
Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17337-17343 17337

www.etasr.com Khassaf & Ali: Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter …

Improving Pre-trained CNN-LSTM Models for

Image Captioning with Hyper-Parameter

Optimization

Nuha M. Khassaf

Informatics Institute for Postgraduate Studies, Iraqi Commission for Computers & Informatics, Iraq

phd202230705@iips.edu.iq (corresponding author)

Nada Hussein M. Ali

Department of Computer Science, College of science, University of Baghdad, Iraq

nada.husn@sc.uobaghdad.edu.iq

Received: 21 July 2024 | Revised: 10 August 2024 | Accepted: 22 August 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8455

ABSTRACT

The issue of image captioning, which comprises automatic text generation to understand an image’s visual

information, has become feasible with the developments in object recognition and image classification.

Deep learning has received much interest from the scientific community and can be very useful in real-

world applications. The proposed image captioning approach involves the use of Convolution Neural

Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image

captions. The process includes two stages. The first stage entails training the CNN-LSTM models using

baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing

and adjusting the hyper-parameters of the previous stage. Improvements include the use of a new

activation function, regular parameter tuning, and an improved learning rate in the later stages of

training. The experimental results on the flickr8k dataset showed a noticeable and satisfactory

improvement in the second stage, where a clear increment was achieved in the evaluation metrics Bleu1-4,

Meteor, and Rouge-L. This increment confirmed the effectiveness of the alterations and highlighted the

importance of hyper-parameter tuning in improving the performance of CNN-LSTM models in image

caption tasks.

Keywords-CNN pre-trained models; LSTM; activation function; hyper-parameters; overfitting

I. INTRODUCTION

Image captioning is a far more challenging problem than
picture categorization, which has been the primary focus of
computer vision researchers, because the interconnections
between the picture's constituent parts must be conveyed in any
adequate image description. Caption creation requires visual
recognition of the image and the expression of semantic
knowledge in a natural language such as English. Utilizing a
CNN-LSTM model is one of the techniques used in generating
image translation, which is seen as a combination of computer
vision and natural language processing [1]. There are still many
challenges in achieving high-performance models. These
challenges include the need for large computational resources
for training, hyper-parameter optimization, different dataset
generalization, and adaptation to real-world applications that
require high accuracy. Most existing studies have not
adequately addressed the issue of choosing and optimizing
hyper-parameters to improve performance. Also, the unstable
performance of models across different datasets indicates the
necessity for further work on domain adaptation and transfer

learning [2]. Image caption generation is an active research
area that integrates computer vision and natural language
processing. CNN-LSTM models are the most popular tools in
this area, where CNN is used to extract image features, and
LSTM to generate text addressing the vanishing gradient
problem, with its unique features being able to hold data values
for long periods [2]. Authors in [3] proposed an improved Grey
Wolf Algorithm (GWO) to design advanced CNN-LSTM
networks for time series analysis. The optimization includes
multiple search mechanisms to overcome local stagnation and
increase the convergence speed. The enhanced models showed
superior performance in time series prediction and
classification compared to other traditional and state-of-the-art
methods. The proposed approach in [4] concerned generating
sentences from visual scenes by deploying a bidirectional
LSTM decoder. The encoder relies on Inception v3 to extract
object attributes and Places365 to extract scene attributes. The
decoder uses bidirectional LSTM to create sentences. The
results demonstrated an improvement in generating longer
sentences.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17337-17343 17338

www.etasr.com Khassaf & Ali: Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter …

Authors in [5] presented a system relying on VGG-16,
Xception models to extract features and using an LSTM model
to predict the outcome with a fixed-length output vector. The
experiments provided satisfactory outcomes of image
captioning but still need improvement. Authors in [6] tested
feature extraction architectures (VGG, ResNet, and, DenseNet,
Inception, ResNet) along with LSTM to explore how
modifying the CNN feature extractor affects picture captioning
quality. The Xception, Inception, and ResNet models
outperformed the VGG model on the image description task.
Authors in [7] employed the VGG architecture along with
LSTM for image description and the provision of sequential
text. This study displayed that layered normalization is superior
in RNNs. Although both techniques aim to improve data flow
and speed up learning, layered normalization is better suited to
the sequential nature of RNNs [7]. Authors in [8] conducted a
performance comparison between the Resnet50 and the
InceptionV3 models, with LSTM to generate image captions.
With a batch size of 128 and Adam optimization, the
InceptionV3 model outperformed the Resnet50 model [8].
CNN-LSTM based models have been proven to be effective in
image captioning, with their continuous advances in hyper-
parameter optimization and training strategies to prevent
overfitting and improve the accuracy of image captions.

In this paper, the proposed approach entails the use of pre-
trained CNN models namely Xception, DenseNet121,
InceptionV3, MobileNetV2, VGG16, VGG19 with LSTM to
generate image captions. The process involves two stages. The
first stage includes training the CNN-LSTM models using
baseline hyper-parameters, and the second stage encompasses
training CNN-LSTM models utilizing optimized parameters
that helped reduce overfitting and improve efficiency. In this
work, the model parameters are optimized deploying
techniques, such as the Swish activation function instead of
Rectified Linear Unit (Relu), Gradient Clipping by Norm
(ClipNorm) tuning, and learning rate optimization after the
fifth epoch.

II. METHODOLOGY

A. Convolutional Neural Networks (CNNs)

A CNN is designed to process data in the form of a 2D
matrix. CNNs comprise convolutional, pooling, flattening, and
fully connected layers [9]. CNNs can take an image as input,
applying weights and biases to different parts of the image.
Their ability to extract complex features from images and
videos makes them suitable for tasks, such as image
classification, object detection and differentiation [10].

B. Long Short-Term Memory (LSTM)

LSTM is a specialized type of Recurrent Neural Network
(RNN) that can generate feedback loops by storing information
in its internal states [11]. LSTM networks may effectively
handle sequential input and record long-range relationships.
The LSTM architecture primarily comprises three gates: input,
output, and forget. These gates control the flow of data into and
out of the cells and the ability to ignore the current value of the
cell. The prior hidden states that are passed on to the next step
are crucial [12].

C. CNN-LSTM Model

CNN-LSTM models handle sequential data by iterating
steps over time and learning long-term dependencies between
time steps, so they can learn spatial and temporal properties. A
CNN-LSTM model learns from training data using
convolutional and LSTM layers. Image captioning utilizes
CNN encoders and LSTM decoders [13].

D. Hyper-Parameters

The structure and training method of a network are dictated
by hyper-parameter including batch size, embedding
dimension, length of generated texts, optimizer type, epoch
number, sequence length, etc. [14]. Optimal model
performance is achieved through parameter tweaking.

1) Number of Nodes in the Dense Layer

The number of neural nodes in the dense layer affects the
model's ability to depict complex patterns.

2) Activation Function

It is used to transform the layer output into a nonlinear
form: ReLU is a common and simple activation function, its
output is equal to zero if the input is negative and equal to the
input if it is positive. It is effective in training and accelerates
the deep approximation process [15]:

y = max (0, x) (1)

where x represents the image matrix values.

Swish is a new activation function introduced to improve
the performance of deep models. It is generally considered
more effective than ReLU in improving model accuracy, and
reduces the problem of dead neurons to a large extent [16]:

y = x * sigmoid(x) (2)

The sigmoid is used to ensure nonlinearity and stimulate
different outputs.

3) Dropout Rate

It represents the percentage of units that are dropped. It is
determined randomly in each training update [17].

4) Number of LSTM Units

It determines the number of neural units in the LSTM layer,
which affects the model's ability to accommodate temporal
patterns in texts [18].

5) Word Embedding Size

It represents the specifying resulting dimension of vectors
representing words [18].

