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ABSTRACT 

This study used a Quantum-Inspired Genetic Algorithm (QIGA) to select the proper functionality and 

reduce the dimensions, classification time, and computational cost of a learning dataset. QIGA reduces the 

complexity of solutions and improves the selection of the best features. The application of quantum 

principles, in particular the unpredictability of quantum chromosomes, which are represented by qubits, 

can help in investigating a significantly more extensive solution space. QIGA offers a novel approach to 

feature selection in optimization problems. Using principles from quantum computing, this algorithm aims 

to enhance the efficiency and effectiveness of the feature selection process to increase performance. This 
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indicates that features of both exploration and exploitation are embodied by QIGA without requiring 

massive amounts of data. Considerable gains in classification accuracy were achieved compared to 

traditional methods. The dynamic design of the models through the evolutionary mechanism in QIGA 

enables the optimization process to adapt to varying probabilities produced from the qubit overlay via the 

quantum rotation gate. This is contrary to traditional methods. The model using QIGA offered a more 

precise classification than the model optimized by Genetic Algorithms (GA). The proposed method 

achieved superior performance in terms of classification accuracy, with a score of more than 98%, 

compared to GA, which achieved a classification accuracy of 94%. 

Keywords-medical image classification; deep learning; machine learning; genetic algorithm; quantum-

inspired; K-nearest neighbors 

I. INTRODUCTION  

Approaches based on Machine Learning (ML) and Deep 
Learning (DL) have become increasingly popular in the field of 
healthcare for the diagnosis of a wide variety of diseases. The 
use of image processing has seen explosive growth in this 
sector, utilizing such methods in Medical Image Classification 
(MIC) [1]. Genetic Algorithms (GAs) are a class of 
evolutionary algorithms inspired by Darwinian natural 
selection. They are popular heuristic optimization methods 
based on simulated genetic mechanisms, i.e., mutation, 
crossover, etc., and population dynamical processes, such as 
reproduction, selection, etc. Solutions are encoded in arrays 
that are referred to as chromosomes. Usually, the algorithm 
begins with a randomly generated initial population of 
chromosomes and evolves over and over the population in 
search of an optimal solution. The drawback of these methods 
is that they require adequate data to train the model and 
increase prediction accuracy. This limitation is incompatible 
with the absence of accurate and adequate data in MIC [2, 3].  

Quantum computing focuses on developing computer 
technology based on the principles of quantum theory. 
Quantum computers use quantum bits, or qubits, which process 
information very differently. While classical bits always 
represent either one or zero, Quantum Inspired Genetic 
Algorithms (QIGAs) offer a novel approach to feature selection 
in optimization problems, aiming to improve their efficiency 
and effectiveness. This study delves into the three key 
components of QIGA: qubit population representation, 
quantum rotation gate function, and crossover and mutation 
functions for quantum populations. By integrating the GA and 
the superposition principle, an effective improvement in MIC 
precision can be achieved. In addition, the results show that 
QIGA is much more efficient than Classic Genetic Algorithms 
(CGA). This development can be credited to the fact that QIGA 
can obtain a more exact classification by utilizing the 
superposition principle which is inherent in quantum 
computing. The incorporation of quantum concepts into 
evolutionary algorithms is a substantial advancement in the 
field of feature selection approaches. Quantum-inspired GAs 
have the potential to bring about a revolution in the field of 
healthcare diagnostics and contribute to improved patient 
outcomes and classification tasks in a variety of fields, 
including the treatment of medical conditions. 

II. LITERATURE REVIEW 

Many scholars tried to solve the aforementioned problems 
by developing the concept of information fusion, which has 

