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ABSTRACT 

Electricity load forecasting is an important aspect of power system management. Improving forecasting 

accuracy ensures reliable electricity supply, grid operations, and cost savings. Often, collected data consist 

of Missing Values (MVs), anomalies, outliers, or other inconsistencies caused by power failures, metering 

errors, data collection errors, hardware failures, network failures, or other unexpected events. This study 

uses real-world data to investigate the possibility of using synthetically generated data as an alternative to 

filling in MVs. Three datasets were created from an original one based on different imputation methods. 

The imputation methods employed were linear interpolation, imputation using synthetic data, and a 

proposed hybrid method based on linear interpolation and synthetic data. The performance of the three 

datasets was compared using deep learning, machine learning, and statistical models and verified based on 

forecasting accuracy improvements. The findings demonstrate that the hybrid dataset outperformed the 

other interpolation methods based on the forecasting accuracy of the models. 

Keywords-bad data; missing values; deep learning; synthetic data; electricity load forecasting; generative 

adversarial network 
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I. INTRODUCTION  

Managing electricity demand and supply is a crucial aspect 
of a power system. Every country relies on energy to develop 
its industries and economy [1]. Energy is a real-time resource 
with limited storage capacity. Forecast errors lead to wasted 
resources and increased operational costs. Thus, the quest for 
improved accurate forecasting models is an ongoing process. 
As a single generic model cannot effectively address all issues, 
the forecasting problem is categorized into short-, medium-, 
and long-term load forecasting [2]. Machine Learning (ML) 
and Deep Learning (DL) based load predictions have 
experienced explosive growth in recent years due to their 
ability to handle nonlinearity, large data, feature extraction 
automation, and good performance [3]. 

Energy management systems use smart meters to collect 
fine-grained consumption readings from houses, buildings, 
towns, and cities and perform operations such as load and 
demand forecasting [4]. Load data are a key component in load 
forecasting, which must be cleaned by removing errors and 
handling missing data to train and test forecasting models [5]. 
The collected data often have problems, such as missing data, 
outliers, anomalies, and other inconsistencies. The main causes 
of these problems are power failures, measurement errors, data 
collection errors, hardware failures, network failures, or other 
unexpected events [6]. In any real-world data, missing data is a 
ubiquitous problem. Regardless of the DL or ML model 
employed, handling missing data is an important issue 
wherever data quality cannot be ensured. Models trained on 
limited or low-quality data decrease the model's accuracy [7, 
8]. Therefore, it is essential to impute missing data and process 
them to obtain better and more accurate forecasts [8, 9]. 
Missing data are commonly classified into three categories. 
The first is Missing Completely At Random (MCAR), which 
denotes entirely random missing data points that do not depend 
on observed or unobserved values. Missing At Random (MAR) 
describes missing data related to the observed values, but not to 
the missing ones. Missing Not At Random (MNAR) describes 
missing data that depend on observed and unobserved values 
[10]. In this study, the missing data were considered MCAR 
and MNAR. 

Missing data problems have been studied across various 
sectors. Imputation methods are commonly classified into three 
types. The first is case deletion, which ignores some important 
information and discards incomplete observations. This 
approach results in poor results with an increasing missing rate. 
The second is statistical imputation, which employs statistical 
algorithms, such as mean, median, or the most common value 
imputation. The third approach uses ML and DL algorithms to 
make predictions to impute MVs, also called predictive 
methods [4, 11]. Despite advances in missing data imputation 
using statistical, ML, and DL techniques, challenges remain. 
Some studies presented imputation models focusing on specific 
datasets, as each dataset has unique characteristics. The 
performance of various methods differs with varying missing 
rates [12], which requires a study to handle different missing 
data characteristics using specific techniques. Missing data are 
single missing points and missing block types. The type of 
single missing points are isolated single missing points with 

one record (hour) missing. On the other hand, missing blocks 
consist of consecutive missing records, as shown in Figure 1. 

 

 

Fig. 1.  Types of missing blocks. A green × represents a single missing 

point type, while consecutive red ××× represents missing blocks. 

