduced 35.36% of plastic 
waste in the sea, from 615,675 tons in 2018 to only 408,885 
tons in 2022. The government aimed to reduce plastic waste in 
Indonesian marine waters by 70% by 2025 [16-18]. Therefore, 
an acceleration is needed to achieve the objective. Based on the 
five strategies above, the waste sorting stage is critical to 
distinguish between living organisms and bottle waste in the 
water area. This sorting can be performed by detecting bottle 
waste objects in the water. Table I shows previous studies on 
the detection of marine debris. However, the YOLOv6 and 
YOLOv7 models have not previously been used to solve the 
problem of waste in water. This study aims to help sort bottle 
waste in surface waters by examining two YOLO versions to 
help Indonesia's waste problem. 

TABLE I.  PREVIOUS STUDIES 

Study Issue Method Results 

[19] 
Underwater 

garbage 
YOLOv4 

Detection speed: 66.67 fps, 

mAP: 95.099% 

[20] 
Water surface 

garbage 
YOLOv3 

Detection speed: 18.47 fps, 

mAP: 91.43% 

[21] Waste detection 
EfficientDet-D2, 

EfficientDet-B2 

Average precision: 70%, 

Classification accuracy: 75% 

[22] 
Water 

classification 

EfficientNet-B0, 

EfficientNet-B3 
Accuracy: 84% using B0 

II. IMAGE DETECTION MODELING 

This study followed the following stages, as shown in 
Figure 1: dataset collection, dataset exploration, modeling, and 
model evaluation. The modeling process has three stages: data 
preprocessing, training model design, and testing YOLOv6 and 
YOLOv7. 

 

 
Fig. 1.  Research method. 

A. Dataset 

The data used for modeling is an image dataset of bottle 
waste on the water surface comprising 500,000 bottle objects in 
2000 images. The data was obtained by requesting the 
Orcaboat company to provide access to the data from its 
website [23, 24]. 

B. Preprocessing 

The data consists of images with two different sizes, 
namely 1280×720 and 1280×640 px. As shown in Figure 2, 
some adjustments were made by converting the images to 
640×640 px size with bounding box labels on each object in the 
image. The data was divided into training and validation sets 
with a 60:40 ratio. 

 

 
Fig. 2.  Data preprocessing. 

C. YOLOv6 and YOLOv7 Modeling 

YOLO is a set of algorithms created for real-time object 
detection. YOLO has many versions, including YOLOv1-3 
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[11, 25, 26], which are the pioneers of the YOLO series. 
YOLOv4 [4] reorganized the detection architecture into the 
backbone, neck, and head. More recent efficient detection 
models in the YOLO series are YOLOv5, YOLOX, PP-
YOLOE, YOLOv6, YOLOv7, and YOLOv8. YOLO performs 
well in detecting normal-sized objects but cannot detect small-
sized objects [27]. 

The YOLO architecture starts with the input image passing 
through multiple convolution layers with various filter sizes 
(e.g., 7×7, 3×3, and 1×1) that serve to extract features from an 
image (see Figure 3). Each convolution layer is followed by a 
pooling or subsampling operation that reduces the spatial 
dimensions and helps the network to capture more complex 
features. This architecture involves several additional deep 
convolution layers to capture features at multiple scales. After 
the last convolution layer, the feature results are extracted and 
compiled by the complete connection layer, which results in the 
final prediction of bounding box coordinates and object 
classification. The YOLO architecture is designed to efficiently 
perform object detection in a single stage, thus enabling a 
speedy detection process [28]. 

YOLOv6 consists of three parts: the head, the backbone, 
and the neck. YOLOv6 is updated in the detector neck with 
Bidirectional Concatenation (BiC) [7]. The neck and backbone 
structures have been replaced with Rep-PAN and EfficientRep 
[26]. The YOLOv6 architecture, shown in Figure 4, consists of 
three main parts: the backbone, neck, and head. In the 
backbone section, marked with a red box, several blocks, such 
as RepVGG Block and SimCSPPF Block, are used to extract 
features from the input image. Meanwhile, the neck, marked 
with a green box, combines and refines the characteristics using 
a combination of blocks such as the BiC module, 3×3 Conv, 
1×1 Conv, and Concatenate. Finally, the head section, marked 
with a blue box, uses the efficient decoupled head to process 
the features generated by the neck and produce the output as a 
final prediction for object detection. This architecture is 
designed to improve efficiency and accuracy in object detection 
tasks. In addition, it simplifies the SPPF block into a 
SimCSPSPFF block. YOLOv6 also uses Anchor-Aided 
Training (AAT), which is both anchor-based and anchor-free 
[29, 30]. 

