
Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17317-17323 17317

www.etasr.com Chemaa et al.: Parallel Discrete Harmony Search Algorithm for the Graph Coloring Problem

Parallel Discrete Harmony Search Algorithm
for the Graph Coloring Problem

Sofiane Chemaa

Mentouri Brothers Constantine 1 University, Algeria | MISC Lab, Constantine 2 University, Algeria
sofiane.chemaa@umc.edu.dz (corresponding author)

Akram Kout

Ferhat Abbas Setif 1 University, Algeria | MISC Lab, Constantine 2 University, Algeria
akram-kout@univ-setif.dz (corresponding author)

Halima Djelloul

Mentouri Brothers Constantine 1 University, Algeria | MISC Lab, Constantine 2 University, Algeria
Halima.djelloul@umc.edu.dz

Nassir Harrag

Mechatronics Laboratory, Ferhat Abbas Setif 1 University, Algeria
nassir.harrag@gmail.com

Received: 30 July 2024 | Revised: 23 August 2024 | Accepted: 3 September 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8565

ABSTRACT

Graph coloring is an NP-hard combinatorial optimization problem with significant implications in both
theoretical and practical contexts due to its complexity and extensive applicability. In this work, a novel
approach is proposed to address the graph coloring problem through a parallel discrete Harmony Search
algorithm, termed PDHSCol. By harnessing the robustness of the Harmony Search algorithm and
integrating parallel processing, our algorithm enhances performance by concurrently generating and
evaluating multiple solutions. Implemented in MATLAB, PDHSCol was evaluated using a variety of
DIMACS benchmark instances. The experimental results demonstrate that the algorithm performs
effectively and yields promising improvements over various other methods, highlighting its potential to
deliver high-quality solutions.

Keywords-graph coloring problem; NP-hard problem; harmony search algorithm; DPHSCol; DIMACS

I. INTRODUCTION

Graph theory is a fundamental discipline focused on the
study of graphs, which are mathematical structures used to
represent relationships between objects in a pairwise manner.
Among the myriad problems in graph theory, the Graph
Coloring Problem (GCP) stands out as particularly renowned
and challenging. Graph coloring is a combinatorial
optimization problem with significant real-world applications,
making it an area of substantial interest. Graph coloring can be
defined in various forms depending on the constraints applied.
These include proper coloring, edge coloring, and total coloring
(simultaneous coloring of vertices and edges), among others.
These coloring types are utilized to model various practical
problems such as frequency allocation [1], scheduling [2], and
resource allocation [3]. A proper coloring of a graph is a
function that assigns a color to each vertex such that no two
adjacent vertices share the same color. The primary objective is
to determine the chromatic number of a given graph, which is

the minimum number of distinct colors required for such a
coloring. Unfortunately, finding the chromatic number is an
NP-hard problem, meaning that no polynomial-time algorithm
currently exists to optimally color all graphs.

The study of graph coloring has led to the development of
numerous resolution methods, which can be broadly
categorized into three main types:

 Exact Methods: The fundamental approach for coloring a
graph with n vertices is exhaustive search, which involves
evaluating all possible color assignments for each vertex.
While methods such as those described in [4, 5] can ensure
optimal results, their exponential time complexity renders
them impractical for large graphs.

 Constructive Methods: Constructive techniques, including
DSATUR [6] and W&P [7], color the vertices of a graph
sequentially, selecting the vertex that appears most
promising according to a predefined criterion at each step.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17317-17323 17318

www.etasr.com Chemaa et al.: Parallel Discrete Harmony Search Algorithm for the Graph Coloring Problem

Although these heuristics are fast and produce reasonably
good results, they do not guarantee optimal solutions as the
quality of the outcome is highly dependent on the selection
criteria for vertices.

 Metaheuristic Methods: Metaheuristics begin with an
arbitrarily chosen coloring and aim to improve the current
coloring to achieve a better solution. Unlike constructive
methods, which start from an uncolored graph and
sequentially assign colors, metaheuristics such as genetic
algorithms [8], ant colony optimization [9], and Variable
Neighborhood Search (VNS) [10] have demonstrated
superior performance and high-quality solutions. Their
flexibility, adaptability, and efficiency make them
promising methodologies for graph coloring problems.