Most studies on missing data imputation generate the 
missing data artificially [12-15], and the developed model is 
used to impute or reconstruct the entire missing data. Studies 
such as [12, 16] stated that linear interpolation is effective 
when missing gaps are smaller, but performance deteriorates 
when missing gaps and missing rates increase. This study 
focuses mainly on imputing the smaller missing gaps with 
linear interpolation and the larger missing blocks with 
Generative Adversarial Networks (GANs). GANs are one of 
the approaches used for missing data imputation. GANs are 
typically used as a tool for data augmentation to reconstruct 
missing or limited data. 

Multiple methods have been proposed to generate synthetic 
data, with the most popular being Variational Auto-Encoders 
(VAEs) and GANs. This study utilized the TimeGAN model, 
proposed in [17]. TimeGAN was selected because it can handle 
sequential time series data and is publicly available. The 
dataset obtained from these imputation methods was used to 
train the models and compare their forecasting accuracy to 
determine which imputation method is the best for this dataset. 
The dataset consisted of two years of data from SGtech's 
prosumer building. The contributions of this work are the 
following: 

 A new hybrid approach to impute missing data, based on 
linear interpolation and synthetic data, explores the 
applicability of GANs in imputing missing data in 
electricity load forecasting. Handle effectively different 
missing data, considering the missing points and blocks of a 
dataset. 

 The proposed hybrid method outperforms the linear 
interpolation and synthetic data missing data imputation 
methods in terms of forecasting accuracy improvement of 
the implemented models. 

II. RELATED WORKS 

This section provides an overview of the two key 
components of this study: Linear Interpolation (LI) and GANs.  
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A. Linear Interpolation (LI) 

LI estimates a missing value �� from the closest preceding 

and succeeding available values ��  and �� . The generic 

representation of LI is 

�� = �� + ��	�
�∗��	��
���	�
�    (1) 

where �� < � < ��. ��  and ��  are the indices of the known data 

points surrounding the missing data point, �� − ��  are the 

values of the known data points, � is the position of missing 
data and ��  is the missing data that will be imputed. 

LI estimates the value at other points through all known 
points. Implementing LI is a simple and fast process [12, 18, 
19]. As the missing rate increases, the performance of LI 
imputation decreases. However, this is true for all imputation 
methods. According to [12], LI and the proposed CC-GAIN 
model exhibited the best performance compared to the other 
imputation methods. In [20], three interpolation methods were 
compared, namely linear, quadratic, and cubic interpolation, on 
a PM10 dataset, where the linear interpolation method achieved 
the best results. Similarly, in [14], it was found that linear 
interpolation was more accurate for short-term solar irradiance 
forecasting. Therefore, this study chose LI as the baseline 
imputation model to compare with the synthetic data 
imputation method. Moreover, since LI shows strong 
performance in lower missing data points, LI was used to 
impute point-type missing data, and synthetic data were used to 
impute the larger block missing points when creating the 
proposed HF dataset.  

B. Generative Adversarial Networks (GANs) 

GANs were initially developed for image generation. Their 
success has inspired fields such as natural language processing 
for tasks such as sentence generation. GANs have also been 
used for time series problems, such as imputing missing data 
and data augmentation in medical research, electricity load, 
solar data, and traffic data. The GAN framework typically 
consists of two neural networks, a generator �  and a 
discriminator �. The generator network generates artificial data 
from the training data, and the discriminator network tries to 
differentiate if the generated data are fake or real [21].  

Several studies have proposed specific GAN models for 
missing data imputation in electricity loads. CC-GAIN, a 
missing data imputation model that combines unsupervised 
clustering and classification-based GAN [12], improved the 
accuracy of the imputation by maintaining the data 
characteristics effective for various missing data rates, 
outperforming other imputation methods. In [22], Least 
Squares Generative adversarial Networks (LSGAN) were 
proposed, which is an unsupervised learning model. In this 
approach, the network automatically learns the measurement 
data, the power distribution patterns, and other correlations, 
enabling the generator to generate highly accurate data to 
reconstruct the missing ones. The accuracy of the model was 
higher than that of the other GAN models it was compared 
with. In [23], an Augmented Neural Ordinary Differential 
Equation-assisted Generative Adversarial Network (ANODE-
GAN) was proposed, which used VAE to map incomplete time 

series to latent vectors, generate continuous-time dynamics, 
and decode them into complete data. With an additional 
discriminative network, ANODE-GAN accurately imputed 
missing data while preserving original features and temporal 
dynamics.  