 

 

Fig. 3.  YOLO architecture. 

 

Fig. 4.  YOLOv6 architecture. 
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Fig. 5.  YOLOv7 architecture. 

YOLOv7 is a relatively new development of YOLO. 
YOLOv7 also comprises three parts, as shown in Figure 5: the 
backbone, neck, and head. YOLOv7 is an update of the 
previous YOLO series on the backbone architecture for lower 
power consumption. In the backbone section, marked with a 
green box, a series of blocks such as Convolution BatchNorm 
SiLU (CBS), ELAN, and MaxPooling (MP) are used to extract 
features from the input image. The neck section, marked with a 
red box, processes the features using a combination of blocks 
such as SPPCSPC, upsample, concatenation, and ELAN_W to 
enhance the network's ability to capture multi-scale 
information. Finally, the head section, marked with a purple 
box, uses RepConv to process the features of the neck and 
generate the final prediction for object detection. This 
architecture is designed to improve object detection efficiency 
and accuracy, focusing on optimizing feature processing at 
multiple scales [31, 32]. 

D. Evaluation Method 

Evaluation metrics are a way to measure the performance of 
a particular model. Evaluation can be performed using the 
mean value of Average Precision (mAP) [33, 34]. The mAP 
value is obtained from the Average Precision (AP) from a set 
of data. AP is a key performance indicator that eliminates the 
dependence on selecting a single threshold value. The AP value 
is obtained from the area under the precision-recall curve. AP 
summarizes the precision-recall curve into a single scalar 
value. The precision-recall curve is created to visually depict 
the best threshold. The precision-recall curve plots the 
precision value against the recall for a threshold value. 
Precision and recall values depend on True Positives (TP), 
False Positives (FP), and False Negatives (FN), which can be 
calculated using (1) for recall and (2) for precision. The 
determination of these values depends on the predicted label 
compared to the ground truth and the Intersection over Union 
(IoU) value between the two bounding boxes, i.e., ground truth 
and prediction [33]. 

Recall � ��

��	
�
    (1) 

Precision � ��

��	
�
    (2) 

The threshold probability distribution is determined 
between 0 and 1 to classify the bounding box. The prediction is 
declared correct if the label class on the predicted bounding 
box is the same as the ground truth bounding box or the IoU 
value is higher than the threshold value. The following values 
are obtained based on the IoU, threshold, and label class on the 
predicted and ground truth bounding boxes. TP is obtained 
when the model predicts that the bounding box is in a favorable 
value position, and it is true. FP is obtained when the model 
predicts that the bounding box is in a positive value position, 
but that is wrong. FN is obtained when the model does not 
predict that the bounding box is in a particular negative 
position and is false. True Negative (TN) is obtained when the 
model does not predict that the bounding box is in a negative 
position, and it is true. Thus, mAP obtained from AP, which is 
sourced from precision and recall, can be calculated using (3) 
for AP and (4) for mAP [35]. 

AP � ∑ �R�k� � R�k � 1��P�k������
��   (3) 

mAP � �

�
∑ AP"�
"��     (4) 

III. RESULTS AND DISCUSSION 

A. Exploratory Data Analysis (EDA) 

EDA is a step taken to analyze data and aims to thoroughly 
understand the data characteristics before data preprocessing. 
Table II shows the values of the FloW-Img data features. The 
table contains count, Mean, Std, Q1, Q2, Q3, Min, and Max 
values. These values are obtained from width, height, 
saturation, contrast, and the most significant object size in the 
FloW-Img data, which consists of 2000 data points. The Width 
variable has a constant value of 1280 px for all data, indicating 
no variation in width. In contrast, Height varies with a mean of 
689.64 pixels and a standard deviation of 38.83 pixels, 
indicating slight variation in image height. The median and first 
and third quartile values for Height are 720 px and 640 px, 
indicating that most images have similar heights. 

