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ABSTRACT 

Graph coloring is an NP-hard combinatorial optimization problem with significant implications in both 
theoretical and practical contexts due to its complexity and extensive applicability. In this work, a novel 
approach is proposed to address the graph coloring problem through a parallel discrete Harmony Search 
algorithm, termed PDHSCol. By harnessing the robustness of the Harmony Search algorithm and 
integrating parallel processing, our algorithm enhances performance by concurrently generating and 
evaluating multiple solutions. Implemented in MATLAB, PDHSCol was evaluated using a variety of 
DIMACS benchmark instances. The experimental results demonstrate that the algorithm performs 
effectively and yields promising improvements over various other methods, highlighting its potential to 
deliver high-quality solutions. 

Keywords-graph coloring problem; NP-hard problem; harmony search algorithm; DPHSCol; DIMACS   

I. INTRODUCTION  

Graph theory is a fundamental discipline focused on the 
study of graphs, which are mathematical structures used to 
represent relationships between objects in a pairwise manner. 
Among the myriad problems in graph theory, the Graph 
Coloring Problem (GCP) stands out as particularly renowned 
and challenging. Graph coloring is a combinatorial 
optimization problem with significant real-world applications, 
making it an area of substantial interest. Graph coloring can be 
defined in various forms depending on the constraints applied. 
These include proper coloring, edge coloring, and total coloring 
(simultaneous coloring of vertices and edges), among others. 
These coloring types are utilized to model various practical 
problems such as frequency allocation [1], scheduling [2], and 
resource allocation [3]. A proper coloring of a graph is a 
function that assigns a color to each vertex such that no two 
adjacent vertices share the same color. The primary objective is 
to determine the chromatic number of a given graph, which is 

the minimum number of distinct colors required for such a 
coloring. Unfortunately, finding the chromatic number is an 
NP-hard problem, meaning that no polynomial-time algorithm 
currently exists to optimally color all graphs.  

The study of graph coloring has led to the development of 
numerous resolution methods, which can be broadly 
categorized into three main types:  

 Exact Methods: The fundamental approach for coloring a 
graph with n vertices is exhaustive search, which involves 
evaluating all possible color assignments for each vertex. 
While methods such as those described in [4, 5] can ensure 
optimal results, their exponential time complexity renders 
them impractical for large graphs. 

 Constructive Methods: Constructive techniques, including 
DSATUR [6] and W&P [7], color the vertices of a graph 
sequentially, selecting the vertex that appears most 
promising according to a predefined criterion at each step. 
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Although these heuristics are fast and produce reasonably 
good results, they do not guarantee optimal solutions as the 
quality of the outcome is highly dependent on the selection 
criteria for vertices. 

 Metaheuristic Methods: Metaheuristics begin with an 
arbitrarily chosen coloring and aim to improve the current 
coloring to achieve a better solution. Unlike constructive 
methods, which start from an uncolored graph and 
sequentially assign colors, metaheuristics such as genetic 
algorithms [8], ant colony optimization [9], and Variable 
Neighborhood Search (VNS) [10] have demonstrated 
superior performance and high-quality solutions. Their 
flexibility, adaptability, and efficiency make them 
promising methodologies for graph coloring problems. 

Among metaheuristics, Harmony Search (HS), introduced 
in [11], stands out as one of the most robust methods. Inspired 
by the natural process of musical performance, where 
musicians seek a state of harmony, HS algorithm has garnered 
significant attention in optimization research. It is distinguished 
by its algorithmic simplicity and effective search capabilities. 
Since its inception, HS has been successfully applied to various 
optimization problems, including Spam Email Detection [12], 
the Cell Placement Problem [13], data classification [14], 
multi-UAV task assignment [15], image segmentation [16], and 
the Orienteering Problem [17]. Its versatility has proven 
valuable in addressing a broad range of optimization 
challenges.   

In this work, we propose a parallel discrete HS algorithm to 
address the graph coloring problem. While the canonical HS 
was originally designed for continuous optimization, we adapt 
it to handle the discrete nature of graph coloring. By 
incorporating parallelism, the proposed approach accelerates 
computation and enhances the algorithm's ability to find 
effective solutions across various types of graphs.  