6) Optimizer

It is an algorithm used to update the model weights with the
aim of minimizing the loss function. It controls how the model
learns from the data and improves its performance by gradually
adjusting the weights during the training process. Adaptive
Moment Estimation (Adam) is a widely employed advanced
optimizer that combines the advantages of both SGD and
adaptive learning rate [19].

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17337-17343 17339

www.etasr.com Khassaf & Ali: Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter …

7) Learning Rate (LR)

It is deployed in the training process. It has a small positive
value and it affects the size of the steps the optimizer takes
while adjusting the weights in the model during optimization to
minimize the loss function [19].

8) Maximum Slope Value (Gradient Clipping Norm)

It is a hyper-parameter used to limit the length of the slope
to prevent very large slope updates that might make the model
unstable [20].

9) Batch Size

It defines the number of numerical samples that are passed
through the model in one training step.

10) Epoch Number

The epoch number determines the number of times the
model will be trained on the full data set.

11) Learning Rate Scheduler

It is a predefined framework used to define how the
learning rate will be adjusted during training to maintain
stability of updates and improve adaptability [19].

E. Overfitting

Overfitting occurs when there is a significant difference
between the model's performance on training data and
validation data, which means that the algorithm closely
matches the training data, which leads to the model not being
able to predict accurately other data. Common mechanisms to
prevent overfitting are Early Stopping, Dropout, and Learning
Rate Scheduler [21].

F. Dataset

The Flickr8K dataset was utilized for training and
evaluation. The dataset contains 8,091 visual images, each with
five captions. The images represent different scenes and are
prepared using multiple labels for each image [22].

G. Pre-Processing

Image resizing is resized to match the requirements of the
pre-trained model (e.g. 299 × 299 pixels for Xception). The
images are normalized to pixel values between 0 and 1.

H. The Proposed Approach

Image captions are generated deploying the CNN-LSTM
models in two stages. At the first stage, the CNN-LSTM
models are trained using baseline hyper-parameters. At the
second stage, the models are trained utilizing optimized hyper-
parameters. The experiments were conducted on 6 CNNs pre-
trained on the ImageNet dataset. Features were extracted from
the last layer after removing the last fully connected layer on
the flickr8k dataset. The considered models are summarized in
Table I.

 Xception: It is an architecturally advanced ANN model
developed by Google and contains 71 layers. It is based on
the idea of dimension alternation, which employs multilevel
processes to separate categories using images with a size of
299 × 299 pixels [23].

 DenseNet121: It is a model from the DenseNet family, and
contains 121 layers. This model is characterized by a dense
interconnection between layers, where the outputs of all the
advanced layers are passed to the subsequent ones, which
enhances the exchange of information between layers. It uses
224×224 pixel images [24].

 MobileNetV2: It is a model designed specifically for devices
with limited resources such as mobile phones. It consists of
53 layers and is highly efficient. It relies on powerful
technologies such as Depth-wise Separable Convolution and
used images with a size of 224 × 224 pixels [25].

 InceptionV3: It is a model developed by the Google team,
and is based on the "Inception" concept that uses multi-level
processes to analyze images in an efficient way. It contains
48 layers and uses 299×299 images. It has good performance
and high generalizability [26].

 VGG-16: It is a model from the VGG (Visual Geometry
Group) series and it consists of 16 layers containing an
average depth. It is easy to understand and to apply, and has
performed well on many taxonomic tasks. It uses images
with a size of 224 × 224 pixels [7].

 VGG-19: It is similar to the VGG-16 but has 19 layers,
increasing the depth of the model. Increasing the number of
layers can improve performance and enhance the model's
ability to extract features. It uses 224 × 224 pixel images
[27].