More significant variations exist for the saturation, contrast, 
and largest object size variables. Saturation has a mean of 
52.88 with a standard deviation of 38.16, which shows that the 
saturation level varies quite widely between images, with a 
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minimum value of 13 and a maximum of 195.22. Contrast has 
an average of 54.21 with a standard deviation of 18.36, which 
also shows considerable variation in the contrast of the images. 
The largest object size has a considerable variation, with a 
mean value of 405,189.49 pixels and a standard deviation of 
244,193.97 pixels, indicating that the size of the largest object 
in the image varies widely, ranging from 22,274.5 pixels to 
almost 920,000 pixels. The quartile values also show that half 
of the data has the largest object below about 320,000 pixels, 
while 25% of the data has the largest object with a size above 
585,822.12 pixels. 

TABLE II.  RESULTS OF EXPLORATORY DATA ANALYSIS 

 
Width Height Saturation Contrast 

Largest 

object's size 

Count 2000 2000 2000 2000 2000 

Mean 1280 689.64 52.88 54.21 405189.49 

Std 0 38.83 38.16 18.36 244193.97 

Min 1280 640 13 16.41 22274.5 

25% 1280 640 24.84 39.73 215135 

50% 1280 720 34.69 53.87 320070.25 

75% 1280 720 78.56 68.33 585822.12 

max 1280 720 195.22 95.38 919505 

 
Figure 6 shows a heat map of the correlation between four 

image attributes, namely height, saturation, contrast, and 
largest object size. Each section of this heat map shows the 
correlation between two attributes, with colors ranging from 
dark blue (strong negative correlation) to dark red (strong 
positive correlation). For example, height has a robust negative 
correlation with saturation (-0.82) and contrast (-0.75), as 
indicated by the dark blue color. This correlation means that as 
the height of the image increases, the saturation level and 
contrast tend to decrease. Height shows a moderate positive 
correlation with the largest object size (0.57), indicating that 
images with larger, more significant objects also tend to have 
more considerable heights. There is a positive correlation 
between saturation and contrast (0.63) and a negative 
correlation between contrast and the largest object size (-0.76). 
These visualizations make it easy to identify relationships 
between variables, which is important for model development. 

 

 

Fig. 6.  Heatmap for dataset features. 

B. YOLOv6 Results 

YOLOv6 was trained and evaluated by performing 10 to 
100 epochs to determine the resulting mAP value. The mAP 
score was obtained using (4). According to Table III, 
increasing epochs tends to increase the mAP value of the 
model by 0.873 in 100 epochs. Meanwhile, as seen in Figure 7, 
the recall curve decreases drastically with increasing 
confidence score. This indicates that although YOLOv6 
exhibits high sensitivity with good recall at initial detection, its 
accuracy is compromised as the confidence threshold increases. 
Furthermore, the precision curve shows a steadily rising curve 
as the confidence score increases, with precision reaching a 
maximum value of 1.0 at a confidence of around 0.921 for all 
object classes. Despite the reduction in detection coverage, 
YOLOv6 can predict objects very accurately when only high-
confidence predictions are taken. The combination of the 
precision recall curve for YOLOv6 with a mAP@0.5 value 
around 0.873 reinforces these results, showing that while the 
precision is quite good, there is a gap in the recall, indicating 
that the model tends to miss several objects when prioritizing 
higher accuracy. 

C. YOLOv7 Results 

YOLOv7 was also trained and tested until epoch 100 to 
find the best mAP value. According to Table III, YOLOv7 
obtained the highest mAP value of 0.512 at epoch 100. 
However, based on the precision, recall, and precision-recall 
curves in Figure 7, YOLOv7 has a pattern similar to YOLOv6 
in the recall curve, with a gradual decrease as confidence 
increases. The main difference is the recall of YOLOv7 starting 
at a slightly lower level than YOLOv6, but the decline is more 
consistent and less steep at higher confidence values. Thus, 
YOLOv7 is more selective and stable in maintaining object 
detection at higher confidence thresholds. Furthermore, the 
precision curve of YOLOv7 shows a similar increase to that of 
YOLOv6 but with less fluctuation at high confidence levels. 
Hence, YOLOv7 can predict objects with good precision, 
although there is still a slight uncertainty in some predictions 
when the model confidence approaches the highest threshold. 
Looking at the YOLOv7 precision-recall graph, the value of 
mAP@0.5 is much lower than YOLOv6 at 0.512. Although 
YOLOv7 is more selective and has a lower detection error 
tolerance, it could have missed some critical object detections 
that the higher confidence threshold might not have identified. 