However, most GAN implementations are closed-source, 
making it difficult to replicate and reproduce them. 
Reproduction of such works requires expertise in the field, 
which is a time-consuming and costly undertaking. This study 
implements a publicly available GAN-based model called 
TimeGAN [17] to generate synthetic time series to impute 
missing data in a dataset. TimeGAN is a supervised GAN 
model designed to model the temporal dependencies in 
sequential data, tailored to create realistic time-series data. 
TimeGAN has been used effectively for data augmentation in 
load forecasting problems. For instance, in [24], synthetic and 
real data were investigated for electricity load forecasting. 
TimeGAN was used to generate realistic artificial electricity 
load data, and the dataset was tested in three configurations 
based on a Gated Recurrent Unit (GRU) neural network. 
Experiments were conducted with synthetic, real, and a mixture 
of real and synthetic data. The results showed that TimeGAN is 
a viable option for data augmentation. TimeGAN has also been 
used for data augmentation in other time series problems, such 
as health, telecommunications, and stocks [25-27].  

III. METHOD 

A. Data Collection And Preprocessing 

The data for this study were collected from the SGtech's 
prosumer building at hourly intervals. The dataset consisted of 
two years of records, from 1 January 2022 to 31 December 
2023. The dataset contains two features: datetime and load. 
Additional temporal features, such as hour, hour_group, 
weekday, weekend, worktime, and holiday, were extracted 
from datetime. Outliers were removed according to the 3-sigma 
rule. The dataset consists of 14,388 actual observations, with 
3,131 observations missing, as the total expected record should 
be 17,519 hours. The total percentage of missing data in the 
dataset was calculated by 

��������%� = �100 − ��
 �! × 100   (2) 

where #� denotes the actual data and $� denotes the expected 
data. This totals 17.87% of missing values in the dataset. 

B.  Analysis of Missing Data in the Dataset 

In [12, 28, 29], missing data were artificially generated by 
creating missing gaps of 10% to 90% of the dataset. In this 
study, missing data were due to the failure of the metering 
device to record data, and a large portion of them was due to a 
malfunction of the metering device caused by a lightning strike, 
which caused the meter to not record data for 656 continuous 
hours, making up 21% of the total missing data. Missing data 
are point- or block-type (clusters) [12]. In this dataset, there 
were 891 hours of point-type missing data spread across the 
dataset, which constitutes 28.5% of the total MVs. The rest of 
the missing data were block-type, ranging from 2 to a 
maximum of 656 continuous hours of missing observations 
between April and May 2022. Two missing blocks had more 
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than 200 continuous missing data points, and two other blocks 
had more than 100 continuous missing data points. The missing 
blocks with more than 100 continuous missing points 
constituted about 42% of the entire MV. The rest of the missing 
data were blocks of more than 2 and less than 100, constituting 
approximately 30% of the MVs. 

C. Synthetic Data Generation Process 

The 2023 dataset was used as a sample to generate 
synthetic data since it contained the least MVs. GAN requires 
high-quality training data for stability and performance. It is 
important to have minimal missing data in the training dataset 
for a GAN. The reason is to introduce minimal bias and 
generate quality synthetic data [21, 30]. For the 2023 dataset, 
MVs were initially filled using the interpolation method, and 
the synthetic data were generated using the TimeGAN model. 
The total synthetic data generated was 17,519 hours, which is 
equivalent to the expected data from the original dataset. The 
synthetically generated data were sequential and held the 
datetime record of the original dataset. A statistical similarity 
test on the load feature of the synthetically generated data was 
performed with the real data. It consisted of five metrics: mean, 
standard deviation, median, 25% quantile, and 75% quantile. 
The similarities were between 0 and 1, with 1 representing 
equal values. For the load feature of the synthetically generated 
data, the statistical measures were 1.00 for all metrics, 
indicating perfect similarity between the real and the synthetic 
data. 