been very important in many fields. Based on the theory of text 
content, the technical definition of information fusion is the 
process of merging and associating information from one or 
multiple sources to produce meaningful information for 
detecting, identifying, and classifying a specific object [4]. 
Information fusion improves the accuracy of the predictions 
made by ML and DL models. Computed Tomography (CT) 
scans have been combined as a component of information 
fusion to be fed into DL models. Similar information fusion 
can be observed in works using chest X-ray images obtained 
from different repositories [4, 5]. In [6], different X-ray image 
datasets were combined and processed into a Convolutional 
Neural Network (CNN) for MIC [6]. In [7], Google Trends 
Data (GTD) was used in some countries, including Iran, China, 
Italy, and South Korea, to collect and fuse MIC information. 
However, these models could not distinguish between COVID-
19 and other viral infectious diseases. Feature selection 
processes are deployed to increase performance and choose the 
significant features that affect the accuracy of model 
classification. Wrapper- and embedded-based feature selection 
methods have been used to choose the essential features. Then, 
the optimum number of features is extracted from the dataset, 
which includes various information and data types, suggesting 
a hybrid feature selection strategy: the filter method as a rapid 
feature selection and a GA to choose the important features 
extracted from chest CT images. Then, an Enhanced K-Nearest 
Neighbor (EKNN) classifier can be employed to detect 
COVID-19. In [8], an Adaptive Feature Selection-guided Deep 
Forest (AFS-DF) algorithm was applied to classify MIC using 
chest CT images, achieving an accuracy of 91.79%. 

Various pre-trained CNNs have been implemented to 
identify MIC from X-ray images. The correlation-based feature 
selection technique, in combination with subset size forward 
selection and a linear forward selection-based search, have 
been used to select the best combination of features extracted 
from multi-CNNs. The Bayes classifier has achieved 91.16% 
accuracy when tested on a dataset with 453 COVID-19 images 
and 497 non-COVID images, and 97.44% on a dataset 
consisting of 71 COVID-19 images and 7 non-COVID images 
[9-11]. In [12], several ML algorithms were utilized to predict 
mortality in patients with COVID-19. A dataset with more than 
117,000 laboratory-confirmed COVID-19 patients was used, 
achieving 93% accuracy. In [13, 14], two feature selection 
techniques were followed to select the optimal features that 
enhance the prediction, Recursive Feature Elimination (RFE) 
and Extra Tree Classifier (ETC), applying the Naive Bayesian 
(NB) and Restricted Boltzmann Machine (RBM) methods to 
classify feature vectors. 
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Traditional methods for choosing important features might 
lead to improved accuracy, but large amounts of data still 
depend on the optimization techniques used. To address this, in 
[15], a quantum optimization model was proposed for feature 
selection. Quantum computing concepts were combined with 
metaheuristic GAs to produce QIGA. Due to its fast 
convergence and powerful global search capabilities, QIGA 
can perform significantly better in a parallel structure, 
encompassing both exploration and exploitation features 
without the need for huge amounts of data.  

This study aims to: (i) enhance conventional classification 
strategies by proposing a new QIGA for feature selection, and 
(ii) discuss the problems of computing cost and early 
convergence of traditional GA algorithms. By integrating the 
principles of quantum mechanics, particularly the superposition 
and entanglement properties of qubits, the proposed QIGA 
seeks to improve the efficiency and accuracy of feature 
selection in MIC. This approach not only demonstrates superior 
performance in terms of classification accuracy, but also 
reduces the required computational resources compared to 
classical methods. A series of trials show that the proposed 
QIGA technique is significantly more precise and faster than 
the alternatives [16]. The GA is an adaptive heuristic search 
algorithm used in medical image feature selection for 
classification. When it comes to dilemma complexity, in 
general, GA performs better than NN. Additionally, GA is 
resilient to selecting the optimal feature for the classification 
process, which causes the most visible problems. Optimizing 
the NN structure can attain both convergence and efficiency. 
There are numerous types of outcomes in NN design 
optimization. A GA can be utilized to create an artificial 
intelligence algorithm or "teaching", as the one used in [17-22]. 

