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ABSTRACT 

Manual diagnosis of eye diseases through ocular fundus scans is a challenging and complicated task 

because it is time-consuming and prone to errors. Deep learning techniques are used to detect various 

ocular diseases from fundus images. Such techniques can accurately classify ocular scans, enabling 

automated and precise detection of ocular diseases. This study uses the ResNet50 transfer learning model, 

data augmentation, fine-tuning, binary classification, and rigorous evaluation to achieve state-of-the-art 

results in the detection of cataract eye disease. This study was primarily implemented on a heavily skewed 

ODIR-5K dataset comprising 5000 fundus images. These ocular images are distributed unevenly among 

eight disease classes, including cataract, glaucoma, diabetic retinopathy, age-related macular degeneration, 

and others. In response to this imbalance and disparity, the proposed approach involved converting the 

multiclass problem into binary classification tasks, maintaining an equitable distribution of samples within 

each class. A balanced dataset was used to train a binary classifier using the ResNet50 CNN model. The 

system achieved an overall test accuracy of 96.63%, outperforming previous methods in differentiating 

between normal and cataract cases. In general, achieving dataset balance and employing the ResNet50 

model enhances the accuracy of automated diagnosis of ocular diseases based on fundus images. 

Keywords-cataract detection; classification; transfer learning; ResNet50; fundus images; fine-tuning; deep 

learning 

I. INTRODUCTION  

Ocular diseases refer to any abnormalities or visual 
impairments that disrupt the normal functioning of the eyes or 
adversely affect visual acuity [1]. Retinal disorders are the 
leading causes of visual impairment, encompassing other 
conditions such as glaucoma, cataracts, diabetic retinopathy, 
and age-related macular degeneration. By 2030, more than 400 
million people will be affected by retinopathy [2, 3]. Swift 
detection of these conditions is invaluable to avoid visual loss. 
Screening the fundus by manual inspection is time-consuming 
and is highly dependent on the experience of specialist 
ophthalmologists. However, the prompt identification of eye 
diseases can benefit from automated computer-aided tools [4]. 

Different demographic characteristics, such as sex, age, 
profession, climate, hygiene, etc., play a pivotal role in the 
incidence of eye conditions. Many studies have revealed an 
increased incidence of ocular infections in tropical populations 
compared to temperate regions, with environmental factors 
such as dust, humidity, sunlight, and other contributing factors 
[5]. The World Health Organization (WHO) states that about 
2.2 billion people worldwide have near or far vision 
impairment [6]. Based on projections, 50% of these cases were 
potentially preventable or treatable. Similarly, an estimated one 
billion individuals are affected by moderate to severe distance 
vision problems or blindness caused by uncorrected refractive 
errors, glaucoma, corneal opacities, cataracts, and diabetic 
retinopathy. Uncorrected presbyopia also contributes to near-
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vision deficits in more than 800 million people [7]. These 
statistics show that unprivileged groups need affordable access 
to eye care.  

There is a growing interest in using deep learning for 
medical imaging, with promising results in detection, 
classification, and medical diagnosis. Furthermore, automated 
disease detection can decrease the routing workload of 
ophthalmologists. This study seeks to classify eye diseases, 
using the ODIR-5K dataset, comprising 5000 fundus images, to 
train and test the ResNet50 deep learning framework. 
However, the dataset shows a significant class imbalance, 
making disease classification ineffective due to the instability it 
introduces during training. To address this concern, a binary 
balancing method was applied, extracting equal samples from 
two classes and inputting them into a pre-trained ResNet50 
model. This approach focused on balanced two-class 
classification rather than multiclass disease classification on an 
entirely imbalanced dataset to improve model training and 
performance. 

II. LITERATURE REVIEW 

Many approaches have been proposed for the classification 
of ocular diseases. In [8], a two-stage technique was used to 
achieve precise optical disc localization, utilizing 
Convolutional Neural Networks (CNNs). In [9], ReLayNet was 
proposed, which used knowledge distillation models and 
sequential deep network training. ReLayNet functions as a 
fully convolutional encoder-decoder network, specifically 
designed for the semantic segmentation of retinal layers and 
fluids derived from Optical Coherence Tomography (OCT) 
scans [10]. In [11], a method was proposed to diagnose various 
retinal conditions using OCT. OCT scans were classified pixel-
wise using CNNs with dilated convolution filters, and 
performance was assessed by analyzing 400 scans from 
patients with Age-related Macular Degeneration (AMD). In 
[12], a CNN-based method was introduced to detect intraretinal 
fluid on OCT scans. The CNN model was trained on a dataset 
comprising 1289 OCT scan images, demonstrating notable 
performance with a dice score of 0.911 in cross-validation. 