D. Missing Data Imputation  

The 2022 and 2023 datasets had 3,131 MV records. 
Missing data were imputed using three approaches. In the first 
approach, the LI method was used to fill all MVs. This dataset 
is called LI and is considered the baseline for this study. In the 
second approach, synthetically generated data were used to 
replace the MVs. This dataset is denoted as SF. In the third 
approach, MVs were filled using a mix or a hybrid of LI and 
SF. This dataset was denoted as HF. All MVs were replaced 
corresponding to the actual datetime sequence in the case of 
replacing missing data with synthetically generated data. 

1) Missing Data Imputation Using Linear Interpolation (LI) 

For the first dataset (LI), MVs were replaced using the 
linear interpolation method. LI results in a long sloping linear 
line when MVs are continuous, as the LI method calculates 
MVs by drawing a straight line between two known data 
points. LI is an accurate missing data imputation method when 
the missing blocks are smaller, and its accuracy decreases as 
the size of the missing block increases. 

2) Missing Data Imputation Using Synthetic Data (SF) 

For the second dataset (SF), MVs were filled using 
synthetically generated data using TimeGAN. All MVs were 
replaced corresponding to the datetime of the original and the 
synthetic data. The problem with this dataset is that when the 
missing points are low, the replaced MVs in most cases are 
very different from the values of their neighboring values. In 
reality, the replaced values should be closer to the previous and 
the next data points, since the electricity load does not change 
drastically from one observation to the next. 

3) The Proposed Hybrid Missing Data Imputation by Linear 
Interpolation and Synthetic Data (HF) 

The proposed data imputation method was developed due 
to the problems found with the above two approaches in 
imputing MVs. In the third dataset (HF), MVs were filled by 
combining LI and synthetic data. The reason for this was that it 
is known that LI gives better results when block MVs are short. 
Certainly, the electricity load does not change drastically from 
one hour to the next. When observing the missing data filled 
using only synthetic data, it can be seen that the filled MVs for 
some smaller blocks significantly differ from the original 
series. 

This study experimented with different configurations of LI 
and synthetic data. The main goal was to identify the optimal 
combination of LI and SF to impute MVs, as illustrated in 
Figure 2. This process was iterated five times. In the first 
iteration, all point-type MVs were replaced with LI, while 
missing blocks of two or more consecutive values were 
imputed using SF. The dataset was then fed into the forecasting 
models, and the results were compared with the Mean Absolute 
Error (MAE) scores of the LI-imputed dataset. If the compared 
result is not satisfactory, the approach was modified in the next 
iteration, applying LI to missing blocks of two or fewer MVs 
while using SF for the remaining missing blocks. After the fifth 
iteration, it was determined that replacing blocks of three or 
fewer MVs with LI and blocks of four or more with SF 
achieved the best forecasting results. In the proposed HF 
dataset, 1,127 hours of data points with missing blocks of three 
or less MVs were replaced using the LI method, and the 
remaining 2,004 MVs were replaced using the SF method. 

 

 

Fig. 2.  Hybrid missing data imputation process.  

E. Forecasting Models 

The main intention was to verify if there are improvements 
using the imputed datasets with statistical, ML, and DL 
models. Auto-Regressive Integrated Moving Average 
(ARIMA), Support Vector Regression, and the Time-series 
Dense Encoder (TiDE) and Temporal Fusion Transformer 
(TFT) DL models were used. Each dataset was trained and 
tested using 80-20 train-test splits. First, the models were 
trained and tested on the LI dataset. The forecast accuracy 
result obtained was used as a baseline to compare the 
performance on the other two datasets. The performance of a 
dataset is considered good if the models have a better 
forecasting accuracy than the baseline. The forecast was carried 
out for multiple time horizons, ranging from 1, 2, 3, 5, and 7-
day forecasts, to study the model's performance on different 
forecasting horizons. 
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1) Auto-Regressive Integrated Moving Average (ARIMA) 

ARIMA is one of the most popular statistical approaches 
applied to electricity load forecasting. In general, ARIMA is 
written with the notation #%&'# �(, �, *�, where ( denotes the 
autoregressive orders in the model, �  is the order of 
differencing, and * is the moving average component. ARIMA 
also considers multiple seasonality, which is useful for 
electricity load forecasting. 