Among metaheuristics, Harmony Search (HS), introduced
in [11], stands out as one of the most robust methods. Inspired
by the natural process of musical performance, where
musicians seek a state of harmony, HS algorithm has garnered
significant attention in optimization research. It is distinguished
by its algorithmic simplicity and effective search capabilities.
Since its inception, HS has been successfully applied to various
optimization problems, including Spam Email Detection [12],
the Cell Placement Problem [13], data classification [14],
multi-UAV task assignment [15], image segmentation [16], and
the Orienteering Problem [17]. Its versatility has proven
valuable in addressing a broad range of optimization
challenges.

In this work, we propose a parallel discrete HS algorithm to
address the graph coloring problem. While the canonical HS
was originally designed for continuous optimization, we adapt
it to handle the discrete nature of graph coloring. By
incorporating parallelism, the proposed approach accelerates
computation and enhances the algorithm's ability to find
effective solutions across various types of graphs.

II. THE ADOPTED PROPER GCP FORMULATION

The proper GCP involves assigning colors to each vertex
such that no two adjacent vertices share the same color. The
primary goal is to minimize the total number of colors used to
color the graph.

Consider an undirected graph G = (V, E), where V is a
finite set of vertices and E is a set of edges, and let T be a given
integer. A T-coloring of G is defined by a set
P={Col(v1),…,Col(vn)}, where Col: V→ {1,2,…,T} is the
coloring function, Col(vi) represents the color assigned to
vertex vi, and n denotes the number of vertices in V. If for every
edge {u,w}∈ E, Col(u) ≠ Col(w), then P is considered a valid
T-coloring. Conversely, if there is an edge {u,w}∈ E where
Col(u)=Col(w), P is deemed an invalid T-coloring.

Formally, the Proper GCP can be articulated as follows:

For a given T-coloring P, the evaluation function Fitness
measures the number of conflicting vertices resulting from P.
Therefore, Fitness is expressed by:

���������	 = ∑ ∆����,�� ∈ � (1)

where:

∆��= � 1, if �����	 = �����	
0, otherwise. (2)

Consequently, only a coloring P that satisfies Fitness(P)=0
is considered valid.

III. HARMONY SEARCH ALGORITHM

The HS algorithm is a population-based metaheuristic
inspired by the process of musical improvisation. This method
is characterized by the interplay of multiple sound waves at
different frequencies. Evaluating the improvised harmony
relies on aesthetic judgment, which encourages musicians to
practice and perfect their coordination. There are notable
parallels between musical improvisation and optimization
processes. In optimization, the goal is to find the global
optimum of an objective function by adjusting a set of decision
variables. These variables form a solution vector that is
evaluated for quality. The optimization process iteratively
updates this vector until the global optimum is achieved [18].
In general, the HS algorithm comprises six distinct steps [11,
18]:

1. Initialization of Problem and Algorithm Parameters: The
initial stage involves setting essential parameters for both
the algorithm and the specific problem. This includes
defining the objective function and the range of
permissible values for the decision variables ('(),
constrained by lower ('()) and upper bounds ('(*) for each
variable (i = 1...D, where D denotes the problem
dimension). Additionally, key parameters such as
Harmony Memory Size (HMS), Harmony Memory
Consideration Rate (HMCR), Bandwidth (BW), Pitch
Adjustment Rate (PAR), and the number of improvisations
(NbrImp) are established at this stage.

2. Harmony Memory Initialization: This step involves
generating initial harmonies within the defined range
['() ,'(*] for each decision variable '((i = 1 .. D). The
initial harmonies are created with the use of (3):

'(
+ = '() + -.�/� 	 × �'(* − '()	 (3)

where j = 1..HMS, -.�/� 	 represents a randomly generated
value from a uniform distribution within the range [0, 1].