In [13], a supervised learning technique was introduced, 
featuring an innovative convolutional multitask structure. The 
model was trained to segment bright and red lesions in fundus 
images. It demonstrated robust performance, achieving an 
impressive 0.839 Area Under the Curve (AUC) score. In [14], a 
novel approach was proposed to segment blood vessels in the 
retina through Conditional Random Fields (CRF) linked to a 
CNN (CRF-CNN). The performance of the CRF-CNN model 
was evaluated by examining its effectiveness and accuracy on 
color-fundus visuals from two established datasets, DRIVE and 
STARE [15, 16]. Similarly, in [17], an automated deep-
learning technique was proposed to identify diabetic 
retinopathy and macular edema. This was achieved by fine-
tuning a neural network image classification architecture. In 
[18], various retinal diseases were diagnosed from OCT visuals 
by employing fine-tuned CNNs, including GoogLeNet. The 
images were classified into three sets, namely diabetic-macular 
edema, dry age-linked macular degeneration, and no pathology. 
Visual Geometry Group 19-layer deep CNN (VGG-19) 
effectively detected cataracts in color fundus images, 

highlighting the versatility of this model and its impact on the 
advancement of diagnostic capabilities. Various other research 
efforts have similarly delved into assessing different methods 
[19]. In [20], deep learning models were optimized to detect 
ocular diseases. These methods exemplify the continuous 
exploration and refinement of advanced technologies to 
enhance the precision and versatility of retinal disease 
diagnosis. 

III. METHODOLOGY 

This study used transfer learning with the ResNet50 neural 
network for cataract detection. ResNet50 is a 50-layer deep 
CNN for image classification, which introduced identity skip 
connections, allowing practical training of intense networks 
[21]. The dataset was selected to ensure a fair representation of 
each eye disease. The ODIR-5K dataset [22] includes images 
of various eye diseases such as diabetes, glaucoma, cataract, 
and AMD. The problem formulated was the binary 
classification between normal eyes and eyes affected by 
cataracts. Thus, the ODIR-5K dataset was processed to include 
only average and cataract images, eliminating other images that 
did not fit this objective. The fundus images were subsequently 
preprocessed and inputted into ResNet50, which can scrutinize 
such visual information or imagery. A series of experiments 
were carried out to train ResNet50 and achieve better 
classification results. The image dimensions were modified to 
improve accuracy, involving convolutional layers that extracted 
relevant features and decreased dimensionality. A sequential 
Keras model was developed using ResNet50, flattening its 
outputs and adding a single sigmoid-activated node to binary 
classify cataract or non-cataract images. The model leveraged 
the pre-trained features of ResNet50 to classify images with or 
without cataract. Figure 1 presents the proposed approach, 
which consists of several steps, including dataset readiness, 
ocular image preprocessing, DNN training, ResNet50 TL, and 
performance evaluation. Data were explored to analyze the 
dataset, by examining the details of the initial five patient 
records to develop an initial understanding of the 
characteristics and data structure. 

A. ODIR-5k Dataset 

This dataset consists of color fundus visuals of both the left 
and right eyes from 5,000 patients. Doctor-provided diagnostic 
keywords and age information are included for each patient [3]. 
Shang-gong Medical Technology collected a dataset of 5000 
patients' left and right fundus ocular visuals from various 
hospitals. Metadata, including patient age, sex, and diagnostic 
descriptors, are incorporated in labels. This ocular disease 
dataset, featuring eight classes of eye diseases, includes 
multiple conditions in individual patients, making it a 
multiclass and multilabel dataset. Classes include standard, 
glaucoma, diabetes, AMD, cataract, hypertension, and myopia. 
Figure 2 shows fundus images with various ophthalmological 
disease pathologies: (a) Devoid of any retinal abnormality, (b) 
glaucoma that induces damage to the optic nerve leading to 
increased cupping and brightness in the optic disc, (c) Diabetic 
retinopathy manifesting as microaneurysms, hemorrhages, and 
exudates, presented as distinctive red and yellow spots, (d) 
AMD that results in neovascularization and geographic atrophy 
within the retina, (e) Myopia that contributes to the thinning of 
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the retinal pigment epithelium, leading to peripapillary, and (f) 
Hypertension that causes alterations in vessel morphology, 
characterized by narrowed arterioles and AV nicking. Fundus 
imaging offers a powerful tool for noninvasive screening of 

multiple ocular diseases. This is achieved by detecting 
characteristic morphological changes in both the retina and the 
optic disc. 

 

 

Fig. 1.  System workflow. Images: (a) Original, (b) Cropped, and (c) Left and Right fundus merged. 

