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ABSTRACT 

In UAV-IoT systems, trajectory planning is crucial for maintaining effective communication, coordination, 

and energy efficiency. This challenge is further compounded when UAVs need to coordinate with IoT 

devices and maintain continuous communication. Existing approaches struggle with limited scalability and 

inefficient energy management in UAV-supported IoT networks, leading to increased latency and reduced 

data throughput as network size expands. This work introduces an energy-efficient framework using a 

multi-objective PathFinder algorithm designed to simultaneously handle transmission coordination 

between drones and IoT devices. The proposed approach facilitates collaborative decision-making for 

route planning and resource allocation by utilizing the Collaborative Index, which measures cooperative 

behavior among network nodes, emphasizing key node cooperativeness parameters. Furthermore, a multi-

objective fitness function was constructed for effective path planning using the Collaboration Index of 

nodes in the path and the QoS of the path. To validate the efficacy of the proposed model, a series of 

simulations were conducted focusing on key performance indicators such as energy consumption, data 

delay, and task completion rates against existing state-of-the-art methods. 

Keywords-UAV-IoT network; path planning; trajectory optimization 

I. INTRODUCTION  

Drones, also known as Unmanned Aerial Vehicles (UAVs), 
have revolutionized numerous sectors by providing enhanced 
capabilities for aerial surveillance, delivery services, 
environmental monitoring, and communication [1, 2]. When 
integrated with the Internet of Things (IoT) [3, 4], UAVs 
become part of a sophisticated network where devices 
communicate, share data, and perform tasks autonomously. 
The architecture of a UAV-IoT network is designed for robust 
communication and efficient data transfer [5]. The UAV-IoT 
network architectures integrate various communication 
technologies, including Wi-Fi/WiMax, 3G, 4G LTE, and 5G 
[6], each covering different clusters of IoT devices. The IoT 
devices are categorized into static and moving, facilitating 
diverse application scenarios. UAVs are positioned at different 
altitudes, low, medium, and high, each serving as a platform to 

relay and process data from ground-based IoT sensors to a 
central ground station and control center. The control center 
acts as the hub for data aggregation, processing, and command 
dispatch, ensuring optimized management of the entire 
network. This hierarchical UAV deployment allows for 
scalable coverage and enhanced communication capabilities 
across varied terrains and operational conditions [7]. 

Energy efficiency is one of the primary challenges in UAV-
IoT networks [8, 9], as they are typically battery-powered, and 
their operational time is constrained by limited battery 
capacity. Efficient energy management is crucial to maximize 
flight time and ensure that UAVs can complete their missions 
without needing frequent recharges. This challenge is 
compounded when UAVs need to coordinate with IoT devices, 
as maintaining continuous communication and data transfer 
further drains the battery. 
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Trajectory planning for UAVs involves determining the 
optimal flight paths they should follow to complete their 
missions efficiently and safely [10, 11]. The trajectory planning 
process takes into account various factors, such as energy 
consumption, obstacles, weather conditions, communication 
requirements, and mission-specific objectives [10, 12]. Many 
existing trajectory planning methods are rigid and cannot 
dynamically adapt to unexpected changes in the environment, 
such as sudden weather changes or moving obstacles. This 
limitation can lead to failed missions or the need for manual 
intervention, reducing the autonomy of UAV operations. 
Current algorithms are often not optimized for the energy 
consumption of UAVs [13, 14], leading to suboptimal path 
planning that can drain battery life faster than necessary.  

Given these challenges, there is a clear need for a more 
sophisticated approach. The proposed cooperative trajectory 
planning framework addresses these issues by leveraging 
collaboration among multiple UAVs. The main contributions 
of this work are:  

 Proposes a novel collaborative framework designed to 
optimize the coordination of transmissions between UAVs 
and IoT devices, focusing on energy efficiency and 
resource allocation. 

 Adapts the PathFinder optimization algorithm to enhance 
trajectory planning and resource allocation, ensuring 
optimal performance. 