3. New Harmony Generation: In this step, a new harmony,
'23�, is generated by applying the core principles of the
HS algorithm. The new harmony vector, '23� =
('423� , '523� , ⋯, '723�), is created following three key
rules: memory consideration, random selection, and pitch
adjustment. The HMCR, ranging between 0 and 1, governs
memory consideration by determining the likelihood of
selecting a value from the Harmony Memory (HM), while
1- HMCR represents the probability of randomly selecting
a value from the permissible range. To avoid local optima,
the pitch adjustment mechanism allows the improvised
note to shift within the feasible range, controlled by the
PAR, which also ranges from 0 to 1. Smaller PAR values
result in weaker adjustments, whereas larger PAR values
lead to more significant changes. The Algorithm of

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17317-17323 17319

www.etasr.com Chemaa et al.: Parallel Discrete Harmony Search Algorithm for the Graph Coloring Problem

generating a new harmony, often called "improvisation", is

shown below. In this context, '(23� �� = 1. . 8	 represents

the ith variable of '23�, and '(9 �: = 1. . ;<=	 represents
the ith variable of the kth harmony vector in the HM. The
function -.�/��;<= 	 generates a pseudorandom scalar
integer between 1 and HMS for selecting a harmony vector
from the HM. If the pitch adjustment mechanism is chosen,
BW determines the step size, with larger BW values
increasing the distance between the new value and the HM
value, balancing global and local search strategies.

Algorithm 1: Improvisation

1:For i =1:D

2: If (rand() ≤ HMCR)

3: k = randi(HMS)

4: Yi
New= Yi

k

5: If (rand() ≤ PAR)

6: Yi
New= Yi

New±rand� 	×BW
7: EndIf

8: Else

9: Yi
New= YiL+rand� 	 ×(YiU-YiL)

10: EndIf

11:EndFor

4. HM Update: Similar to the replacement operator in genetic
algorithms, if the fitness of the newly improvised harmony
('23�) is better than the fitness of the worst harmony in
the HM, the worst harmony is replaced with '23�.

5. Stopping-Criterion Checking: If NbrImp is reached, the
process moves to the final step; otherwise, Steps 3 and 4
are repeated until the stopping criterion is met.

6. Result Return: The final step returns the best harmony
stored in the HM as the optimal solution for the problem.

IV. THE PARALLEL DISCRETE HARMONY SEARCH
ALGORITHM FOR GRAPH COLORING

In this section, the proposed approach to graph coloring
using a parallel discrete harmony search algorithm, which is
named PDHSCol, is presented. We will first describe the
methods we used for encoding both graphs and coloring
solutions. Following this, we will outline the algorithm's
architecture and the operations it performs to address the graph
coloring problem. This presentation will highlight the specific
aspects of our method.

A. Representation and Encoding Method

Data representation and solution encoding are crucial steps
in population-based evolutionary algorithms. In our approach,
graphs are represented using an adjacency matrix which is a
binary n × n matrix, where n represents the number of vertices
in the graph. Each element of the matrix indicates the presence
or absence of an edge between two vertices. If an edge exists
between vertex u and vertex w, the element (u, w) of the matrix
will be 1; otherwise, it will be 0. This representation effectively
captures the structure of the graph and facilitates the necessary
operations for our algorithm. For example, Figure 1 shows a
graph along with its corresponding adjacency matrix.

Fig. 1. Graph representation by the adjacency matrix.

In addition to graph representation using adjacency
matrices, we also adopted a vector-based represention of
coloring solutions. Each solution is represented by an integer
vector P of size n, where n is the number of vertices in the
graph. In this vector, the value of element P[i] denotes the
color assigned to vertex i. An example of this representation is
shown in Figure 2, which includes a graph with its nodes
colored and the corresponding solution vector. This method
provides a clear and direct management of the assigned colors,
facilitating the evaluation and optimization of coloring
solutions.

Fig. 2. Graph coloring vector representation.