 

Fig. 2.  Fundus-images: standard visuals. 

B. Data Preprocessing 

The dataset contains images of different sizes and shapes, 
including rectangular and triangular images. Image dimensions 

vary, with sizes such as 3456×188, 5188×250, and others. This 
diversity is attributed to using different cameras and settings 
during image capture. Preprocessing steps were applied to 
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normalize the dataset. Black borders were removed and a 
combination of cropping and resizing was applied to transform 
the images into rectangular shapes. The left and right fundus 
images were merged into a single composite image.  

After excluding low-quality images based on expert 
annotation, 1094 were chosen for further analysis. As most 
fundus images encompass non-informative black borders, 
preserving them would increase negative sample proportions 
and compromise diagnostic lesion detection accuracy. As a 
result, an automated cropping process was used. The images 
were segmented, distinguishing between background and 

foreground components. The region containing pathological 
features within the foreground was then precisely identified, 
and the image dimensions were subsequently adjusted based on 
the position and dimensions of the foreground. This cropping 
normalized images to 1000×500 pixels, removing extraneous 
information and improving feature representation. 
Normalization also aimed to re-scale all images to streamline 
network optimization by standardizing the input data range. 
Data were distributed in a 70/30 ratio for training and testing. 
Figure 3 shows the fundus images before and after 
preprocessing, after applying the ResNet50 preprocess_input() 
function. 

 

  
(a) (b) 

Fig. 3.  Before and after applying ResNet50 preprocess_input(). 

C. Transfer Learning and ResNet50 

In [23], CNNs were introduced to recognize handwritten 
digits. CNNs perform convolution operations rather than 
matrix multiplication, resulting in superior performance in 
various medical imaging tasks, including segmentation, 
enhancement, and classification [24, 25]. CNNs encompass 
various layers, including convolutional layers, batch 
normalization, and Rectified Linear Unit (ReLU) activation. 
Additionally, pooling and fully connected layers are integral 
components of this architecture. Collectively, these diverse 
layers contribute to their effectiveness in handling complex 
visual data. This network design has proven particularly 
advantageous for tasks involving medical image analysis. CNN 
variants, such as ResNet [26], AlexNet [27], MobileNet [28], 
GoogleNet [29], and VGGNet [8] have been proposed for 
image classification. However, these architectures demand 
extensive datasets to address complex challenges and attain 
optimal performance. Transfer learning uses information from 
already trained models on big datasets, such as ImageNet, to 
avoid the complex and time-consuming job of collecting lots of 
labeled data. This way, existing CNN architectures can be used 
for medical imaging without needing much specific medical 
data [29]. This study focused specifically on ResNet50 to 
classify fundus images. This architecture was used with Keras 
on TensorFlow. 

D. ResNet50 Model Configuration 

The ODIR-5K dataset [22] includes fundus images for both 
eyes of each patient. The ultimate label characterizes the image 
as normal or depicting a cataract. To normalize data, images 
were resized to 500×1000×3 using the ResNet50 
preprocess_input() function. Both the left and right eyes were 
combined and used as input to the ResNet50 model. CNN 

feature maps were pooled globally. The resulting feature vector 
was optimized using the sigmoid activation function, which 
constrains feature predictions in the range of (0, 1) [30-31]: 

���� �
�

���	

     (1) 

The sigmoid activation function calculates the likelihood of 

individual labels independently. If the probability is higher 

than 0.5, it is marked as having cataract, otherwise, it is 

considered normal. The Mean Squared Logarithmic Error 

(MSLE) loss function measures how much the predicted 

values differ from the actual values for both normal and 

cataract categories. The ResNet-50 model employs a 

distinctive CNN architecture that includes residual blocks with 

identity shortcut connections, where each block contains 

multiple convolutional layers using 3×3 filters and stride-2 

convolutions. This architecture captures complex hierarchical 

features from the data while reducing reliance on excessive 

hyperparameters, thus contributing to its effectiveness in 

various computer vision tasks. This Keras sequential model 

leverages transfer learning from a trained ResNet50 model for 

feature extraction. ResNet50 provides powerful hierarchical 

visual representations. The model comprises the pre-trained 

ResNet50 base, which outputs 2048 feature maps. These 

feature maps are flattened to a 1D vector by a flattened layer. 

Finally, a single dense layer with sigmoid activation is added 

for binary classification. Overall, the model architecture 

enables efficiently use of the representation capability of the 

ResNet50 CNN through transfer learning, training only a tiny 

classifier layer on top. 
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IV. IMPLEMENTATION 

A. Experimental Setup 

Python PyCharm community edition 2021.3.2 was used for 
the experiments. The Adam optimizer was used with a learning 
rate set at 0.0003. The loss function calculation employed 
MSLE. A batch size of 32 was used to train the model. The 
training process iterated over 20 epochs. Table I shows the 
model summary. 