 Encourages collaborativeness between nodes within the 
network using a node ranking index, called Collaboration 
Index (CI), which takes into account node parameters 
including energy consumed, packet forwarding ratio, 
number of tasks completed, coordination overhead, and 
number of collisions. 

 Develops a multi-objective fitness function for effective 
path planning using the CI of nodes in the path and the QoS 
of the path. 

 Evaluates the framework using key performance metrics, 
including average delay, throughput, energy consumption, 
task completion rate, and packet loss rate, to determine its 
efficiency and reliability. 

II. SYSTEM MODEL  

The system model for UAV-IoT communication involves 
UAVs � = ��� , �� , … , �	
  dispatched to collect data from 
ground-based IoT clusters � = ���, ��, … , �
, with each cluster 

��  composed of multiple IoT nodes � =  ���, ��, … , ��� and 

one designated as the Cluster Head (CH) ���� . This model 

integrates several key components, outlined mathematically 
and functionally to ensure clarity and precision in 
understanding the UAV's mission, trajectory, and operational 
constraints. Each IoT node ��  and UAV � are assigned specific 

spatial coordinates. The nodes have fixed positions ��� =
���� , ��� ,  ��!  while the UAV's position �"#$% = 
#�"#$%, �"#$%,  "#$%% changes over time as it flies. The UAV 
takes off from and returns to a Base Station (BS), represented 

by the point ℎ'( and follows a trajectory that includes hovering 

directly above each CH at designated points ℎ��� . 

The UAV's trajectory is defined as a sequence of waypoints 
reflecting its path from the BS, through each cluster's CH, and 
back to the BS. This path is vital for optimizing the UAV's 
energy consumption and operational efficiency. The UAV does 
not account for acceleration or deceleration, simplifying the 
model to consider only direct flights from one point to another. 
The Euclidean distance between the UAV and any node is 
calculated as 

)�� = *��� − ��!� + ��� − ��!� + � � −  �!�
  (1) 

A. Multi-Objective Optimization Target 

The UAV should consume the least amount of energy 
possible during its flight, which involves optimizing the path to 
reduce the distances flown over unnecessary areas or at 
suboptimal speeds. Reducing the time it takes to complete a 
mission is also crucial. In scenarios where predefined paths are 
optimal for regulatory or safety reasons, minimizing the 
deviation from these paths is essential. 

B. Collaboration Index 

The problem of trajectory planning can be divided into two 
parts, the first being the identification of the best path for 
communication and the second being selecting the best nodes 
for cooperation. The issue of the optimization target for the 
proposed communication consists of two main parts, which 
include node parameters, such as energy consumption, collision 
rate, and tasks completed, which are combined to create a node 
ranking index called CI. The CI can be defined as a metric that 
quantifies the degree to which nodes in the network actively 
engage in cooperative behaviors to achieve common 
objectives. It takes into account various aspects of 
collaboration, such as data sharing (packet forwarding ratio) 
and task coordination (completion time, coordination 
overhead). CI is formulated as 

-. = /� ⋅ �
1 + /� ⋅ �

� + /2 ⋅ 3 + /4 ⋅ 567 + /8 ⋅ �
�9 − /: ⋅

 �
;       (2) 

where < is the energy consumed, 5=> is the Packet Forwarding 
Ratio, 3  is the Completion Time for the tasks, ?  is the 
coordination overhead, and /�, … , /: are weights reflecting the 
relative importance of each component. 

C. QoS Index 

To construct a QoS index that effectively scores and 
identifies the best communication paths within a UAV-IoT 
network, several key performance metrics that affect QoS 
should be considered. The proposed QoS index integrates these 
metrics into a single comprehensive score. The QoS index is 
composed of QoS metrics such as average delay, E2E delay, 

throughput, and PDR of the path. Average delay ( @ABC ) 

measures the average time taken for packets to travel across the 
network from the source to the destination. A lower average 
delay is indicative of a faster and more responsive network. 