B. Architectural Framework and Core Processes of the
PDHSCol Algorithm

The behavior of the proposed algorithm is illustrated and
visualized by the activity diagram presented in Figure 3.
PDHSCol begins with the initialization of parameters
associated with the parallel discrete HS algorithm, as well as
the initialization of data related to the GCP. Following this,
PDHSCol generates an initial population using a method that
will be detailed later. Once the initial population is generated,
the best solution is retrieved to evaluate its fitness, which
represents the number of conflicts between vertices. The
objective is to reduce this fitness to zero. If the fitness of the
best solution is greater than zero, our algorithm enters a set of
iterations. Each iteration generates PH solutions in parallel,
where PH represents the number of solutions generated
simultaneously. This generation follows the improvisation
process of our algorithm. At the end of this parallel generation,
an update process is executed concurrently. For each generated
harmony, the algorithm compares its fitness with that of the
existing harmonies in the HM. If the fitness of the new
harmony is better than that of the least performing harmony,
the latter is replaced by the new harmony. Once this step is
completed, the algorithm retrieves the best solution in the HM.
If the fitness of this solution is still greater than zero, the
parallel generation process is re-executed. If, at any point, our
algorithm finds a solution with a fitness equal to zero, it

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17317-17323 17320

www.etasr.com Chemaa et al.: Parallel Discrete Harmony Search Algorithm for the Graph Coloring Problem

displays this solution, representing a valid T-coloring. The
algorithm then automatically proceeds to search for a (T-1)-
coloring. If the maximum number of allowed iterations
(NbrImp) is exceeded, the algorithm terminates its search.

Fig. 3. PDHSCol algorithm architecture.

Following the description of the activity diagram, we will
provide a thorough explanation of the principal operations
executed by the proposed algorithm. This detailed examination
will offer a comprehensive understanding of the algorithm's
functionality and illustrate how each step contributes to
identifying an effective graph coloring solution.

1) Initialization of Algorithm Parameters

This initial operation constitutes a foundational step of the
algorithm. We begin by importing the graph to be colored and
representing it as an adjacency matrix. Following this, several
essential parameters are defined to ensure the proper
functioning of the algorithm. These parameters include the
number of colors to be used for graph coloring (T), HMS,
HMCR, NbrImp, and PAR with its minimum and maximum
values. Additionally, the number of harmonies to be generated
in parallel PH is specified. For our specific implementation, we
have set the following values: HMS = 30, HMCR = 0.92,
MinPAR = 0.2, MaxPAR = 0.9, and PH = 4. This initialization
step configures the algorithm and facilitates the transition to the
subsequent operations.

2) Generation of the Initial Population

In order to generate the initial population, we adopted a
random sequential coloring approach. The technique used
allows for creating a set of parallel solutions, significantly

accelerating the generation process. Our proposed algorithm is
described in detail in the pseudo-code presented in Algorithm
2.

Algorithm 2: Parallel Random Sequential

Colorings

Input: A, N, T

Output: Best Pi Solution

1:Initialize PH

2:ParFor i = 1:PH

3: UVi = randperm(N)

4: Pi = zeros(1, N)

5: CCi = 1

6: While ((UVi ≠ Ø)&&(CCi ≤ T))

7: v = UVi(1)

8: Pi(v) = CCi

9: UVi = UVi \ v

10: For q = 1:length(UVi)

11: v = UVi(q)

12: Coloring = True

13: For j = 1:N

14: If ((A(v,j)==1)&&(Pi(j)==CCi))

15: Coloring = False

16: Break

17: EndIf

18: EndFor

19: If (Coloring == True)

20: Pi(v) = CCi

21: UVi = UVi \ v

22: EndIf

23: EndFor

24: CCi = CCi + 1

25: EndWhile

26: If (UVi ≠ Ø)

27: For (j = 1:length(UVi))

28: Pi (UVi(j)) = randi(T),

29: EndFor

30: EndIf

31:EndParFor

32:Return the Best Pi Coloring

To facilitate the understanding of Algorithm 2, the meaning
of the variables used is explained below:

 G: the graph to be colored, represented by an adjacency
matrix A.

 N: the number of vertices in the graph G.

 T: the maximum number of colors to be used.

 PH: the number of solutions to be generated in parallel.

 P1, P2…PPH: the solution vectors to be generated in parallel.
Each vector represents a solution with colors assigned to
the vertices.

 UV1, UV2…UVPS: the sets of uncolored vertices for each
solution. These sets are generated with a random order of
vertices.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17317-17323 17321

www.etasr.com Chemaa et al.: Parallel Discrete Harmony Search Algorithm for the Graph Coloring Problem

 CCi: the current color used to generate the solution Pi (i=1:
PH).