TABLE I.  RESNET50 TRAINING DETAILS 

Data augmentation No 

Transfer tearning Yes 

Weights Pre-trained on ImageNet 

Last layer Dense (1, activation: sigmoid) 

Feature extraction enabled Yes 

Classification enabled Yes  

Optimizer Adam 

Loss function MSLE 

Early stopping patience No 

 

B. Evaluation Metrics 

Accuracy is used to measure the prediction performance of 
a model. However, in cases where classes are unevenly 
distributed, more than accuracy is needed to give a complete 
picture of the model's success. The F1 score is essential, as it 
considers both precision and recall, providing a balanced 
measure that accounts for false positives and negatives. 
Combining the F1 score with accuracy provides a more 
comprehensive evaluation of the model's performance, 
especially in situations with asymmetric class distribution or 
when equal importance is needed for false positives and false 
negatives. 

���
���� �
��� � ���

��� � �� � �� � ���
   (2) 

with TP representing cases with accurate positive predictions, 
TN representing situations where predictions and actual 
outcomes are adverse, FP representing the number of cases that 

the model predicts as positive for negative cases, and FN 
representing the number of positive instances that are 
incorrectly predicted as negative. Precision shows how well the 
model accurately identifies positive instances among all the 
positive cases. Higher precision indicates the model's ability to 
reduce FP predictions. Recall measures the effectiveness of a 
model in correctly identifying positive samples in a dataset. A 
higher recall indicates that the model is better at capturing TPs 
and fewer FNs. Using recall as a single metric makes model 
comparisons easier, especially in domains such as cancer 
prediction, where overlooking true positives can have severe 
consequences. Therefore, models that maximize recall are 
essential. 
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V. RESULTS AND DISCUSSION 

The ResNet50 model was trained for 20 epochs in the 
cataract image dataset. The training process involved 
optimization of the model's parameters to minimize loss and 
improve the accuracy of both the training and validation data. 
Throughout 20 epochs, the model consistently improved 
performance, with the training loss decreasing and the training 
accuracy increasing. Similarly, the validation loss trended 
downward and validation accuracy improved over the training 
process. The gap between the training and validation metrics 
was small, indicating that the model did not overfit the training 
data. Figure 4 shows an accuracy and loss plot for both training 
and testing of the model. After 20 epochs, the model achieved a 
high level of performance in both training and validation data. 
An overall test accuracy of 96.63% was achieved. The 
difference in error between the training and testing data was 
negligible (0.0001634), suggesting that the model could 
generalize well to unseen data.  

 

 

Fig. 4.  Accuracy and loss plots on both training and testing phases. 
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When evaluated in the test set, the model demonstrated 
strong performance, accurately predicting most normal and 
cataract images. Table II shows in detail the evaluation metrics 
of the proposed model in the testing phase. 

TABLE II.  EVALUATION RESULTS 

Testing Details Value 

Testing Accuracy 0.9663 

Testing Loss 0.0162 

Testing Recall 0.9661 

Testing Precision 0.9715 

Testing AUC 0.9661 

 

VI. CONCLUSION AND FUTURE WORK 

This study used ResNet50, a CNN-based deep learning 
model, to detect whether an eye fundus is normal or has a 
cataract. The model performed very well, exceeding 
expectations, as it achieved 96.58% training accuracy and 
96.63% testing accuracy. The proposed approach outperformed 
current CNN models in terms of accuracy while demanding 
reduced latency. When comparing different studies in this field, 
it is worth mentioning the significant findings of [32], which 
used a specifically constructed CNN model and achieved a test 
accuracy of 94.2% in classifying normal vs. cataract cases on 
the ODIR-5K dataset. In [30], a transfer learning technique 
using VGG-16 achieved a test accuracy of 95.8% on the same 
dataset for binary classification. Furthermore, in [31], 
ResNet50 obtained an average accuracy of 93.5% on the same 
dataset. 

In addition, the proposed method can be easily adapted for 
other medical image classification tasks. The ResNet50 model 
is promising for real-world ocular disease diagnosis systems. 
One notable benefit is its versatility for other medical image 
classifications. This model demonstrates significant potential to 
assist medical professionals and revolutionize ocular disease 
screening. However, further research is required to enhance 
accuracy, especially in cases of glaucoma. Despite this, the 
current results are promising and, with additional data and 
experimentation, could evolve into a highly effective disease 
classification tool. In addition, future studies can combine the 
proposed method with [33-38] to obtain better transmission and 
signal processing. 
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