End-to-End Delay (<2<EFGAH ) captures the total transmission 
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time from the source to the destination. This includes all delays 
incurred during packet processing, transmission, propagation, 
and queueing throughout the network path. Throughput I 
represents the rate at which successful message delivery occurs 
across a communication channel. Higher throughput values 
indicate more efficient data handling and network utilization. 
The ratio of the number of packets successfully delivered to the 
destination to the number of packets sent by the source is the 
PDR of the path. A higher PDR suggests a more reliable 
connection. The QoS index can be formulated as a weighted 
sum of these components, adjusting for the fact that delays 
should be minimized while throughput and PDR should be 
maximized. 

QoS Index = J� ⋅ �
KL + J� ⋅ �

1�1L + J2 ⋅ I + J4 ⋅ 5M> (3) 

where J are the weights assigned to each metric according to 
their relative importance in the specific application. These 
weights are adjusted by optimizing the operational priorities or 
specific network performance targets. Creating a function that 
combines QoS and CI allows for a more holistic approach to 
managing UAV-IoT networks, ensuring that both technical 
performance and collaborative effectiveness are optimized. The 
combined fitness function aims to balance these indices, 
recognizing that the network's ultimate goal is to optimize both 
communication quality and collaborative efficiency. These 
indices are combined using a weighted sum approach. 

=N$�OPP = QR�NQN O  # S ⋅  QoS Index + #1 −S% ⋅  Collaboration Index%     (4) 

where S is the weight that reflects the relative importance of 
QoS versus collaboration in the specific application scenario, 
and the goal of the optimization algorithm is to maximize the 
fitness function return. 

D. PathFinder Algorithm 

The Pathfinder algorithm [15] in the context of 
optimization is a relatively recent nature-inspired metaheuristic 
designed to solve complex optimization problems. The 
Pathfinder algorithm operates using a population of candidate 
solutions, called pathfinders. Each pathfinder explores the 
search space, and its movements are influenced by the best 
solution found in the population. Pathfinder dynamically adapts 
its search strategy based on the fitness landscape of the 
problem. 

Pathfinder optimization, when applied to UAV trajectory 
planning in the context of energy-efficient transmission 
coordination for cooperative UAV-IoT networks, can offer 
significant advantages [15, 16]. Pathfinder's ability to 
effectively balance the exploration of new paths and the 
exploitation of known good paths can significantly optimize 
UAV routes, ensuring comprehensive coverage and efficient 
path planning. UAVs operating in dynamic environments, such 
as changing weather conditions or variable IoT signal 
requirements, can benefit from Pathfinder's adaptive search 
mechanisms that respond to real-time data. By optimizing the 
UAV's flight path for energy efficiency and time management, 
Pathfinder can help prolong UAV operational times and reduce 
the need for frequent recharging or maintenance. Optimized 
trajectories mean less wear and tear on UAVs and less fuel or 

battery usage, which collectively reduce the operational costs 
associated with UAV fleets. 

Since UAVs operate in a 3D space (latitude, longitude, 
altitude), the algorithm's position vector and the swarm 
members are defined in a 3D space. This includes adapting all 
force vectors and movement calculations to incorporate the 
three dimensions. The leader, or the Pathfinder, is selected 
based on its position relative to a defined objective, such as the 
most energy-efficient route or the quickest path considering no-
fly zones and weather conditions. Leader selection criteria can 
include factors such as battery level, proximity to the final 
destination, or even UAV's current network connectivity status, 
ensuring the leader is best suited for leading the swarm under 
current conditions. 

1) PathFinder Algorithm For UAV Trajectory Planning 

 5�UV�: New position of UAV N at time $ + 1. 

 5�U: Current position of UAV N at time $. 

 5�U: Current position of another UAV W in the swarm. 

 5GU : Current position of the leader or pathfinder UAV at 
time $. 

 X�,  X� : Random vectors with components in the range [−1, 1]. 
 [��: Euclidean distance between UAV N and UAV W. 