Conforming to the algorithm, the following steps are
undertaken to generate the initial population:

Initialization

1. Determine the value of PH.

2. For each parallel solution Pi (i=1:PH):

2.1 Generate the UVi vector containing the

uncolored vertices of the graph G in a

random order.

2.2 Create the Pi solution vectors of size

N, initialized with zero values.

2.3 Initialize CCi with the value 1

Construction of the initial population

1. For each parallel solution Pi (i=1:PH):

1.1 While the UVi vector is not empty and

CCi is less than or equal to T:

(a) Take the first vertex v appearing in

the UVi vector.

(b) Update the UVi vector and the Pi

solution vector by removing vertex v from

the UVi vector and assigning the color CCi

to vertex v in the Pi vector.

(c) For all remaining vertices in the UVi

vector, test the possibility of coloring

each vertex using the color CCi, i.e.,

check if there are no adjacent vertices

with the same color. If a vertex can be

colored with the color CCi, update the UVi

vector and the Pi solution vector.

(d) Move to the next color (CCi = CCi + 1).

1.2 If the UVi vector is not empty, assign

a random color between 1 and T to all

remaining vertices in UVi.

2. Return the best solution among the

solutions generated in parallel.

By following this algorithmic process, we obtain a diverse
initial population, which reduces the convergence time of the
PDHSCol algorithm. This diversity allows for a more
comprehensive exploration of the solution space, enhancing the
algorithm's ability to find high-quality colorings for the given
graph.

3) The Improvisation Procedure

The HS algorithm has undergone significant enhancements
over time, with one of the most robust versions being proposed
in [19]. Unlike the traditional approach, which employs fixed
values for PAR and BW and thus requires numerous iterations
to reach an optimal solution, the enhanced version dynamically
adjusts these parameters. By utilizing dynamic values that
evolve with each iteration, this improvement overcomes the
limitations of fixed parameters.

In our work, we adopted these dynamic values for PAR,
thereby enhancing the exploration and exploitation capabilities

of the algorithm and leading to more efficient convergence to
high-quality solutions.

Regarding discrete versions of the HS algorithm proposed
in the literature, one notable example is the binary version
presented in [20]. In this version, the authors introduced a new
Pitch adjustment rule that selects the adjacent value from the
structural neighborhood rather than from the HM. For ease of
implementation, the neighbor of each HS vector is defined as
the globally optimal harmony vector in the HM. Additionally, a
new discrete version of the algorithm was proposed in [21].
This version utilizes a Pitch adjustment method to select an
adjacent value from the HM, based on (1)-order and (-1)-order
vectors relative to the selected vectors when harmony
consideration is applied. Given the discrete nature of the GCP,
we propose a parallel discrete version to effectively address
this problem. Algorithm 3 illustrates the pseudocode
demonstrating the improvisation method of the proposed
PDHSCol algorithm. In our algorithm, we introduce a new
Pitch adjustment method based on two main techniques. The
first technique selects an adjacent value from the HM with the
condition of minimizing the fitness of the harmony being
generated. The second technique, inspired by [20], directly
selects the value from the globally optimal harmony vector in
the HM.

Algorithm 3: PDHSCol Improvisation

1:ParFor i = 1:PH

2: Pi = zeros(1,N)

3: For j = 1:N

4: R1 = rand()

5: If (R1 ≤ HMCR)

6: Index = randi(HMS)

7: Pi(j) = HM(Index,j)

8: R2 = rand()

9: If (R2 ≤ PAR)

10: R3 = rand()

11: If (R3 ≤ 0.5)

12: For w=1:HMS

13: Pi(j) = HM(w,j)

14: F = Fitness (Pi)

15: If (w == 1)

16: BestF = F

17: BestIndex =1

18: Else

19: If (F < BestF)

20: BestF = F

21: BestIndex = w

22: EndIf

23: EndIf

24: EndFor

25: Pi(j) = HM(BestIndex,j)

26: Else

27: Pi(j) = BestHarmony(j)

28: EndIf

29: EndIf

30: Else

31: Pi(j) = randi(T)