II. THE ADOPTED PROPER GCP FORMULATION 

The proper GCP involves assigning colors to each vertex 
such that no two adjacent vertices share the same color. The 
primary goal is to minimize the total number of colors used to 
color the graph. 

Consider an undirected graph G = (V, E), where V is a 
finite set of vertices and E is a set of edges, and let T be a given 
integer. A T-coloring of G is defined by a set 
P={Col(v1),…,Col(vn)}, where Col: V→ {1,2,…,T} is the 
coloring function, Col(vi) represents the color assigned to 
vertex vi, and n denotes the number of vertices in V. If for every 
edge {u,w}∈ E, Col(u) ≠ Col(w), then P is considered a valid 
T-coloring. Conversely, if there is an edge {u,w}∈ E where 
Col(u)=Col(w), P is deemed an invalid T-coloring. 

Formally, the Proper GCP can be articulated as follows: 

For a given T-coloring P, the evaluation function Fitness 
measures the number of conflicting vertices resulting from P. 
Therefore, Fitness is expressed by: 

���������	 =  ∑ ∆����,�� ∈ �        (1) 

where: 

∆��= �  1, if �����	 = �����	
0,                   otherwise.          (2) 

Consequently, only a coloring P that satisfies Fitness(P)=0 
is considered valid. 

III. HARMONY SEARCH ALGORITHM 

The HS algorithm is a population-based metaheuristic 
inspired by the process of musical improvisation. This method 
is characterized by the interplay of multiple sound waves at 
different frequencies. Evaluating the improvised harmony 
relies on aesthetic judgment, which encourages musicians to 
practice and perfect their coordination. There are notable 
parallels between musical improvisation and optimization 
processes. In optimization, the goal is to find the global 
optimum of an objective function by adjusting a set of decision 
variables. These variables form a solution vector that is 
evaluated for quality. The optimization process iteratively 
updates this vector until the global optimum is achieved [18]. 
In general, the HS algorithm comprises six distinct steps [11, 
18]: 

1. Initialization of Problem and Algorithm Parameters: The 
initial stage involves setting essential parameters for both 
the algorithm and the specific problem. This includes 
defining the objective function and the range of 
permissible values for the decision variables ( '( ), 
constrained by lower ('()) and upper bounds ('(*) for each 
variable (i = 1...D, where D denotes the problem 
dimension). Additionally, key parameters such as 
Harmony Memory Size (HMS), Harmony Memory 
Consideration Rate (HMCR), Bandwidth (BW), Pitch 
Adjustment Rate (PAR), and the number of improvisations 
(NbrImp) are established at this stage. 

2. Harmony Memory Initialization: This step involves 
generating initial harmonies within the defined range 
['() ,'(* ] for each decision variable '(  (i = 1 .. D). The 
initial harmonies are created with the use of (3): 

'(
+ =  '() + -.�/� 	  × �'(* − '()	  (3) 

where j = 1..HMS, -.�/� 	 represents a randomly generated 
value from a uniform distribution within the range [0, 1]. 

3. New Harmony Generation: In this step, a new harmony, 
'23�, is generated by applying the core principles of the 
HS algorithm. The new harmony vector, '23�  = 
('423� ,  '523� , ⋯, '723� ), is created following three key 
rules: memory consideration, random selection, and pitch 
adjustment. The HMCR, ranging between 0 and 1, governs 
memory consideration by determining the likelihood of 
selecting a value from the Harmony Memory (HM), while 
1- HMCR represents the probability of randomly selecting 
a value from the permissible range. To avoid local optima, 
the pitch adjustment mechanism allows the improvised 
note to shift within the feasible range, controlled by the 
PAR, which also ranges from 0 to 1. Smaller PAR values 
result in weaker adjustments, whereas larger PAR values 
lead to more significant changes. The Algorithm of 
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generating a new harmony, often called "improvisation", is 

shown below. In this context, '(23�  �� =  1. . 8	 represents 

the ith variable of '23�, and '(9  �: = 1. . ;<=	 represents 
the ith variable of the kth harmony vector in the HM. The 
function -.�/��;<= 	  generates a pseudorandom scalar 
integer between 1 and HMS for selecting a harmony vector 
from the HM. If the pitch adjustment mechanism is chosen, 
BW determines the step size, with larger BW values 
increasing the distance between the new value and the HM 
value, balancing global and local search strategies. 