 \: Current iteration number. 

 \max: Maximum number of iterations allowed. 

 ]: Random vibration or perturbation term. 

 ^: Fluctuation factor affecting the leader's trajectory. 

The adapted UAV trajectory planning algorithm uses a 
modified PathFinder optimization framework to effectively 
manage UAVs in a three-dimensional environment. The 
algorithm commences by initializing the positions of all UAVs 

5�_  in 3D space and selecting an initial pathfinder or leader 
based on specific criteria, such as battery status or proximity to 
the final destination. Each UAV N  updates its position 
according to  

5�UV� = 5�U + -� ⋅ �5�U − 5�U! + -� ⋅ #5GU − 5�U% + Ω  (5) 

where 5�U is the position of another UAV W in the swarm, 5GU is 

the position of the pathfinder, and ]  represents a random 
vibration or noise factor, defined as  

] = a1 − b
bcdef ⋅ X� ⋅ [��     (6) 

with X�  being a random vector in the range [−1, 1]  and [�� 

denoting the distance between UAVs N  and W . This term 
introduces variability and adapts to dynamic changes in the 
environment, simulating real-world uncertainties. The 
pathfinder's position is updated using 

5GUV� = 5GU + Δ5 + ^     (7) 
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with Δ5  being the movement vector, and ^  being the 
fluctuation factor calculated by: 

Λ = X� Oi jk
k
max      (8) 

where X�  is another random vector. As iterations proceed, \ 
increments until it reaches the maximum allowed iterations \max  or until the UAVs converge sufficiently to the optimal 
path. After updating positions, the multi-objective fitness 
function is evaluated for each pathfinder to assess the current 
configuration's effectiveness in achieving objectives, and if 

=N$�OPP�Fl  is better than global fitness =N$�OPPCGmnAG , the 

PathFinder algorithm updates =N$�OPPCGmnAG  with =N$�OPP�Fl . 

If \ reaches \max or if the UAVs have sufficiently converged 
to the optimal path, the algorithm is stopped. 

Figure 1 describes a UAV trajectory planning model using 
the Pathfinder algorithm, which begins with the initialization 
phase, where drones are deployed at random positions in a 3D 
space. After initialization, each drone receives target positions 
from a BS, setting the stage for trajectory planning. Within the 
Pathfinder process, each drone and its target point are grouped 
into clusters, and potential paths are generated. These paths are 
evaluated based on a CI and a QoS index to ensure optimal 
routing and cooperation between drones. 

 

 

Fig. 1.  Trajectory planning using the pathfinder algorithm for collaborative UAV-IoT network. 

If the current system's fitness, assessed through these 
indices, surpasses a predefined global fitness standard, the 
improved trajectories and cluster leader information are 
communicated to each drone. Subsequently, the drones execute 
these updated plans, involving movement and communication 

as specified. Post-execution, drones wait in a hover state for 
further instructions or the next assignment. The process 
continuously checks for a termination condition, which could 
be based on task completion, time elapsed, or other criteria. 
The operation ends when these conditions are satisfied, 
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terminating the process. This structured approach allows for 
dynamic and efficient management of UAV trajectories, 
ensuring high performance and adaptability in UAV 
operations. 

III. EXPERIMENTAL ANALYSIS 

The experimental setup to evaluate UAV trajectory 
optimization protocols used MATLAB [17] on an Intel i5 CPU 
with 16GB RAM, simulating a dynamic environment with 
parameters such as a 300×300 m coverage area and UAV 
speeds set to 20 m/s. Table I shows the parameter settings used 
to remain consistent with state-of-the-art methods. 