TABLE I.  MAP MODEL YOLOV6 AND YOLOV7 

No 
Number of 

epochs 

mAP of 

YOLOv6 

mAP of 

YOLOv7 

1 10 0.767 0.032 

2 20 0.800 0.148 

3 30 0.851 0.136 

4 40 0.840 0.246 

5 50 0.862 0.354 

6 60 0.865 0.409 

7 70 0.869 0.421 

8 80 0.863 0.471 

9 90 0.865 0.494 

10 100 0.873 0.512 
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-Recall 

  
(a) (b) 

Fig. 7.  Curves of recall, precision, and precision-recall on (a) YOLOv6 and (b) YOLOv7. 

D. Comparison YOLOv6 and YOLOv7 

YOLOv6 and YOLOv7 achieved the best results at the 
100

th
 epoch. YOLOv6 (0.873) had higher mAP results than 

YOLOv7 (0.512). These results are due to YOLOv6's better 
architecture in feature extraction compared to YOLOv7. In 
addition, the YOLOv6 neck can combine features better to 
produce more information for object detection. 

TABLE II.  MODEL TESTING RESULT 

Model Epoch mAP 
Inference speed 

(ms) 
FPS 

Detection success 

whole object 

YOLOv6 100 0.873 4.21 237 Success 

YOLOv7 100 0.512 13.7 72 Unsuccessful 

 
According to Table IV, in addition to mAP, YOLOv6 can 

outperform YOLOv7 in detection speed. YOLOv6 (4.21 ms) 
can detect objects more effectively in real-time object detection 
than YOLOv7 (13.7 ms). The difference in inference speed is 
quite far for YOLOv7. YOLOv6 successfully detects all 

objects present when inference is made. Compared to the 
results in [27] with a mAP of 48.1%, YOLOv6 has a much 
better mAP value. 

In the water environment image, there is a significant 
comparison between the object detection performance of 
YOLOv6 and YOLOv7 in finding floating bottles floating on 
water, as shown in Figure 8. YOLOv6 produces more 
detections with six bounding boxes with varying degrees of 
confidence. The confidence score generated varies from 0.49 to 
0.86, with some detections below the standard threshold of 0.6. 
In contrast, YOLOv7 detected only four bottle objects with a 
more consistent confidence score ranging from 0.41 to 0.75. 
Despite the smaller number of detections, the YOLOv7 model 
tends to be more selective, with a more stable confidence score 
distribution closer to a higher threshold. YOLOv7 can reduce 
the number of irrelevant detections due to water reflection or 
other visual distractions. In addition, YOLOv7's more stable 
confidence score values indicate that the model is better at 
maintaining detection accuracy in more complex environments. 
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YOLOv6 

   

YOLOv7 

   
(a) (b) (c) 

Fig. 8.  Comparison of YOLOv6 and YOLOv7 on non-water images: (a) water surface, (b) organic waste, and (c) electronic waste. 

IV. DISCUSSION 

This study used YOLOv6 and YOLOv7 to detect bottles on 
the water surface. The objective is to help sort out waste, 
especially plastic bottles that pollute the water the most. Figure 
8 shows a comparison of YOLOv6 and YOLOv7 in detecting 
bottle objects on the water surface. Overall, YOLOv6 can 
detect more objects, but many may be irrelevant or have low 
confidence. YOLOv6 shows that it is more sensitive to noise in 
the visual environment. Meanwhile, YOLOv7 is more robust, 
precise, and reliable, especially in terms of selectivity and noise 
reduction in detecting objects with high confidence. YOLOv7 
is more suitable for real-world scenarios with complex 
environments such as water. However, based on the precision, 
recall, and precision-recall curves in Figure 7, the performance 
difference between YOLOv6 and YOLOv7 clarifies the trade-
off between detection sensitivity and prediction accuracy. 
YOLOv6 is better at finding more objects with high recall 
(0.93), while YOLOv7 shows improvement in reducing false 
detections with more stable precision (0.908). 