Algorithm 1: Improvisation 

1:For i =1:D 

2:  If (rand() ≤ HMCR) 

3:    k = randi(HMS) 

4:    Yi
New= Yi

k  

5:    If (rand() ≤ PAR) 

6:      Yi
New= Yi

New±rand� 	×BW 
7:    EndIf 

8:  Else 

9:    Yi
New= YiL+rand� 	 ×(YiU-YiL) 

10: EndIf 

11:EndFor 
 

4. HM Update: Similar to the replacement operator in genetic 
algorithms, if the fitness of the newly improvised harmony 
('23�) is better than the fitness of the worst harmony in 
the HM, the worst harmony is replaced with '23�. 

5. Stopping-Criterion Checking: If NbrImp is reached, the 
process moves to the final step; otherwise, Steps 3 and 4 
are repeated until the stopping criterion is met.  

6. Result Return: The final step returns the best harmony 
stored in the HM as the optimal solution for the problem. 

IV. THE PARALLEL DISCRETE HARMONY SEARCH 
ALGORITHM FOR GRAPH COLORING 

In this section, the proposed approach to graph coloring 
using a parallel discrete harmony search algorithm, which is 
named PDHSCol, is presented. We will first describe the 
methods we used for encoding both graphs and coloring 
solutions. Following this, we will outline the algorithm's 
architecture and the operations it performs to address the graph 
coloring problem. This presentation will highlight the specific 
aspects of our method. 

A. Representation and Encoding Method 

Data representation and solution encoding are crucial steps 
in population-based evolutionary algorithms. In our approach, 
graphs are represented using an adjacency matrix which is a 
binary n × n matrix, where n represents the number of vertices 
in the graph. Each element of the matrix indicates the presence 
or absence of an edge between two vertices. If an edge exists 
between vertex u and vertex w, the element (u, w) of the matrix 
will be 1; otherwise, it will be 0. This representation effectively 
captures the structure of the graph and facilitates the necessary 
operations for our algorithm. For example, Figure 1 shows a 
graph along with its corresponding adjacency matrix. 

 
Fig. 1.  Graph representation by the adjacency matrix. 

In addition to graph representation using adjacency 
matrices, we also adopted a vector-based represention of 
coloring solutions. Each solution is represented by an integer 
vector P of size n, where n is the number of vertices in the 
graph. In this vector, the value of element P[i] denotes the 
color assigned to vertex i. An example of this representation is 
shown in Figure 2, which includes a graph with its nodes 
colored and the corresponding solution vector. This method 
provides a clear and direct management of the assigned colors, 
facilitating the evaluation and optimization of coloring 
solutions. 

 

 
Fig. 2.  Graph coloring vector representation. 

B. Architectural Framework and Core Processes of the 
PDHSCol Algorithm 

The behavior of the proposed algorithm is illustrated and 
visualized by the activity diagram presented in Figure 3. 
PDHSCol begins with the initialization of parameters 
associated with the parallel discrete HS algorithm, as well as 
the initialization of data related to the GCP. Following this, 
PDHSCol generates an initial population using a method that 
will be detailed later. Once the initial population is generated, 
the best solution is retrieved to evaluate its fitness, which 
represents the number of conflicts between vertices. The 
objective is to reduce this fitness to zero. If the fitness of the 
best solution is greater than zero, our algorithm enters a set of 
iterations. Each iteration generates PH solutions in parallel, 
where PH represents the number of solutions generated 
simultaneously. This generation follows the improvisation 
process of our algorithm. At the end of this parallel generation, 
an update process is executed concurrently. For each generated 
harmony, the algorithm compares its fitness with that of the 
existing harmonies in the HM. If the fitness of the new 
harmony is better than that of the least performing harmony, 
the latter is replaced by the new harmony. Once this step is 
completed, the algorithm retrieves the best solution in the HM. 
If the fitness of this solution is still greater than zero, the 
parallel generation process is re-executed. If, at any point, our 
algorithm finds a solution with a fitness equal to zero, it 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17317-17323 17320  
 

www.etasr.com Chemaa et al.: Parallel Discrete Harmony Search Algorithm for the Graph Coloring Problem 

 

displays this solution, representing a valid T-coloring. The 
algorithm then automatically proceeds to search for a (T-1)-
coloring. If the maximum number of allowed iterations 
(NbrImp) is exceeded, the algorithm terminates its search. 