2) Support Vector Regression (SVR) 

SVR is a supervised ML method based on the Support 
Vector Machine (SVM) to model seasonal and cyclical effects. 
SVR, similar to neural network models, is capable of forming 
complex decision boundaries, but unlike them, SVR does not 
overfit the training data. It is effective for high-dimensional, 
nonlinear data. 

3) Time-Series Dense Encoder (TiDE) 

TiDE is a novel long-term time series DL forecasting 
model. TiDE uses a fully connected dense encoder that 
processes time series data efficiently, enabling it to capture 
long-term dependencies while being computationally efficient. 
TiDE can learn global as well as local patterns in time series 
data and ensures robust performance across different time 
horizons. TiDE is efficient in long-term forecast horizons. 

4) Temporal Fusion Transformer (TFT) 

TFT is a powerful multi-horizon time series forecasting DL 
model. It is a novel attention-based architecture with specific 
input processing to capture complex temporal patterns, while 
its interpretability features allow users to understand which 
factors drive the predictions. TFT excels in processing diverse 
inputs and making accurate multi-step forecasts. 

 

 

Fig. 3.  Workflow of the study. 

F. Performance Evaluation 

MAE was used to evaluate the performance of the 
imputation methods and to measure the forecasting accuracy of 
the models implemented on the datasets. MAE is a commonly 
used metric to evaluate the accuracy of a model. It calculates 
the average absolute difference between the actual and forecast 
values without considering their directions. It is nonsymmetric 
and does not penalize large errors. All errors are equally 
weighted, as shown in (3). 

'#$ = +
, ∑ |/� − /01,

�2+ |   (3) 

Figure 3 illustrates the workflow, which consists of three 
sections, the data collection and processing phase, various 
missing data imputation processes, and the implementation of 
forecasting models on the datasets. 

IV. EXPERIMENTAL RESULTS 

This section evaluates the performance of the datasets using 
the various models over multiple forecasting horizons. Tables I 
and II show the overall performance of the models 
implemented to compare the forecasting accuracy over the 
three datasets.  

A. Performance Analysis of the Imputation Methods 

Table I shows the forecasting results obtained on LI, SF, 
and the proposed HF method using SVR and ARIMA, and 
Table II represents the MAE scores of the TFT and TiDE 
models. For ARIMA, the best MAE accuracy was obtained 
using the HF method, followed by SF. Table I shows that for 
all forecasting horizons, ARIMA on the proposed HF imputed 
dataset achieved the best MAE. MV imputation using the SF 
method provided better accuracy than the LI imputation 
method, except for the 24-hour forecasting horizon (MAE of 
5.08 compared to 5.07 for LI). For the SVR model, the best 
MAE was obtained using SF, which outperformed HF and LI 
in all forecasting horizons. The LI method achieved better 
forecasting than the HF method in forecasting horizons of 24, 
48, and 160 hours. The HF method outperformed the LI and SF 
methods in all models except SVR. 

TABLE I.  MAE SCORES OF ARIMA AND SVR ON LI, SF, 
AND HF DATASETS 

Dataset LI SF HF AF SF HF 

Model ARIMA SVR 

Forecast length 

(hrs) 
MAE (kWh) 

24 5.07 5.08 4.93 1.00 0.97 1.04 

48 4.85 4.76 4.69 2.42 2.17 2.47 

72 5.25 5.24 5.06 3.01 2.64 2.99 

120 4.99 4.89 4.81 3.58 3.20 3.55 

168 4.58 4.53 4.49 3.38 3.13 3.43 

TABLE II.  MAE SCORE OF TFT AND TIDE ON LI, SF, AND 
HF DATASETS 

Dataset LI SF HF AF SF HF 

Model TFT TiDE 

Forecast length 

(hrs) 
MAE (kWh) 