TABLE I.  PARAMETERS FOR THE EXPERIMENTAL SETUP 
FOR EVALUATING COLLABORATIVE UAV-IOT 

Parameter Value 

Channel gain -20 dB 

Coverage Area 300×300 m 

Hovering altitude of UAV 6 m 

Max Elevation 20 m 

Max Iterations 10 

Noise power -50 dBm 

Number of IoT devices 100- 900 

Number of UAVs 1-10 

Propagation Model   Two-ray 

Radio Interface IEEE 802.11p 

Transmission bandwidth 150 KHz 

UAV speed 20 m/s 

 
Simulations involve 1-10 UAVs and 100-900 IoT devices, 

evaluating protocols such as Queuing Delay and Transmission 
Delay (QDTD) [18], Drone-enabled Data Communication for 
IoT (DDCIoT) [1], Comprehensive Energy Consumption 
(CEC) [19], Propulsive Energy Minimization (PEM) [20], and 
Age of Information-based strategy planning (AoI-IP) [21] 
across metrics including data delay, throughput, task execution 
delay, task completion rates, and energy consumption of both 
IoT devices and UAVs. The objective is to compare these 
protocols in terms of scalability, energy efficiency, 
responsiveness, and reliability under varying network densities 
and operational demands. This setup allows for a detailed 
analysis of each protocol's performance, emphasizing the 
efficiency and effectiveness of UAV operations within a large-
scale IoT environment. By varying the number of IoT devices 
and UAVs, the experiments can test how well each trajectory 
planning protocol scales and performs under different network 
densities and operational demands. The key focus is on how 
each protocol manages and minimizes energy consumption, 
which is crucial for practical deployment where battery life and 
operational costs are critical. This setup is designed to provide 
a comprehensive assessment of the proposed Pathfinder 
performance optimization against state-of-the-art techniques in 
UAV trajectory planning, especially concerning energy 
management and operational efficiency in dynamic and 
potentially dense IoT environments. 

Figure 2 shows the relationship between data throughput in 
Mbps and the channel busyness ratio for QDTD, DDCIoT, and 
the proposed method. The channel busyness ratio, ranging from 
1 to 10, represents the proportion of time the channel is active 
(not idle). 

 

 
Fig. 2.  Throughput vs channel busyness of the proposed collaborative 

UAV-IoT network. 

Figure 2 shows that as the channel busyness ratio increases, 
the throughput for all methods also increases, indicating that 
more active channel usage allows higher data transmission 
rates. Initially, all three methods start with relatively low 
throughput at a channel busyness ratio of 1. As the ratio 
increases, each method's throughput improves significantly, 
with the proposed method and QDTD showing a steeper 
increase compared to DDCIoT. At lower busyness ratios (1 to 
5), the proposed method outperforms both QDTD and 
DDCIoT, demonstrating its efficiency in managing higher 
throughput even when the channel is less occupied. As the ratio 
continues to increase, the performance differences between the 
methods become less pronounced, but the proposed method 
consistently maintains the highest throughput, followed closely 
by QDTD, with DDCIoT consistently trailing. The proposed 
method achieved the highest throughput, suggesting that it is 
more effective in optimizing data transfer rates across varying 
channel activities.  

Figure 3 shows the data delay in seconds as a function of 
the channel busyness ratio for QDTD, DDCIoT, and the 
proposed method. From the data, it can be observed that the 
proposed method consistently demonstrates the lowest delay 
across all channel busyness ratios, indicating its superior 
performance in managing communication latency in busy 
channels. The proposed method is the most effective in 
minimizing delay, which makes it potentially more suitable for 
real-time applications where low latency is crucial. 

Figure 4 shows the energy consumption in mJ for various 
methods across different network sizes, ranging from 100 to 
900 IoT nodes. The methods compared are CEC, PEM, AoI-IP, 
EETO-GA, and the proposed. This figure shows that as the 
network size increases, the energy consumption generally 
increases for all methods. However, the rate of increase and the 
absolute values differ significantly between them. The 
proposed method shows a relatively consistent and moderate 
increase in energy consumption as the network size increases, 
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suggesting that it effectively manages energy efficiency across 
different scales. The proposed method appears to offer a 
favorable balance of energy efficiency across varying network 
sizes, suggesting its potential utility for large-scale UAV-IoT 
deployments where energy conservation is crucial, making it a 
compelling choice for energy-sensitive UAV-IoT applications. 