In addition, this study attempted to detect bottle objects in 
organic waste and electronic waste images, testing how well 
YOLOv6 and YOLOv7 can detect bottle objects on out-of-
scope datasets (see Figure 8). In organic waste images, 
YOLOv6 had a confidence score of 0.50. In contrast, YOLOv7 
did not detect any bottle in this image, and the number of 
detections was zero. This shows that YOLOv6 is not entirely 
confident that the object is a bottle since the confidence 
threshold is in the middle (0.5). YOLOv7 explicitly ignores 
objects visually similar to bottles but not relevant targets. 
YOLOv6 is more susceptible to visual noise than YOLOv7, 
which is reflected in confidence scores in the low to medium 
range. 

Regarding electronic waste images, YOLOv6 detected 
more bounding boxes with varying confidence scores of 0.76, 
0.52, and 0.48. In contrast, YOLOv7 detects objects with a 
more consistent confidence score of 0.32 to 0.29. These values 
tend to be low because YOLOv7 selectively detects only 

objects that are more likely to be correct to reduce detection 
errors. Therefore, comparing these numbers reinforces the 
conclusion that YOLOv7 is superior in reliability, especially in 
environments with many visual distraction elements. This 
statement is consistent with [12], which states that YOLOv7 
performs better in object detection with more structured and 
high-contrast visual patterns such as road damage. However, in 
[35], YOLOv7 showed higher recall values with precision 
values, mAP@0.5, and mAP@0.5:0.95 achieving lower values. 
Hence, the performance of YOLOv7 is highly influenced by 
the type of object and background complexity. Therefore, 
YOLOv7 may perform lower in detecting more apparent 
objects with sharper contours, such as weapons, than in 
environments with high visual noise and dynamic backgrounds, 
such as water. 

V. CONCLUSION 

Deep learning technology development, especially the 
YOLO model, can help with various problems in object 
detection, especially waste. Indonesia faces a great challenge in 
water surface waste. Implementing YOLO for object detection, 
especially plastic bottle waste, can help the waste sorting 
process. YOLOv6 and YOLOv7 are reliable methods to detect 
waste on water surfaces. Based on precision, recall, and 
precision-recall testing on a water area image dataset, YOLOv6 
achieved a mAP of 0.873 with an inference speed of 4.21 ms 
(237 fps). Meanwhile, the YOLOv7 model achieved a mAP of 
0.512 with an inference speed of 13.7 ms (72 fps). Although 
the YOLOv7 model has a lower mAP than YOLOv6, it does 
not make detection errors on many plastic bottle waste objects.  

More detailed results were also evidenced in the presence 
of non-watersphere images of organic and electronic waste. 
YOLOv7 consistently showed improved precision, with fewer 
but more accurate detections. In contrast, YOLOv6 tends to 
make more detections but has a lower confidence score, 
showing weakness in dealing with visual noise. YOLOv7's 
ability to detect objects more precisely can be a significant 
reference in real-world applications requiring high accuracy. 
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However, due to the limitations of the method used and the use 
of only water surface images in the dataset, future 
developments are needed to make a real contribution to solving 
water waste problems, especially in Indonesia. 

REFERENCES 

[1] U. Diaa, "A Deep Learning Model to Inspect Image Forgery on SURF 
Keypoints of SLIC Segmented Regions," Engineering, Technology & 
Applied Science Research, vol. 14, no. 1, pp. 12549–12555, Feb. 2024, 
https://doi.org/10.48084/etasr.6622. 

[2] L. Muflikhah, W. F. Mahmudy, and D. Kurnianingtyas, Machine 
Learning. Malang, Indonesia: Universitas Brawijaya Press, 2023. 

[3] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A Review of Yolo 
Algorithm Developments," Procedia Computer Science, vol. 199, pp. 
1066–1073, Jan. 2022, https://doi.org/10.1016/j.procs.2022.01.135. 

[4] T. Saidani, "Deep Learning Approach: YOLOv5-based Custom Object 
Detection," Engineering, Technology & Applied Science Research, vol. 
13, no. 6, pp. 12158–12163, Dec. 2023, https://doi.org/10.48084/ 
etasr.6397. 

[5] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, "YOLOX: Exceeding YOLO 
Series in 2021." arXiv, Aug. 06, 2021, https://doi.org/10.48550/arXiv. 
2107.08430. 

[6] S. Xu et al., "PP-YOLOE: An evolved version of YOLO." arXiv, Dec. 
12, 2022, https://doi.org/10.48550/arXiv.2203.16250. 