24 0.89 1.33 0.79 1.25 1.54 0.92 

48 1.77 1.68 1.73 1.98 2.84 1.47 

72 1.99 2.00 1.78 2.21 2.64 1.69 

120 2.92 2.62 2.44 2.28 2.57 1.92 

168 2.25 2.14 1.85 1.88 2.14 1.80 

 
In the case of the TFT model, HF outperformed both the LI 

and SF methods in all forecasting horizons, except for the 48-
hour horizon where the SF dataset beat HF (MAE score of 
1.68, compared to 1.73). For the TFT model, the second-best 
performance score was achieved using SF, where it beat the LI 
method in three forecasting horizons. Finally, in the case of the 
TiDE model, the proposed HF method achieved better results 
than the LI and SF imputation methods in all forecasting 



Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 17931-17938 17936  
 

www.etasr.com Dorji et al.: Electricity Load Forecasting using Hybrid Datasets with Linear Interpolation and Synthetic … 

 

horizons. The next-best results were achieved by the LI 
method, which outperformed SF in all forecasting horizons as 
well.  

B. Performance Analysis Based on the Models Implemented  

This section discusses the forecasting accuracies obtained 
by the models for the various forecasting horizons on the three 
datasets. For the 24-hour forecast horizon, TFT outperformed 
the other models with an MAE of 0.79 on the HF dataset. 
Figure 4 shows the 24-hour load forecast for all models on the 
HF dataset. The TFT and TiDE models were closest to the 
actual data for the 48-hour prediction, while the farthest was 
ARIMA. TiDE produced the best MAE of 1.47, again on the 
proposed HF dataset, as shown in Figure 5. For the remaining 
forecast horizons, TiDE outperformed the other models in 
terms of forecast accuracy, as shown in Figures 6, 7, and 8. 
TiDE is specifically developed for long-term forecasting and 
outperforms the other models as the forecast length increases. 
However, the best forecast accuracies were all achieved on the 
dataset with the HF imputation method. The forecast results of 
all models strongly indicate that the proposed hybrid method is 
viable to impute MVs. 

 

 
Fig. 4.  MAE score of the forecasting models on 24-hour prediction length 

on the HF dataset. 

 

Fig. 5.  MAE score of the forecasting models on 48-hours prediction 

length on the HF dataset. 

When comparing the statistical, ML and DL models for all 
forecasting horizons, the DL models outperformed the others. 
However, for all models, the performance improved when the 
missing data imputation was performed using the proposed HF 
method, which outperformed both the SF and LI methods, 
except for the SVR model, which achieved its best 

performance on the SF dataset. Another observation is that as 
the length of the forecast horizon increases, the forecasting 
accuracy of the models also decreases for all the models 
implemented. The improvement in forecasting accuracy when 
imputing MVs using the hybrid approach over LI and SF 
strongly indicates that the proposed method is effective for 
imputing MVs in electricity load data. 

 

 

Fig. 6.  MAE score of the forecasting models on 72-hours prediction 

length on the HF dataset. 

 
Fig. 7.  MAE score of the forecasting models on 120-hours prediction 

length on the HF dataset. 

 

Fig. 8.  MAE score of the forecasting models on 168-hours prediction 

length on the HF dataset. 

V. CONCLUSIONS 

This study focused on implementing synthetically 
generated data to fill in missing values in an electricity load 
dataset. LI, SF, and the proposed HF methods were employed 
to impute MVs. The experiments carried out with various 
models show that the performance of the statistical and DL 
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models employed was improved when using the proposed 
hybrid imputation method. From the three datasets, HF 
improved the forecasting accuracy of ARIMA, TFT, and TiDE, 
whereas the SF dataset improved the performance of the SVR 
model. TiDE was the best-performing model for the overall 
forecasting horizons, outperforming the other models. 
Therefore, it can be concluded that, for time series datasets 
with many MVs with various missing block types, hybrid-filled 
data can be used to impute MVs and significantly increase the 
accuracy of forecasting models. This study suggests using the 
LI method for short MVs (2-3 hours) and synthetic data for 
larger continuous missing blocks. 
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