 

 
Fig. 3.  Communication delay vs channel busyness of the proposed 

collaborative UAV-IoT network. 

 

Fig. 4.  UAV energy consumption compared to state-of-the-art methods. 

Figure 5 compares the energy consumption of IoT devices 
across various network management methods as the network 
size increases from 100 to 900 IoT nodes. Energy consumption 
for all methods increases with network size, reflecting the 
greater demand for resources as more devices are connected. 
Notably, the proposed method consistently exhibits the lowest 
energy consumption across all network sizes. The proposed 
method is at least 70% better compared to the other state-of-
the-art methods in terms of IoT device energy consumption. 

Figure 6 illustrates the task completion percentages for 
various SOTA methods across different network sizes and the 
improvements each method achieved. The proposed method 
significantly outperformed the others across all network sizes, 

as it was 12.4%, 13.9%, 11.5%, and 3.2% better in terms of 
Task Completion Rate (%) compared to CEC, PEM, AoI-IP, 
and EETO-GA, respectively. 

 

 

Fig. 5.  IoT Device energy consumption comparison. 

 

Fig. 6.  Task completion percentage compared to existing methods. 

Figure 7 shows that the proposed method significantly 
reduced the delay across all network sizes compared to the 
other methods. The average delay for the proposed method 
remained markedly lower, particularly in larger network sizes, 
highlighting its efficiency and optimized performance in 
handling larger and more complex networks. The other 
methods show an increasing trend in delay as the network size 
increases, with CEC and PEM experiencing a particularly sharp 
increase in delays at larger network sizes. AoI-IP and EETO-
GA also show increasing delays, but their increase is less steep 
compared to CEC and PEM. The proposed method 
substantially reduced delay compared to the others, achieving 
the most significant improvement over CEC (62.0%), followed 
by PEM (56.1%), AoI-IP (54.7%), and EETO-GA (26.8%). 
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Fig. 7.  Average delay (s) compared to existing methods. 

IV. CONCLUSION 

This study proposed an energy-efficient transmission 
coordination framework for cooperative UAV-IoT networks 
using the PathFinder optimization algorithm. The framework 
was designed to simultaneously handle transmission 
coordination between UAVs and IoT devices, aiming to 
optimize trajectory planning and resource allocation while 
considering network parameters. The comprehensive 
evaluation and analysis demonstrated promising results 
compared to existing methods for optimizing the performance 
and efficiency of cooperative UAV-IoT networks. The novelty 
of the proposed method is the introduction of the Collaboration 
Index (CI), which serves as a key metric to assess the 
cooperativeness and collaborative efficiency of the nodes 
within a UAV-IoT network. This index is calculated based on 
several factors, including the frequency and reliability of data 
exchanges between nodes, the successful completion of shared 
tasks, and the synchronization accuracy in communication 
protocols among UAVs and IoT devices. The proposed method 
consistently outperformed other UAV-IoT network methods 
(QDTD, DDCIoT, CEC, PEM, AoI-IP, EETO-GA) across 
various metrics and network sizes. It exhibited the highest data 
throughput and task completion rates, significantly lower 
energy consumption, and markedly reduced delay times, even 
as network sizes scaled up to 1000 nodes. Its performance 
indicates superior scalability and efficiency, particularly in 
larger networks. The improvements in delay reduction and 
energy efficiency are substantial compared to previous state-of-
the-art methods, confirming its potential suitability for large-
scale UAV-IoT deployments where minimizing delay and 
energy consumption is crucial for optimal performance. 
Looking forward, the potential for expanding this architecture 
includes incorporating machine learning algorithms, especially 
deep learning models, to dynamically predict and adapt to 
network demands. Additionally, implementing more 
comprehensive security protocols to protect data in transit 
between UAVs and ground stations in this increasingly 
complex network would be crucial to address. 
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