 

 
Fig. 3.  PDHSCol algorithm architecture. 

Following the description of the activity diagram, we will 
provide a thorough explanation of the principal operations 
executed by the proposed algorithm. This detailed examination 
will offer a comprehensive understanding of the algorithm's 
functionality and illustrate how each step contributes to 
identifying an effective graph coloring solution. 

1) Initialization of Algorithm Parameters 

This initial operation constitutes a foundational step of the 
algorithm. We begin by importing the graph to be colored and 
representing it as an adjacency matrix. Following this, several 
essential parameters are defined to ensure the proper 
functioning of the algorithm. These parameters include the 
number of colors to be used for graph coloring (T), HMS, 
HMCR, NbrImp, and PAR with its minimum and maximum 
values. Additionally, the number of harmonies to be generated 
in parallel PH is specified. For our specific implementation, we 
have set the following values: HMS = 30, HMCR = 0.92, 
MinPAR = 0.2, MaxPAR = 0.9, and PH = 4. This initialization 
step configures the algorithm and facilitates the transition to the 
subsequent operations. 

2) Generation of the Initial Population 

In order to generate the initial population, we adopted a 
random sequential coloring approach. The technique used 
allows for creating a set of parallel solutions, significantly 

accelerating the generation process. Our proposed algorithm is 
described in detail in the pseudo-code presented in Algorithm 
2. 

Algorithm 2: Parallel Random Sequential 

Colorings 

Input: A, N, T 

Output: Best Pi Solution  

1:Initialize PH 

2:ParFor i = 1:PH 

3:  UVi = randperm(N)  

4:  Pi  = zeros(1, N)  

5:  CCi = 1 

6:  While ((UVi ≠ Ø)&&(CCi ≤ T)) 

7:    v = UVi(1) 

8:    Pi(v) = CCi 

9:    UVi = UVi \ v 

10:   For q = 1:length(UVi) 

11:     v = UVi(q) 

12:     Coloring = True 

13:     For j = 1:N  

14:       If ((A(v,j)==1)&&(Pi(j)==CCi))  

15:         Coloring = False 

16:         Break 

17:       EndIf 

18:     EndFor 

19:     If (Coloring == True)  

20:       Pi(v) = CCi 

21:       UVi = UVi \ v 

22:     EndIf 

23:   EndFor 

24:   CCi = CCi + 1 

25: EndWhile 

26: If (UVi ≠ Ø) 

27:   For (j = 1:length(UVi)) 

28:     Pi (UVi(j)) = randi(T), 

29:   EndFor 

30: EndIf 

31:EndParFor 

32:Return the Best Pi Coloring 

 

To facilitate the understanding of Algorithm 2, the meaning 
of the variables used is explained below: 

 G: the graph to be colored, represented by an adjacency 
matrix A. 

 N: the number of vertices in the graph G. 

 T: the maximum number of colors to be used. 

 PH: the number of solutions to be generated in parallel. 

 P1, P2…PPH: the solution vectors to be generated in parallel. 
Each vector represents a solution with colors assigned to 
the vertices. 

 UV1, UV2…UVPS: the sets of uncolored vertices for each 
solution. These sets are generated with a random order of 
vertices. 
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 CCi: the current color used to generate the solution Pi (i=1: 
PH). 

Conforming to the algorithm, the following steps are 
undertaken to generate the initial population: 

Initialization 

1. Determine the value of PH. 

2. For each parallel solution Pi (i=1:PH): 

2.1 Generate the UVi vector containing the 

uncolored vertices of the graph G in a 

random order. 

2.2 Create the Pi solution vectors of size 

N, initialized with zero values. 

2.3 Initialize CCi with the value 1 

 

Construction of the initial population 

1. For each parallel solution Pi (i=1:PH): 

1.1 While the UVi vector is not empty and 

CCi is less than or equal to T:  

(a) Take the first vertex v appearing in 

the UVi vector. 

(b) Update the UVi vector and the Pi 

solution vector by removing vertex v from 

the UVi vector and assigning the color CCi 

to vertex v in the Pi vector. 