III. SYSTEM OVERVIEW  

Building on the strengths of GA, this section covers in 
detail the proposed QIGA that seeks to achieve a precise MIC 
for COVID-19, lung opacity, normal, and viral pneumonia. In 
the proposed system, quantum computing is deployed to 
harness the unpredictability provided by the probabilistic 
models of quantum chromosomes given by qubits to achieve 
variance in the population's assembly. This large diversity in 
each generation reduces the number of generations required for 
GA to find the optimal solution. QIGA offers a novel approach 
to feature selection in optimization problems. This study delves 
into the three key components of QIGA: qubit population 
representation, quantum rotation gate function, and crossover 
and mutation functions for quantum populations. Qubit 
population representation is a fundamental aspect of QIGA. In 
traditional GAs, the population of potential solutions is 
represented using binary strings or real-valued vectors. 
However, QIGA leverages the power of qubits, which are 
quantum bits capable of representing multiple states 
simultaneously. This unique property allows for parallel 
processing and exploration of multiple solutions at once. 
Instead of a single binary or real-valued representation for each 
solution, qubits enable the representation of multiple possible 
states simultaneously. For example, a qubit can represent both 
0 and 1 at the same time, which is known as superposition. 
This feature allows QIGA to explore a larger search space and 

potentially discover more optimal subsets of features for the 
given problem. The second component of QIGA is the 
quantum rotation gate function. This function plays a crucial 
role in increasing the diversity of the population. In traditional 
GAs, diversity is typically achieved through mutation and 
crossover operations. However, in QIGA, the quantum rotation 
gate function introduces an additional mechanism for 
diversification. The quantum rotation gate function operates by 
rotating the qubit states in a controlled manner. This rotation 
alters the probability distribution of the qubit states, allowing 
for the exploration of different solution spaces. By 
manipulating the quantum states through rotations, QIGA can 
effectively explore a wider range of potential solutions and 
avoid getting trapped in local optima. Lastly, QIGA 
incorporates crossover and mutation functions specifically 
designed for quantum populations. These functions manipulate 
the qubit states to generate new solutions and introduce 
diversity to the population. Crossover involves combining the 
qubit states of two parent solutions to create offspring 
solutions. Mutation, on the other hand, introduces random 
changes to the qubit states. The crossover and mutation 
functions for the quantum population are tailored to take 
advantage of the unique properties of qubits. These functions 
ensure that the exploration of the solution space is not limited 
to classical genetic operators but also leverages the quantum 
properties of superposition and entanglement. This allows for a 
more effective search for optimal feature subsets. 

 

 
Fig. 1.  QIGA feature selection process model. 
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QIGA offers a promising approach to feature selection in 
optimization problems. Qubit population representation, 
quantum rotation gate function, and crossover and mutation 
functions for quantum populations are key components that 
enhance the efficiency and effectiveness of the feature selection 
process. By leveraging these quantum-inspired techniques, 
QIGA can explore a larger search space, increase the diversity 
of the population, and potentially discover more optimal 
subsets of features. Figure 1 illustrates the proposed QIGA for 
feature selection for MIC. 

The inspired quantum computing notion within GA leads to 
greater population variety than classical GA. Furthermore, the 
linear superposition of all conceivable binary states in quantum 
chromosomes allows significantly more variation than classical 
representation. A quantum rotation gate is used to converge the 
chromosomal individuals toward optimal solutions. Its primary 
goal is to test the modified QICA's MIC accuracy. The 
suggested strategy utilizes the notion of fitness superposition to 
improve the classic GA selection technique, minimize 
computation costs, and avoid early convergence. Furthermore, 
the specific notion is deployed to enhance variety while 
simultaneously controlling population selection in mutation 
(divergence) and cross-cutting (convergence) transactions. 

A. QIGA for Feature Selection  

The extracted features from the previous step are arranged 
from the first image in the matrix until the last image, and the 
feature vector includes the first features of each descriptor. In 
this work, the feature vector has a length of 184 and is fed to 
QIGA for feature selection. Generally, in QIGA, the qubit 
representation was adopted for minimization problems based 
on the concept and principles of quantum computing. The 
characteristic of the representation is that any linear 
superposition can be represented. The state of a qubit can be 
represented as follows: ∪  is an arbitrary single-qubit unitary 
operation, and Θi is the rotation angle for each qubit around the 
y-axis, defined as: �� = ����, 	�
 ∗ ∆�    (1) 

where ����, 	�
 is the sign of � that determines the direction 
and �� is the magnitude of the rotation gate. �  is required to 
provide the angle of rotation in radians, which can either be 
positive or negative. ��∗  and 	�∗  are calculated as: 

���∗	�∗ � = ⋃�
 ���	��    (2) 

The first step of feature selection is initializing the 
population randomly and calculating the value of the 
population using the fitness function. The accuracy of 
classification is used as a fitness function. Then, the initial 
population is input into the quantum gate. A chromosome is 
logically equivalent to an m-qubit string of quantum vectors. 