[7] C. Li et al., "YOLOv6 v3.0: A Full-Scale Reloading." arXiv, Jan. 13, 
2023, https://doi.org/10.48550/arXiv.2301.05586. 

[8] A. Alayed, R. Alidrisi, E. Feras, S. Aboukozzana, and A. Alomayri, 
"Real-Time Inspection of Fire Safety Equipment using Computer Vision 
and Deep Learning," Engineering, Technology & Applied Science 
Research, vol. 14, no. 2, pp. 13290–13298, Apr. 2024, https://doi.org/ 
10.48084/etasr.6753. 

[9] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable 
Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object 
Detectors," in 2023 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), Vancouver, BC, Canada, Jun. 2023, pp. 
7464–7475, https://doi.org/10.1109/CVPR52729.2023.00721. 

[10] E. Iren, "Comparison of YOLOv5 and YOLOv6 Models for Plant Leaf 
Disease Detection," Engineering, Technology & Applied Science 
Research, vol. 14, no. 2, pp. 13714–13719, Apr. 2024, https://doi.org/ 
10.48084/etasr.7033. 

[11] F. Hermens, "Automatic object detection for behavioural research using 
YOLOv8," Behavior Research Methods, vol. 56, no. 7, pp. 7307–7330, 
Oct. 2024, https://doi.org/10.3758/s13428-024-02420-5. 

[12] N. I. M. Yusof, A. Sophian, H. F. M. Zaki, A. A. Bawono, A. H. 
Embong, and A. Ashraf, "Assessing the performance of YOLOv5, 
YOLOv6, and YOLOv7 in road defect detection and classification: a 
comparative study," Bulletin of Electrical Engineering and Informatics, 
vol. 13, no. 1, pp. 350–360, Feb. 2024, https://doi.org/10.11591/ 
eei.v13i1.6317. 

[13] Z. Zhang, X. Lu, G. Cao, Y. Yang, L. Jiao, and F. Liu, "ViT-
YOLO:Transformer-Based YOLO for Object Detection," in 2021 
IEEE/CVF International Conference on Computer Vision Workshops 
(ICCVW), Montreal, BC, Canada, Oct. 2021, pp. 2799–2808, 
https://doi.org/10.1109/ICCVW54120.2021.00314. 

[14] G. Widjaja and S. L. Gunawan, "Dampak Sampah Limbah Rumah 
Tangga Terhadap Kesehatan Lingkungan," Zahra: Journal of Health 
and Medical Research, vol. 2, no. 4, pp. 266–275, Nov. 2022. 

[15] P. di L. K. L. Hidup, "Kementerian Lingkungan Hidup dan Kehutanan," 
Jakarta: Kementerian Lingkungan Hidup dan Kehutanan, 2021. 

[16] N. P. Purba et al., "Marine debris in Indonesia: A review of research and 
status," Marine Pollution Bulletin, vol. 146, pp. 134–144, Sep. 2019, 
https://doi.org/10.1016/j.marpolbul.2019.05.057. 

[17] P. Agamuthu, S. Mehran, A. Norkhairah, and A. Norkhairiyah, "Marine 
debris: A review of impacts and global initiatives," Waste Management 
& Research, vol. 37, no. 10, pp. 987–1002, Oct. 2019, https://doi.org/ 
10.1177/0734242X19845041. 

[18] "Kementerian Kelautan dan Perikanan," 2024. [Online]. Available: 
https://kkp.go.id/download-pdf-akuntabilitas-kinerja/akuntabilitas-
kinerja-pelaporan-kinerja-2024-pusdik-lkj-triwulan-i.pdf. 

[19] M. Tian, X. Li, S. Kong, L. Wu, and J. Yu, "A modified YOLOv4 
detection method for a vision-based underwater garbage cleaning robot," 
Frontiers of Information Technology & Electronic Engineering, vol. 23, 
no. 8, pp. 1217–1228, Aug. 2022, https://doi.org/10.1631/ 
FITEE.2100473. 

[20] X. Li, M. Tian, S. Kong, L. Wu, and J. Yu, "A modified YOLOv3 
detection method for vision-based water surface garbage capture robot," 
International Journal of Advanced Robotic Systems, vol. 17, no. 3, May 
2020, Art. no. 1729881420932715, https://doi.org/10.1177/ 
1729881420932715. 