TABLE I. UTILIZED CNN MODELS

CNN Model Number of layers Image size Feature Vector

Xception 71 299x299 2048

DenseNET121 121 224x224 1024

MobileNetV2 53 224x224 1280

InceptionV3 48 299x299 2048

VGG-16 16 224x224 2096

VGG-19 19 224x224 2096

III. IMPLEMENTATION

The CNN-LSTM models were implemented to generate
image captions. They take the image as input and provide the
text as output. Models were trained applying the Flickr8K
dataset, which consists of 8091 images. Each image is
described with five sentences of content. The dataset was
divided into 6000 images for training, 1091 for validation, and
1000 for testing.

A. Modeling

Two stages were used based on hyper-parameter
modification.

 First Stage: The CNN-LSTM model architecture is created,

as shown in Figure 1, with the following parameter values:

dropout (0.40), dense layer units (256), embedding size

(256), LSTM units (256), optimizer (Adam), batch size (32),

epochs (10), activation function (ReLU), and loss function

(categorical-cross entropy).

 Second Stage: The CNN-LSTM model architecture is
created, as evidenced in Figure 2, with the following

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17337-17343 17340

www.etasr.com Khassaf & Ali: Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter …

optimized hyper-parameter values: dropout (0.40), dense
layer units (512), embedding size (512), LSTM units (512),
optimizer (Adam), batch size (16), epochs (10), learning rate
(0.0010), learning rate scheduler (lr_schedule). It halves the
learning rate after 5 epochs), clipnorm (1.0), activation
function (Swish), and the loss function (categorical-cross
entropy).

Fig. 1. CNN-LSTM model architecture - first stage.

Fig. 2. CNN-LSTM model architecture - second stage.

B. Training

The cross-entropy loss function value was calculated for
training and validating images during model training in both
stages. Table II and Figure 3 depict the results for the first
stage, and Table III and Figure 4 illustrate the results for the
second stage.

Fig. 3. Loss plot of the CNN-LSTM models - first stage.

Fig. 4. Loss plot of the CNN-LSTM models - second stage.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17337-17343 17341

www.etasr.com Khassaf & Ali: Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter …

TABLE II. LOSS TABLE OF THE CNN-LSTM MODELS FOR
THE FIRST STAGE

CNN-LSTM

model
Cross entropy-loss/

Training
Cross entropy-loss/

validation

Xception-LSTM 2.2136 2.9738

DenseNet121-LSTM 2.4149 3.0284

MobileNetV2-LSTM 2.2360 2.9310

InceptionV3-LSTM 2.3970 3.0666

VGG19-LSTM 2.5419 3.1088

VGG16-LSTM 2.4596 3.0098

TABLE III. LOSS TABLE OF THE CNN-LSTM MODELS FOR
THE SECOND STAGE

CNN-LSTM

model
Cross entropy-loss/

Training

Cross entropy-loss/

Validation

Xception-LSTM 2.1588 2.5006

DenseNet121-LSTM 2.4308 2.6546

MobileNetV2-LSTM 2.1872 2.5247

InceptionV3-LSTM 2.3690 2.6626

VGG19-LSTM 2.6068 2.8607

VGG16-LSTM 2.5737 2.8235

B. Discussion

This study included training pre-trained CNN models,
namely Xception, DenseNet121, InceptionV3, MobileNetV2,
VGG16, VGG19 along with LSTM in two stages. The second
stage involved optimizing and adjusting the parameters based
on the performance results derived from the first stage. The
Swish function proved to be superior to the Relu activation
function, which the former replaced, as it gives the model
better nonlinear learning ability and improves its performance.
Clipnorm also helped stabilize the training process by
preventing very large updates that could cause the models to
become unstable, while it was used with the Adam optimizer to
set the maximum weight update rate to 1.0. Monitoring the
learning rate and modifying after each fifth epoch led to
improved performance and stability. These modifications were
based on repeated experiments and observations of the model
behavior. Table II-III and Figures 3-4 illustrate an effective
comparative analysis of the two stages. At the first stage, it is
observed that the models start to overfit after about 5 epochs,
and the performance starts to decline, despite the use of
methods, such as Dropout (0.40), to reduce overfitting and
tuning Adam optimizer with default settings. At the second
stage, Adam learning rate was set to 0.001 with a learning rate
function that halves the rate after 5 epochs and the batch size
was reduced to 16 instead of 32, which improved the learning
process. Having used the concatenate function to layer the
fusion from CNN and LSTM instead of the add function to
combine layers at the first stage, gave the models a more
complex representation of the extracted information.