All qubits can be tuned to the same value 1/√2, which means 
that all basic quantum states are quantum superpositions with 
the same probability. The fitness function is also used to assess 
the new quantum population. For the result of a quantum 
population to be a decimal value, the state of each individual is 
converted from a decimal to a binary string before evaluation. 
The following method is deployed:  

Create a random number � in [0, 1]: �|���� |�     (3) 

The assessing gen is set to be 1 else 0.  

Then, save the weight set of the solution with its fitness. 
The finest tree and its fitness, along with its binary solution ���
  are formerly nominated and deposited for following 
generations. The renewal policy is to match the fitness �� �
 of 
the recently quantified rate of the item with the current 
evolutionary goal's fitness ��!�
. If �� �
 > ��!�
, then fine-
tune the qubit of the related bit �� �
 ̸ =  ��!�
 to force the 
likelihood value to progress near the track of promoting the 
appearance of  � . In contrast, if �� �
  <  ��!�
, regulate the 
qubit of the equivalent bit to attain the likelihood scale and go 
forward in the track of aiding the presence of !�. Adittionally, % 
is the updating's angle step. The value of % influences the speed 
of the convergence: If the value is large, the resolution may 
move away or have an early convergence to a local optimum. 
In this, the dynamic tuning of % is approved, so that, it receives 
a value between 0.2π and 0.8π by dynamic tuning as stated by 
the variance of the genetic generations. 

B. Architecture of Feature Extraction 

The literature identifies four basic categories of 
characteristics: statistical, structural, model-based, and 
automated [23, 24]. Statistical characteristics are mathematical 
and statistical measurements used to classify relevant data and 
narrow the gap between classes. They have both global and 
local characteristics. Global characteristics describe the image's 
global characteristics. In local feature extraction, medical 
images are divided into several units or segments, and features 
are retrieved from a particular section of the image [23], which 
share a common description. 

At each pixel position, the canonical LBP operator is 
generated by computing the values of a small circular 
neighborhood (with radius R pixels) surrounding the value of a 
center pixel. The key interest attribute is a common method for 
identifying points of interest, often known as important points. 
The image is then represented by a suitable descriptor of these 
identifying characteristics, such as Speed Up Robust Feature 
(SURF) [24], which is a quick and reliable approach to the 
local, similarity-invariant encoding and comparison of pictures. 
Real-time applications, such as object recognition and tracking, 
are made possible by the SURF technique's emphasis on the 
rapid calculation of operators. It consists of two steps: feature 
description and feature extraction. This study uses three types 
of statistical features: local features LPB, SURF, and global 
features from accelerated segment tests [25]. The FAST 
algorithm detects the edge pixels of the input image. If several 
pixels around a particular pixel are either brighter or darker 
than it, it is considered an image edge. The FAST approach 
determines the pixels around a center candidate pixel p to be 
those that occur on a Bradenham circle with radius R and 
created by the function B. These pixels are called candidates &�', (
. 

In the domain of verification, multiple types of features are 
utilized to enhance the performance of the model. There are 
numerous medical image formats. Some of them are lengthy, 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16692-16700 16696  
 

www.etasr.com Ibrahim et al.: A Medical Image Classification Model based on Quantum-Inspired Genetic Algorithm 

 

whereas others are brief, and some are graphic whereas others 
are scripted. Some medical images contain lengthy vertical or 
horizontal strokes, while others are distorted, angled, etc. 
Moreover, medical image styles vary based on scripts. Thus, 
the same elements are not effective for all medical image 
styles. The stability of the features influences the identification 
rate and the style of the medical images also affects the 
recognition rate. 

The main ability of quantum computing is to address 
unique challenges that would require a powerful traditional 
machine. Because micro- and macro-space searches are merged 
into many different genetic operators, genetic-inspired quantum 
computers are used in broad search areas while maintaining the 
link between efficiency and success. In classic quantum-
inspired scanning processes, the definition of a superposition 
state is employed to solve combinational issues that modify the 
individual variables. The tendency of a quantum gadget to 
reside in many locations (states) at the same time is called 
overlapping. The precise superposition of states is the true 
power in quantum computation. Traditional computers are 
always in the same state. Quantum computers can exist in a 
state of superposition. This is the final parallel processing. 