[21] S. Majchrowska et al., "Deep learning-based waste detection in natural 
and urban environments," Waste Management, vol. 138, pp. 274–284, 
Feb. 2022, https://doi.org/10.1016/j.wasman.2021.12.001. 

[22] M. Malik et al., "Waste Classification for Sustainable Development 
Using Image Recognition with Deep Learning Neural Network Models," 
Sustainability, vol. 14, no. 12, Jan. 2022, Art. no. 7222, 
https://doi.org/10.3390/su14127222. 

[23] Y. Cheng et al., "FloW: A Dataset and Benchmark for Floating Waste 
Detection in Inland Waters," in 2021 IEEE/CVF International 
Conference on Computer Vision (ICCV), Montreal, QC, Canada, Oct. 
2021, pp. 10933–10942, https://doi.org/10.1109/ICCV48922.2021. 
01077. 

[24] "Flow-Img," OrcaUBoat. https://orca-tech.cn/en/datasets/FloW/FloW-
Img. 

[25] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement." 
arXiv, Apr. 08, 2018, https://doi.org/10.48550/arXiv.1804.02767. 

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look 
Once: Unified, Real-Time Object Detection," in 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 
USA, Jun. 2016, pp. 779–788, https://doi.org/10.1109/CVPR.2016.91. 

[27] M. Tharani, A. W. Amin, M. Maaz, and M. Taj, "Attention Neural 
Network for Trash Detection on Water Channels." arXiv, Jul. 09, 2020, 
https://doi.org/10.48550/arXiv.2007.04639. 

[28] T. Diwan, G. Anirudh, and J. V. Tembhurne, "Object detection using 
YOLO: challenges, architectural successors, datasets and applications," 
Multimedia Tools and Applications, vol. 82, no. 6, pp. 9243–9275, Mar. 
2023, https://doi.org/10.1007/s11042-022-13644-y. 

[29] C. Y. Wang and H. Y. M. Liao, "YOLOv1 to YOLOv10: The fastest and 
most accurate real-time object detection systems." arXiv, Aug. 18, 2024, 
https://doi.org/10.48550/arXiv.2408.09332. 

[30] M. M. Moussa, R. Shoitan, Y. I. Cho, and M. S. Abdallah, "Visual-
Based Children and Pet Rescue from Suffocation and Incidence of 
Hyperthermia Death in Enclosed Vehicles," Sensors, vol. 23, no. 16, Jan. 
2023, Art. no. 7025, https://doi.org/10.3390/s23167025. 

[31] L. Zhao and M. Zhu, "MS-YOLOv7:YOLOv7 Based on Multi-Scale for 
Object Detection on UAV Aerial Photography," Drones, vol. 7, no. 3, 
Mar. 2023, Art. no. 188, https://doi.org/10.3390/drones7030188. 

[32] Z. Chen, C. Liu, V. F. Filaretov, and D. A. Yukhimets, "Multi-Scale 
Ship Detection Algorithm Based on YOLOv7 for Complex Scene SAR 
Images," Remote Sensing, vol. 15, no. 8, Jan. 2023, Art. no. 2071, 
https://doi.org/10.3390/rs15082071. 

[33] E. Sediyono, Suhartono, and C. Nivak, "Measuring the Performance of 
Ontological Based Information Retrieval from a Social Media," in 2014 
European Modelling Symposium, Pisa, Italy, Oct. 2014, pp. 354–359, 
https://doi.org/10.1109/EMS.2014.15. 

[34] J. Revaud, J. Almazan, R. Rezende, and C. D. Souza, "Learning With 
Average Precision: Training Image Retrieval With a Listwise Loss," in 
2019 IEEE/CVF International Conference on Computer Vision (ICCV), 
Seoul, Korea (South), Oct. 2019, pp. 5106–5115, https://doi.org/ 
10.1109/ICCV.2019.00521. 

[35] O. E. Olorunshola, M. E. Irhebhude, and A. E. Evwiekpaefe, "A 
Comparative Study of YOLOv5 and YOLOv7 Object Detection 
Algorithms," Journal of Computing and Social Informatics, vol. 2, no. 1, 
pp. 1–12, Feb. 2023, https://doi.org/10.33736/jcsi.5070.2023. 