C. Evaluation Metrics and Results

The considered models were evaluated with the Bleu1-4,
Meteor, and Rouge-L metrics. These metrics are used to
evaluate the quality of the text generated as outputs of the
models compared to the reference texts [28]. Bleu measure is
based on the concept of n-grams to calculate the degree of
similarity between two texts, where the linguistic sequences of
words are compared. Bleu uses four sub-indices to compare the

linguistic sequences of words to evaluate the smoothness and
structure of the generated sentence. Rouge-L measure deploys
the recall metric to evaluate the quality of the linguistic model.
It measures the proportion of common words between the two
texts to the total number of words in the original text. The
Meteor measure compares the two texts at the level of root
words and synonyms to provide a more comprehensive and
accurate assessment [29]. The comparison results are portrayed
in Tables IV and V. The positive effect of modifying the hyper-
parameters on the performance of the models can be clearly
seen. All models achieved improvement in their performance
after the modification. It should be noted that the Xception-
LSTM model benefited greatly from the modification,
overperforming the other models. DenseNet121-LSTM,
MobileNetV2-LSTM, and InceptionV3 models also achieved
clear improvement, confirming the flexibility of these models
and their ability to benefit from the modifications. VGG16 and
VGG19 models achieved less improvement, which may be due
to the limitations of their architecture to benefit from such
modifications.

TABLE IV. RESULTS OF CNN-LSTM MODELS - FIRST
STAGE

CNN-LSTM

Model
Bleu1 Bleu2 Bleu3 Bleu4 Meteor Rouge-L

Xception-LSTM 0.4422 0.2590 0.1626 0.1071 0.2888 0.1999

DenseNET121-LSTM 0.4449 0.2638 0.1690 0.1115 0.2821 0.1942

MobileNetV2-LSTM 0.4389 0.2548 0.1622 0.1070 0.2709 0.1931

InceptionV3-LSTM 0.4312 0.2614 0.1683 0.1124 0.2886 0.1884

VGG19-LSTM 0.3862 0.2163 0.1350 0.0882 0.2321 0.1595

VGG16-LSTM 0.3721 0.2061 0.1272 0.0825 0.2329 0.1606

TABLE V. RESULTS OF CNN-LSTM MODELS - SECOND
STAGE

CNN-LSTM Model Bleu1 Bleu2 Bleu3 Bleu4 Meteor Rouge-L

Xception-LSTM 0.5267 0.3324 0.2261 0.1589 0.3602 0.2509

DenseNET121-LSTM 0.5144 0.3253 0.2225 0.1570 0.3438 0.2484

MobileNetV2-LSTM 0.5111 0.3241 0.2196 0.1547 0.3496 0.2454

InceptionV3-LSTM 0.4973 0.3122 0.2129 0.1504 0.3481 0.2398

VGG19-LSTM 0.4362 0.2585 0.1749 0.1251 0.2905 0.2039

VGG16-LSTM 0.4490 0.2691 0.1832 0.1299 0.3007 0.2124

The proposed models were compared with previous studies
(Table VI), where the default baseline parameters were used.
The results obtained at the second stage (Table V) generally
outperform those of previous studies in most Bleu indicators,
especially in Blue3 and Blue4, reflecting a noticeable
improvement in text generation accuracy. In contrast, previous
studies exhibited some higher values in Blue1, so, the
performance of the proposed models represents a more
comprehensive improvement thanks to the adjustments made to
the parameters.