In QIGA, a single qubit is employed to keep and represent 
one gene. Each qubit may be in the 1 state, the 0 state, or any 
superposition of the two. The data expressed by this gene are 
not stable but still probable. Thus, when a process is passed on 
this gene, it can finish with all possible information 
simultaneously. Here, each gene has one qubit. The 
straightforward resolution is to approve the binary coding 
procedure in GA to code these qubits of multi-states. This 
technique has superior flexibility and is simpler to understand, 
as one qubit is used to represent one gene. Each qubit may 
reside in the superposition of the two quantum states 
concurrently. In general, multi-qubits are utilized to embody 
the multi-state operator node as follows: 

)�� = *Z,�	,�-Z��	��- ……… .0Z��	�� -1       (4) 

)�� represents the chromosome of the �-th generation and the 2-

th individual, and 3 is the gen index number. Employing qubit 
encoding allows one to embody the superposition of multiple 
states instantaneously, forcing the QIGA to be better in terms 
of diversity compared to the classic GA algorithm. As stated in 
[1], convergence can also be achieved with the qubit statement. 
As �� or 	� attitudes to 0 or l, the qubit chromosome joins one 
single state. For the updating implementation procedure, a 
quantum rotation gate is used, as described by: 

⋃��
 = �456 � −689 �689 � 456 � �   (5) 

The intensity of the pixel in the center of the circle is 
indicated by :;, while the intensity of the surrounding pixels is 
represented by :; →  . There are three possible states of pixels 
on the circle: brighter, darker, or similar. �; →   is the status of 
a pixel on the circle. FAST is used to determine if at least = 
sequential pixels in the circle, named arc, have the same, 
brighter, or darker state than the candidate pixel (plus or minus 

a threshold �). The equations below show a concise summary 
of these concepts: 

>? → @ = A!B8Cℎ�EB,                 :; + � ≥   :; →  HIBJEB,             :; →       ≥     :; + �6838KIB, :; − � <  :; →  <  :; + � (6) 

:; →  = &�', (
    (7) 

The extracted features are arranged from the first image in 
the matrix until the last image and the feature vector include 
the first features of each descriptor. In this study, the feature 
vector has a length of 184. 

Algorithm 1: Q-coded GA 

Input: Dataset T, No. of Generation t, No. of 

individual's j, Initial Populations Pops 

1:  QubitPops ← 

      GenerateQuantumPopulation(Decimal_Features) 

2:  while t < MAX_GENS do 

3:    t ← t+1 

4:    Fitness_Vals = Fitness_Evaluation(QubitPops) 

5:    QubitPop← Selection_Best(QubitPops, 

         Fitness_Vals) 

6:    Update QubitPops using Q-gate 

7:    If Termination_Condition is False, then 

8:      for i ← 0 to (QubitPops _SIZE − 1) do 

9:        New_QubitPops(i) ← Crossover(QubitPops)  

10:       New_QubitPops(i) ←  

            Mutation(New_QubitPops)  

11:     end 

12:     QubitPops = New_QubitPops 

13:   end 

14:   If Termination_Condition is True, then 

15:     Return QubitPops 

16:   end 

17: end 

18: Best_individual= QubitPop 

 

C. Classification 

The KNN algorithm is a non-parametric supervised 
learning approach. It utilizes the inputs of k training samples in 
a dataset that are the most similar to each other. The output is a 
class object that has been classified by a majority vote of its 
neighbors, with the object being assigned to the class that is the 
most frequent among its k closest neighbors. If k equals n, the 
item is automatically placed in the class corresponding to its n 
closest neighbors. The distance between the query features and 
the training features is determined by Euclidean distance as: 

H86� , L
 = M∑ � � − L�
�O�P,    (8) 

where n refers to data size. 