32: EndFor

33:EndParFor

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17317-17323 17322

www.etasr.com Chemaa et al.: Parallel Discrete Harmony Search Algorithm for the Graph Coloring Problem

V. EXPERIMENTAL RESULTS

To implement the proposed approach for graph coloring,
we developed the PDHSCol algorithm using MATLAB
R2023a. MATLAB was selected for its robust parallel
computing capabilities, which are facilitated through its parallel
pool feature. A parallel pool in MATLAB is a set of workers,
either on a compute cluster or a desktop, that can run multiple
tasks simultaneously. This feature was crucial for efficiently
executing our parallelized algorithm. The program was run on
a microcomputer equipped with an Intel® Core™ i5-1145G7
processor, operating at 2.60 GHz with a turbo boost up to 4.40
GHz and 16 GB of RAM.

To demonstrate the effectiveness of the proposed algorithm,
we conducted experiments on a diverse set of DIMACS
benchmark instances [22]. Our objective was to evaluate the
performance of PDHSCol in comparison to other graph
coloring approaches, namely: the Binary Cuckoo Search
Algorithm for the Graph Coloring Problem (BCSCol) [23], the
Binary Bat Algorithm for the Graph Coloring Problem (BBCol)
[24], the Fuzzy Logic and Whale Optimization Algorithm
(FWOA) [25], and the Greedy Graph Coloring Algorithm based
on Depth-First Search (GGCADFS) [26]. The experimental
results, along with those of the comparative methods, are
presented in Table I. Notably, Column 4 represents the exact
solution for each instance.

TABLE I. RESULTS ON DIMACS BENCHMARK INSTANCES

Instance |V| |E| χ PDHSCol [23] [24] [25] [26]
myciel3 11 20 4 4 4 4 4 4
myciel4 23 71 5 5 5 5 5 5

queen5_5 25 160 5 5 5 5 6 5
queen6_6 36 290 7 7 8 8 8 8
myciel5 47 236 6 6 6 6 6 6

queen7_7 49 476 7 7 8 8 7 10
queen8_8 64 728 9 10 10 11 9 11

Huck 74 301 11 11 11 11 11 11
Jean 80 254 10 10 10 10 10 10

David 87 406 11 11 11 11 11 11
myciel6 95 755 7 7 7 7 8 7

games120 120 638 9 9 9 9 9 9
miles250 128 387 8 8 8 8 8 8
miles500 128 1170 20 20 21 21 * 20
miles750 128 2113 31 31 32 32 32 31

Anna 138 493 11 11 11 11 11 11
mulsol.i.1 197 3925 49 49 49 49 49 49
zeroin.i.1 211 4100 49 49 49 49 49 49
fpsol2.i.3 425 8688 30 30 30 30 30 30
fpsol2.i.2 451 8691 30 30 30 30 * 30
fpsol2.i.1 496 11654 65 65 65 65 65 65

Homer 561 1629 13 13 13 13 * 13
2-Insertions-5 597 3936 6 6 6 6 * 6

inithx.i.1 864 18707 54 54 54 54 * 54
3-Insertions-5 1406 9695 6 6 6 6 * 6

Fig. 4. Friedman test tesult comparison of the proposed PDHSCol,
BCSCol [23], BBCol [24], FWOA [25], GGCADFS [26] and the exact
solutions.

As shown in Table Ι, PDHSCol yields highly favorable
results, surpassing the other methods across various instances.
Specifically, PDHSCol attained optimal colorings in 24 out of

25 instances. The Friedman statistical test, detailed in Figure 4,
validates the performance of PDHSCol, demonstrating its
closeness to exact solutions. Furthermore, statistical analyses
reveal significant advantages of PDHSCol over competing
algorithms. These results highlight the effectiveness and
competitiveness of our approach in addressing graph coloring
challenges, establishing it as a promising method in this
domain.