(c) For all remaining vertices in the UVi 

vector, test the possibility of coloring 

each vertex using the color CCi, i.e., 

check if there are no adjacent vertices 

with the same color. If a vertex can be 

colored with the color CCi, update the UVi 

vector and the Pi solution vector. 

(d) Move to the next color (CCi = CCi + 1). 

1.2 If the UVi vector is not empty, assign 

a random color between 1 and T to all 

remaining vertices in UVi. 

2. Return the best solution among the 

solutions generated in parallel.  

 

By following this algorithmic process, we obtain a diverse 
initial population, which reduces the convergence time of the 
PDHSCol algorithm. This diversity allows for a more 
comprehensive exploration of the solution space, enhancing the 
algorithm's ability to find high-quality colorings for the given 
graph. 

3) The Improvisation Procedure 

The HS algorithm has undergone significant enhancements 
over time, with one of the most robust versions being proposed 
in [19]. Unlike the traditional approach, which employs fixed 
values for PAR and BW and thus requires numerous iterations 
to reach an optimal solution, the enhanced version dynamically 
adjusts these parameters. By utilizing dynamic values that 
evolve with each iteration, this improvement overcomes the 
limitations of fixed parameters.  

In our work, we adopted these dynamic values for PAR, 
thereby enhancing the exploration and exploitation capabilities 

of the algorithm and leading to more efficient convergence to 
high-quality solutions.  

Regarding discrete versions of the HS algorithm proposed 
in the literature, one notable example is the binary version 
presented in [20]. In this version, the authors introduced a new 
Pitch adjustment rule that selects the adjacent value from the 
structural neighborhood rather than from the HM. For ease of 
implementation, the neighbor of each HS vector is defined as 
the globally optimal harmony vector in the HM. Additionally, a 
new discrete version of the algorithm was proposed in [21]. 
This version utilizes a Pitch adjustment method to select an 
adjacent value from the HM, based on (1)-order and (-1)-order 
vectors relative to the selected vectors when harmony 
consideration is applied. Given the discrete nature of the GCP, 
we propose a parallel discrete version to effectively address 
this problem. Algorithm 3 illustrates the pseudocode 
demonstrating the improvisation method of the proposed 
PDHSCol algorithm. In our algorithm, we introduce a new 
Pitch adjustment method based on two main techniques. The 
first technique selects an adjacent value from the HM with the 
condition of minimizing the fitness of the harmony being 
generated. The second technique, inspired by [20], directly 
selects the value from the globally optimal harmony vector in 
the HM. 

Algorithm 3: PDHSCol Improvisation 

1:ParFor i = 1:PH 

2:  Pi  = zeros(1,N) 

3:  For j = 1:N 

4:    R1 = rand() 

5:    If (R1 ≤ HMCR) 

6:      Index = randi(HMS)  

7:      Pi(j) = HM(Index,j) 

8:      R2 = rand() 

9:      If (R2 ≤ PAR) 

10:       R3 = rand() 

11:       If (R3 ≤ 0.5) 

12:         For w=1:HMS  

13:           Pi(j) = HM(w,j) 

14:           F = Fitness (Pi) 

15:           If (w == 1) 

16:             BestF = F 

17:             BestIndex =1 

18:           Else 

19:             If (F < BestF) 

20:               BestF = F 

21:               BestIndex = w 

22:             EndIf 

23:           EndIf 

24:         EndFor 

25:         Pi(j) = HM(BestIndex,j) 

26:       Else 

27:         Pi(j) = BestHarmony(j) 

28:       EndIf 

29:     EndIf 

30:   Else 

31:    Pi(j) = randi(T) 

32: EndFor 

33:EndParFor 
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V. EXPERIMENTAL RESULTS 

To implement the proposed approach for graph coloring, 
we developed the PDHSCol algorithm using MATLAB 
R2023a. MATLAB was selected for its robust parallel 
computing capabilities, which are facilitated through its parallel 
pool feature. A parallel pool in MATLAB is a set of workers, 
either on a compute cluster or a desktop, that can run multiple 
tasks simultaneously. This feature was crucial for efficiently 
executing our parallelized algorithm. The program was run on 
a microcomputer equipped with an Intel® Core™ i5-1145G7 
processor, operating at 2.60 GHz with a turbo boost up to 4.40 
GHz and 16 GB of RAM. 