IV. SIMULATION AND RESULTS 

The proposed system scored the highest classification 
accuracy of over 98% in this evaluation utilizing conventional 
benchmarks. This result demonstrates improved MIC accuracy 
compared to the GA algorithm, which achieved 94%, as 
depicted in Tables II and III 
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A. Experimental Protocol and Dataset Description 

The dataset used in this study includes four types (COVID-
19, lung opacity, normal, and viral pneumonia) and 21,165 
pictures. Figure 2 portrays some example images. 

 

 
Fig. 2.  Dataset sample. 

B. Results 

Two experiments were conducted deploying GA and 
QIGA. Classification accuracy was used as a fitness function. 
The data were randomly divided into 80% for training and 20% 
for testing. In the first experiment, classic GA was utilized to 
select the optimal features. Table I exhibits the GA parameters 
and Table II displays its results. In the second experiment, 
QIGA was used for feature selection. Table III shows the 
QIGA parameters and Table IV demonstrates its results.  

TABLE I.  GA PARAMETERS 

Parameter Default value 

Population size 20 
Generation number 20 

Crossover ratio 0.7 
Mutation ratio  0.3 

Test ratio 022 

TABLE II.  RESULTS OF CLASSIC GA 

Descriptor 
Accuracy Times 

Confusion 

matrix SURF LPB FAST 

√ √  94.70 168.405 Figure 3 
√  √ 94.16 92.444 Figure 4 
 √ √ 94.73 138.463 Figure 5 

 

 
Fig. 3.  Experimental versus classified modulation using GA. 

 
Fig. 4.  Experimental versus classified modulation using GA. 

 
Fig. 5.  Experimental versus classified modulation using the GA. 

TABLE III.  PARAMETERS OF QIGA  

Parameter Default value 

Population size 5 
Generation number 5 

Crossover ratio 0.7 
Mutation ratio 0.3 

Test ratio 0.2 

TABLE IV.  RESULTS OF QIGA 

Descriptor 
Accuracy Times 

Confusion 

matrix SURF LPB FAST 

√ √  98.36 75.306 Figure 6 
√  √ 98.81 32.279 Figure 7 
 √ √ 97.76 63.751 Figure 8 

 
As evidenced in Tables II and IV, in each trial, two types of 

features were combined to test the ability of the selection 
processes for GA and QIGA based on KNN accuracy. 
According to the results, the superiority of the QIGA method is 
readily observed. 
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Fig. 6.  Experimental versus classified modulation using QIGA. 

 
Fig. 7.  Experimental versus classified modulation using QIGA. 

 
Fig. 8.  Experimental versus classified modulation using QIGA. 

QIGA was also evaluated in comparison to the GA based 
on F-score, population size, best fitness, average fitness, worst 
fitness, false reject rate, and false accept rate, as illustrated in 
Table V. For traditional GA, the sample size was 30, and the 
mean score was 94.1980 with a standard deviation of 1.65501. 
The minimum score observed was 90.06, and the maximum 
score was 97.19. For the QIGA, the sample size was 30, and 
the mean score was 97.2763 with a standard deviation of 

0.78118. The minimum score observed was 95.83 and the 
maximum was 98.72. These descriptive statistics provide a 
summary of the performance of both algorithms. The QIGA 
algorithm shows a higher mean score and lower standard 
deviation compared to GA, indicating that it performs better on 
average and has less variability in its results. The minimum and 
maximum scores also suggest that QIGA outperforms GA in 
terms of finding more optimal solutions. 

TABLE V.  COMPARISON BETWEEN GA AND QIGA 

Criteria GA QIGA 

Population size 20 5 
Best fitness 94.73 98.81 

Worst fitness 92.4 94.5 
F score 0.9470 0.9881 
Time  138.463 32.279 

False reject rate 9.5 1.43 
False accept rate 5.54 0.95 

 
Table VI shows the Wilcoxon signed ranks test results, 

which is a non-parametric statistical test used to determine if 
there is a significant difference between two related samples. 
This test is used to compare the performance of QIGA and GA. 
The ranks Table shows the number of negative ranks, where 
QIGA had a lower score than GA, and positive ranks, where 
QIGA had a higher score than GA. In this case, there was one 
negative rank and 29 positive ranks. Based on these results, it 
can be concluded that QIGA performs significantly better than 
GA, as indicated by the higher number of positive ranks and 
the higher mean rank for the positive ranks. Table VII 
illustrates the statistical value calculated (Z = -4.741), 
indicating the rejection of the null hypothesis and the 
acceptance of the alternative hypothesis. 