VI. CONCLUSION

In this work, we introduced a novel approach for graph
coloring using a parallel discrete Harmony Search algorithm,
named PDHSCol. The integration of parallelism within the
proposed algorithm enhances performance by accelerating the
search process and improving solution quality. The
effectiveness of the proposed method is attributed to well-
chosen parameters, accurate data representation, and the
incorporation of an improved improvisation technique within
the Harmony Search algorithm. These factors collectively
contribute to achieving effective solutions.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17317-17323 17323

www.etasr.com Chemaa et al.: Parallel Discrete Harmony Search Algorithm for the Graph Coloring Problem

The proposed algorithm, implemented in MATLAB and
leveraging its parallel computing capabilities, has been
thoroughly tested on a set of DIMACS benchmark instances.
The experimental results demonstrate that PDHSCol
consistently outperforms the four algorithms it was compared
against. Specifically, PDHSCol frequently provides higher-
quality colorings and exhibits enhanced robustness across
various instances. These findings underscore the effectiveness
of our approach and highlight its competitive advantage in
addressing graph coloring problems.

Overall, the proposed method provides a robust and well-
adapted solution to the challenges of graph coloring,
positioning PDHSCol as a promising approach in the field.

REFERENCES

[1] A. Gamst, "Some lower bounds for a class of frequency assignment
problems," IEEE Transactions on Vehicular Technology, vol. 35, no. 1,
pp. 8–14, Oct. 1986, https://doi.org/10.1109/T-VT.1986.24063.

[2] D. de Werra, Ch. Eisenbeis, S. Lelait, and B. Marmol, "On a graph-
theoretical model for cyclic register allocation," Discrete Applied
Mathematics, vol. 93, no. 2, pp. 191–203, Jul. 1999, https://doi.org/
10.1016/S0166-218X(99)00105-5.

[3] Y.-M. Chen and W.-C. Wang, "An adaptive rescheduling scheme based
heuristic algorithm for cloud services applications," in International
Conference on Machine Learning and Cybernetics, Guilin, China, Jul.
2011, vol. 3, pp. 961–966, https://doi.org/10.1109/ICMLC.2011.
6016893.

[4] I. Mendez-Diaz and P. Zabala, "A Branch-and-Cut algorithm for graph
coloring," Discrete Applied Mathematics, vol. 154, no. 5, pp. 826–847,
Apr. 2006, https://doi.org/10.1016/j.dam.2005.05.022.

[5] A. Mehrotra and M. A. Trick, "A Column Generation Approach for
Graph Coloring," INFORMS Journal on Computing, vol. 8, no. 4, pp.
344–354, Nov. 1996, https://doi.org/10.1287/ijoc.8.4.344.

[6] D. Brelaz, "New methods to color the vertices of a graph,"
Communications of the ACM, vol. 22, no. 4, pp. 251–256, Dec. 1979,
https://doi.org/10.1145/359094.359101.

[7] D. J. A. Welsh and M. B. Powell, "An upper bound for the chromatic
number of a graph and its application to timetabling problems," The
Computer Journal, vol. 10, no. 1, pp. 85–86, Jan. 1967, https://doi.org/
10.1093/comjnl/10.1.85.

[8] C. Fleurent and J. A. Ferland, "Genetic and hybrid algorithms for graph
coloring," Annals of Operations Research, vol. 63, no. 3, pp. 437–461,
Jun. 1996, https://doi.org/10.1007/BF02125407.

[9] K. A. Dowsland and J. M. Thompson, "An improved ant colony
optimisation heuristic for graph colouring," Discrete Applied
Mathematics, vol. 156, no. 3, pp. 313–324, Feb. 2008, https://doi.org/
10.1016/j.dam.2007.03.025.

[10] C. Avanthay, A. Hertz, and N. Zufferey, "A variable neighborhood
search for graph coloring," European Journal of Operational Research,
vol. 151, no. 2, pp. 379–388, Dec. 2003, https://doi.org/10.1016/S0377-
2217(02)00832-9.

[11] Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A New Heuristic
Optimization Algorithm: Harmony Search," SIMULATION, vol. 76, no.
2, pp. 60–68, Feb. 2001, https://doi.org/10.1177/003754970107600201.

[12] M. Z. Gashti, "Detection of Spam Email by Combining Harmony Search
Algorithm and Decision Tree," Engineering, Technology & Applied
Science Research, vol. 7, no. 3, pp. 1713–1718, Jun. 2017,
https://doi.org/10.48084/etasr.1171.