To demonstrate the effectiveness of the proposed algorithm, 
we conducted experiments on a diverse set of DIMACS 
benchmark instances [22]. Our objective was to evaluate the 
performance of PDHSCol in comparison to other graph 
coloring approaches, namely: the Binary Cuckoo Search 
Algorithm for the Graph Coloring Problem (BCSCol) [23], the 
Binary Bat Algorithm for the Graph Coloring Problem (BBCol) 
[24], the Fuzzy Logic and Whale Optimization Algorithm 
(FWOA) [25], and the Greedy Graph Coloring Algorithm based 
on Depth-First Search (GGCADFS) [26]. The experimental 
results, along with those of the comparative methods, are 
presented in Table I. Notably, Column 4 represents the exact 
solution for each instance. 

TABLE I.  RESULTS ON DIMACS BENCHMARK INSTANCES 

Instance |V| |E| χ PDHSCol [23] [24] [25] [26] 
myciel3 11 20 4 4 4 4 4 4 
myciel4 23 71 5 5 5 5 5 5 

queen5_5 25 160 5 5 5 5 6 5 
queen6_6 36 290 7 7 8 8 8 8 
myciel5 47 236 6 6 6 6 6 6 

queen7_7 49 476 7 7 8 8 7 10 
queen8_8 64 728 9 10 10 11 9 11 

Huck 74 301 11 11 11 11 11 11 
Jean 80 254 10 10 10 10 10 10 

David 87 406 11 11 11 11 11 11 
myciel6 95 755 7 7 7 7 8 7 

games120 120 638 9 9 9 9 9 9 
miles250 128 387 8 8 8 8 8 8 
miles500 128 1170 20 20 21 21 * 20 
miles750 128 2113 31 31 32 32 32 31 

Anna 138 493 11 11 11 11 11 11 
mulsol.i.1 197 3925 49 49 49 49 49 49 
zeroin.i.1 211 4100 49 49 49 49 49 49 
fpsol2.i.3 425 8688 30 30 30 30 30 30 
fpsol2.i.2 451 8691 30 30 30 30 * 30 
fpsol2.i.1 496 11654 65 65 65 65 65 65 

Homer 561 1629 13 13 13 13 * 13 
2-Insertions-5 597 3936 6 6 6 6 * 6 

inithx.i.1 864 18707 54 54 54 54 * 54 
3-Insertions-5 1406 9695 6 6 6 6 * 6 

 

 
Fig. 4.  Friedman test tesult comparison of the proposed PDHSCol, 
BCSCol [23], BBCol [24], FWOA [25], GGCADFS [26] and the exact 
solutions. 

As shown in Table Ι, PDHSCol yields highly favorable 
results, surpassing the other methods across various instances. 
Specifically, PDHSCol attained optimal colorings in 24 out of 

25 instances. The Friedman statistical test, detailed in Figure 4, 
validates the performance of PDHSCol, demonstrating its 
closeness to exact solutions. Furthermore, statistical analyses 
reveal significant advantages of PDHSCol over competing 
algorithms. These results highlight the effectiveness and 
competitiveness of our approach in addressing graph coloring 
challenges, establishing it as a promising method in this 
domain.  

VI. CONCLUSION 

In this work, we introduced a novel approach for graph 
coloring using a parallel discrete Harmony Search algorithm, 
named PDHSCol. The integration of parallelism within the 
proposed algorithm enhances performance by accelerating the 
search process and improving solution quality. The 
effectiveness of the proposed method is attributed to well-
chosen parameters, accurate data representation, and the 
incorporation of an improved improvisation technique within 
the Harmony Search algorithm. These factors collectively 
contribute to achieving effective solutions. 
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The proposed algorithm, implemented in MATLAB and 
leveraging its parallel computing capabilities, has been 
thoroughly tested on a set of DIMACS benchmark instances. 
The experimental results demonstrate that PDHSCol 
consistently outperforms the four algorithms it was compared 
against. Specifically, PDHSCol frequently provides higher-
quality colorings and exhibits enhanced robustness across 
various instances. These findings underscore the effectiveness 
of our approach and highlight its competitive advantage in 
addressing graph coloring problems. 

Overall, the proposed method provides a robust and well-
adapted solution to the challenges of graph coloring, 
positioning PDHSCol as a promising approach in the field. 
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