TABLE VI. RESULTS OF CNN-LSTM MODELS - PREVIOUS
STUDIES

Method Bleu1 Bleu2 Bleu3 Bleu4 Meteor

VGG16-LSTM [5] 0.46 0.32 0.10 0.04 -

Xception-LSTM [6] 44.0 25.9 14.7 8.0 15.1

DenseNet121-LSTM [6] 41.0 23.0 12.3 6.3 14.4

VGG19-LSTM [6] 41.6 23.9 13.1 7.1 13.9

InceptionV3-LSTM [8] 0.53 0.35 0.18 0.09 -

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17337-17343 17342

www.etasr.com Khassaf & Ali: Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter …

IV. LIMITATIONS

The proposed approach requires computational resources,
particularly for training and hyper-parameter optimization.
Careful selection of parameters is necessary to balance
performance and computational cost. Regarding generalization,
the model performance may vary across different datasets,
requiring further work on adaptation when real-world
applications needing high accuracy, like assistive technologies
that are used to help people with disabilities perform daily tasks
and facilitate communication and learning, are demanded.

V. CONCLUSIONS AND FUTURE WORK

This study uses several pre-trained CNN models, namely
Xception, DenseNet121, InceptionV3, MobileNetV2, VGG16,
and VGG19, which perform best in feature extraction with
sequence text prediction utilizing LSTM decoding to generate
image captions. The testing results obtained from the two
stages employing the Bleu1-4, Meteor, and Rouge-L evaluation
metrics, showed noticeable performance improvements due to
modifications performed in the hyper-parameters at the second
stage. Among these modifications, replacing the Relu
activation function with Swish provided tnhancements in the
training stability and performance. Moreover, adding Clipnorm
with a value of 0.1 and adjusting the learning rate were
effective in reducing overfitting, which contributed to
achieving more stable performance. These improved results
provide an important starting point for future research and
development to enhance CNN-LSTM models, either by
modifying their architecture, e.g. including attention modules,
or by optimizing their hyper-parameters. Bayesian optimization
could help find optimal hyper-parameters. Random search
allows a wider range of values for testing hyper-parameters,
potentially leading to the discovery of more efficient settings,
while the use of differential evolution could provide powerful
and effective performance improvements.

REFERENCES

[1] C. P. Chaudhari and S. Devane, "Capturing Semantic Knowledge In
Object Localization In Captioning Images," in International Conference
on Communication information and Computing Technology, Mumbai,
India, Jun. 2021, pp. 1–4, https://doi.org/10.1109/ICCICT50803.
2021.9510175.

[2] S. M. Al-Selwi, M. F. Hassan, S. J. Abdulkadir, and A. Muneer, "LSTM
Inefficiency in Long-Term Dependencies Regression Problems,"
Journal of Advanced Research in Applied Sciences and Engineering
Technology, vol. 30, no. 3, pp. 16–31, May 2023, https://doi.org/
10.37934/araset.30.3.1631.

[3] H. Xie, L. Zhang, and C. P. Lim, "Evolving CNN-LSTM Models for
Time Series Prediction Using Enhanced Grey Wolf Optimizer," IEEE
Access, vol. 8, pp. 161519–161541, Jan. 2020, https://doi.org/10.1109/
ACCESS.2020.3021527.

[4] D. Agughalam, P. Pathak, and P. Stynes, "Bidirectional LSTM approach
to image captioning with scene features," in Thirteenth International
Conference on Digital Image Processing, Singapore, Singapore, Dec.
2021, vol. 11878, pp. 81–88, https://doi.org/10.1117/12.2600465.

[5] J. Basnet, S. Kumari, and M. Rathore, "Image caption generator using
CNN and LSTM," International Journal of Advance Research, Ideas
and Innovations in Technology, vol. 8, no. 2, pp. 489–495, 2022.