[13] R. M. A. Qasem and S. M. Massadeh, "Solving Cell Placement Problem
Using Harmony Search Algorithms," Engineering, Technology &
Applied Science Research, vol. 8, no. 4, pp. 3172–3176, Aug. 2018,
https://doi.org/10.48084/etasr.2113.

[14] X. Wang, X.-Z. Gao, and S. J. Ovaska, "Fusion of clonal selection
algorithm and harmony search method in optimisation of fuzzy
classification systems," International Journal of Bio-Inspired

Computation, vol. 1, no. 1–2, pp. 80–88, Jan. 2009, https://doi.org/
10.1504/IJBIC.2009.022776.

[15] Y. Cui, W. Dong, D. Hu, and H. Liu, "The Application of Improved
Harmony Search Algorithm to Multi-UAV Task Assignment,"
Electronics, vol. 11, no. 8, Jan. 2022, Art. no. 1171,
https://doi.org/10.3390/electronics11081171.

[16] X. Li, X. Li, and G. Yang, "A novelty harmony search algorithm of
image segmentation for multilevel thresholding using learning
experience and search space constraints," Multimedia Tools and
Applications, vol. 82, no. 1, pp. 703–723, Jan. 2023, https://doi.org/
10.1007/s11042-022-13288-y.

[17] K. Szwarc and U. Boryczka, "A novel approach to the Orienteering
Problem based on the Harmony Search algorithm," PLOS ONE, vol. 17,
no. 2, Feb. 2022, Art. no. e0264584, https://doi.org/10.1371/journal.
pone.0264584.

[18] A. Askarzadeh and E. Rashedi, "Harmony search algorithm: Basic
concepts and engineering applications," in Recent Developments in
Intelligent Nature-Inspired Computing, P. Srikanta, Ed. Hershey, PA,
USA: IGI Global, 2017, pp. 1–36.

[19] M. Mahdavi, M. Fesanghary, and E. Damangir, "An improved harmony
search algorithm for solving optimization problems," Applied
Mathematics and Computation, vol. 188, no. 2, pp. 1567–1579, May
2007, https://doi.org/10.1016/j.amc.2006.11.033.

[20] L. Wang, R. Yang, Y. Xu, Q. Niu, P. M. Pardalos, and M. Fei, "An
improved adaptive binary Harmony Search algorithm," Information
Sciences, vol. 232, pp. 58–87, May 2013, https://doi.org/10.1016/
j.ins.2012.12.043.

[21] K. S. Lee, Z. W. Geem, S. Lee, and K. Bae, "The harmony search
heuristic algorithm for discrete structural optimization," Engineering
Optimization, vol. 37, no. 7, pp. 663–684, Oct. 2005, https://doi.org/
10.1080/03052150500211895.

[22] D. S. Johnson and M. A. Trick, Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge. Providence, Rhode Island:
American Mathematical Society, 1996.

[23] H. Djelloul, A. Layeb, and S. Chikhi, "A Binary Cuckoo Search
Algorithm for Graph Coloring Problem," International Journal of
Applied Evolutionary Computation, vol. 5, no. 3, pp. 42–56, Jul. 2014,
https://doi.org/10.4018/ijaec.2014070103.

[24] H. Djelloul, S. Sabba, and S. Chikhi, "Binary bat algorithm for graph
coloring problem," in Second World Conference on Complex Systems,
Agadir, Morocco, Nov. 2014, pp. 481–486, https://doi.org/
10.1109/ICoCS.2014.7060988.

[25] T. M. Mostafaie, F. Modarres Khiyabani, N. Jafari Navimipour, and B.
Daneshian, "A new method for solving of the Graph Coloring Problem
based on a fuzzy logic and whale optimization algorithm," Iranian
Journal of Optimization, vol. 13, no. 2, pp. 115–121, Jun. 2021.

[26] S. Gupta and Singh, "Greedy Graph Coloring Algorithm Based on Depth
First Search," International Journal on Emerging Technologies, vol. 11,
no. 2, pp. 854–862, Mar. 2020.