[6] M. A. Al-Malla, A. Jafar, and N. Ghneim, "Pre-trained CNNs as
Feature-Extraction Modules for Image Captioning: An Experimental
Study," ELCVIA. Electronic letters on computer vision and image
analysis, vol. 21, no. 1, pp. 1–16, 2022, https://doi.org/10.5565/rev/
elcvia.1436.

[7] P. R. Devi, M. T. Deepak, M. Lohitha, M. S. C. Raju, and K. Venkata,
"Image Caption Generator Using VGG and LSTM For Visually
Impaired," International Journal of Advances in Engineering and
Management, vol. 5, no. 4, pp. 576–583, 2023, https://doi.org/
10.35629/5252-0504576583.

[8] H. Priyambudi and A. Hadinegoro, "Performance Analysis RESNET50
and INCEPTIONV3 Models for Caption Image Generator," JURTEKSI
(Jurnal Teknologi dan Sistem Informasi), vol. 9, no. 3, pp. 521–528, Jun.
2023, https://doi.org/10.33330/jurteksi.v9i3.2277.

[9] A. A. Ali and F. A. A. Dawood, "Deep Learning of Diabetic Retinopathy
Classification in Fundus Images," Journal of Engineering, vol. 29, no.
12, pp. 139–152, Dec. 2023, https://doi.org/10.31026/j.eng.2023.12.09.

[10] M. M. H. Milu, M. A. Rahman, M. A. Rashid, A. Kuwana, and H.
Kobayashi, "Improvement of Classification Accuracy of Four-Class
Voluntary-Imagery fNIRS Signals using Convolutional Neural
Networks," Engineering, Technology & Applied Science Research, vol.
13, no. 2, pp. 10425–10431, Apr. 2023, https://doi.org/10.48084/
etasr.5703.

[11] H. S. Abdullah, N. H. Ali, and N. A. Z. Abdullah, "Evaluating the
Performance and Behavior of CNN, LSTM, and GRU for Classification
and Prediction Tasks," Iraqi Journal of Science, vol. 65, no. 3, pp. 1741–
1751, Mar. 2024, https://doi.org/10.24996/ijs.2024.65.3.43.

[12] S. Gupta, S. Agnihotri, D. Birla, A. Jain, T. Vaiyapuri, and P. S. Lamba,
"Image Caption Generation and Comprehensive Comparison of Image
Encoders," Fusion: Practice and Applications, vol. 4, no. 2, pp. 42–55,
Jan. 2021, https://doi.org/10.54216/FPA.040202.

[13] B. Deepika, S. P. Reddy, S. G. Satya, and K. R. Kumar, "Image Caption
Generator," in International e-Conference on Advances in Computer
Engineering and Communication Systems, Hyderabad, India, Sep. 2023,
pp. 360–370, https://doi.org/10.2991/978-94-6463-314-6_35.

[14] S. K. Shukla, S. Dubey, A. K. Pandey, V. Mishra, M. Awasthi, and V.
Bhardwaj, "Image Caption Generator Using Neural Networks,"
International Journal of Scientific Research in Computer Science,
Engineering and Information Technology, vol. 7, no. 3, pp. 1–7, May
2021, https://doi.org/10.32628/CSEIT21736.

[15] H. K. Dhahir and N. H. Salman, "A Review on Face Detection Based on
Convolution Neural Network Techniques," Iraqi Journal of Science, vol.
63, no. 4, pp. 1823–1835, Apr. 2022, https://doi.org/10.24996/ijs.
2022.63.4.39.

[16] "machine-learning-articles/why-swish-could-perform-better-than-
relu.md," GitHub. https://github.com/christianversloot/machine-
learning-articles/blob/main/why-swish-could-perform-better-than-
relu.md.

[17] A. Halbouni, T. S. Gunawan, M. H. Habaebi, M. Halbouni, M. Kartiwi,
and R. Ahmad, "CNN-LSTM: Hybrid Deep Neural Network for
Network Intrusion Detection System," IEEE Access, vol. 10, pp. 99837–
99849, Jan. 2022, https://doi.org/10.1109/ACCESS.2022.3206425.

[18] B. Subedi and B. Krishna Bal, "CNN-Transformer based Encoder-
Decoder Model for Nepali Image Captioning," in 19th International
Conference on Natural Language Processing, New Delhi, India, Dec.
2022, pp. 86–91.

[19] N. Landro, I. Gallo, and R. La Grassa, "Mixing ADAM and SGD: a
Combined Optimization Method," arXiv e-prints. Nov. 01, 2020,
https://doi.org/10.48550/arXiv.2011.08042.

[20] V. V. Mai and M. Johansson, "Stability and Convergence of Stochastic
Gradient Clipping: Beyond Lipschitz Continuity and Smoothness," in
38th International Conference on Machine Learning, Jul. 2021, pp.
7325–7335.

[21] C. Ma, Y. Liu, J. Deng, L. Xie, W. Dong, and C. Xu, "Understanding
and Mitigating Overfitting in Prompt Tuning for Vision-Language
Models," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 33, no. 9, pp. 4616–4629, Sep. 2023,
https://doi.org/10.1109/TCSVT.2023.3245584.

[22] R. Mulyawan, A. Sunyoto, and A. H. M. Muhammad, "Pre-Trained
CNN Architecture Analysis for Transformer-Based Indonesian Image
Caption Generation Model," JOIV : International Journal on Informatics
Visualization, vol. 7, no. 2, pp. 487–493, May 2023, https://doi.org/
10.30630/joiv.7.2.1387.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17337-17343 17343

www.etasr.com Khassaf & Ali: Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter …

[23] I. Taneja and S. Maggu, "Generating Captions for Images Using Neural
Networks," IRE Journals, vol. 6, no. 12, pp. 214–218, 2023.

[24] R. Khan, M. S. Islam, K. Kanwal, M. Iqbal, M. I. Hossain, and Z. Ye,
"A Deep Neural Framework for Image Caption Generation Using GRU-
Based Attention Mechanism." arXiv, Mar. 03, 2022, https://doi.org/
10.48550/arXiv.2203.01594.

[25] I. I. Amal, D. H. Widyantoro, and A. Umam, "MobileNet-based Neural
Image Caption Model in Title Generation for Product’s Images," in 7th
International Conference on Advance Informatics: Concepts, Theory
and Applications, Tokoname, Japan, Sep. 2020, pp. 1–6,
https://doi.org/10.1109/ICAICTA49861.2020.9428886.

[26] R. D. Dondapati, T. Sivaprakasam, and K. V. Kumar, "Dermatological
Decision Support Systems using CNN for Binary Classification,"
Engineering, Technology & Applied Science Research, vol. 14, no. 3,
pp. 14240–14247, Jun. 2024, https://doi.org/10.48084/etasr.7173.

[27] S. Mundargi and M. H. Mohanty, "Image Captioning using Attention
Mechanism with ResNet, VGG and Inception Models," International
Research Journal of Engineering and Technology, vol. 7, no. 9, pp.
3791–3801, 2020.

[28] M. Bhalekar and M. Bedekar, "D-CNN: A New model for Generating
Image Captions with Text Extraction Using Deep Learning for Visually
Challenged Individuals," Engineering, Technology & Applied Science
Research, vol. 12, no. 2, pp. 8366–8373, Apr. 2022, https://doi.org/
10.48084/etasr.4772.

[29] Z. Ren, S. Gou, Z. Guo, S. Mao, and R. Li, "A Mask-Guided
Transformer Network with Topic Token for Remote Sensing Image
Captioning," Remote Sensing, vol. 14, no. 12, Jan. 2022, Art. no. 2939,
https://doi.org/10.3390/rs14122939.