TABLE VI.  WILCOXON SIGNED RANKS TEST 

Ranks 

 N Mean rank Sum of ranks 

QIGA - 
GA 

Negative Ranks 1a 2.00 2.00 
Positive Ranks 29b 15.97 463.00 

Ties 0c   
Total 30   

a. QIGA < GA, b. QIGA > GA, c. QIGA = GA 

TABLE VII.  STATISTICAL VALUE 

Test Statistics 

 QIGA – GA 
Z -4.741-b 

Asymp. Sig. (2-tailed) .000 

b. Based on negative ranks. 

TABLE VIII.  WILCOXON SIGNED RANKS TEST 

Ranks 

 N Mean rank Sum ranks 

QIGA 
- GA 

Negative ranks 30a 15.50 465.00 
Positive ranks 0b .00 .00 

Ties 0c   
Total 30   

a. QIGA < GA, b. QIGA > GA, c. QIGA = GA 

 
In Table VIII, the Wilcoxon test values are calculated for 

three cases, namely (a) QIGA < GA, which demonstrated that 
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all values are less, i.e., time is less, and (b) QIGA > GA. There 
were no equal values for (c) QIGA = GA. As shown in Table 
IX, the median for the values of GA is 172.8521, for QIGA is 
76.2247567, and the calculation of the upper and lower limits 
displays a standard deviation of 8.40960 for GA, which is 
greater than that of QIGA (0.69288279). 

TABLE IX.  TIME COMPARISON 

Descriptive Statistics 

 N Mean Std. deviation Minimum Maximum 

GA 30 172.8521 8.40960 154.81 192.07 
QIGA 30 76.2247567 .69288279 74.94100 77.54800 

 

V. COMPARATIVE ANALYSIS  

Based on the experimental results, the accuracy of the 
classification and the ratio of true classification to false 
classification for COVID-19, lung opacity, and viral 
pneumonia, were improved when SURF was combined with 
FAST and the GN and PS of GA were set to 20. However, the 
computation time was increased. On the other hand, the best 
classification results were obtained when using QIGA with five 
generations and less computation time. The simulation findings 
demonstrate the potential of the proposed technique to obtain a 
detailed classification of COVID-19. The proposed system 
scored the highest classification accuracy of 98.81% utilizing 
conventional benchmarks. Compared to standard classification 
algorithms, GA was capable of successfully modeling 
composite real-world relations. Despite the improvements in 
classification accuracy achieved by GA, the results disclose 
that GA can choose features well with a large dataset. 
However, QIGA leads to greater population variety than classic 
GA. This variety helps to obtain optimal solutions with the best 
fitness functions, which can then be used to select the best 
linear equation. Moreover, a framework was designed using 
CNN to diagnose COVID-19 patients using chest X-ray 
images. A pre-trained Google Net was put into service, 
implementing transfer learning. A 20-fold cross-validation was 
considered to avoid overfitting. Finally, multi-objective GA 
was considered to tune the hyperparameters of the proposed 
COVID-19 identification in chest X-ray images. Although the 
model showed improved results when the number of epochs 
increased, after 300 epochs, no improvement was observed. 

It is often beneficial to experiment with different algorithms 
and evaluate their performance on a particular task. Generally, 
during ten trials with the simulation setup configuration of 
multiple generations equal to 100, crossover probability at 0.8, 
and mutation probability of 0.2, the findings reveal that the 
QIGA with five individuals can surpass the GA with 20 
individuals in terms of both best and mean fitness. 
Furthermore, the test results demonstrate a statistically 
significant differentiation between GA and QIGA. The 
statistical analysis results in Tables V and IX show the 
significance of QIGA in terms of accuracy and complexity. 
The proposed QIGA method scored the highest classification 
accuracy of more than 98% in this evaluation utilizing 
conventional benchmarks compared to the GA algorithm, 
which achieved 94%. 

TABLE X.  COMPARATIVE DISCUSSION OF THE PROPOSED 
WITH COMPETENT METHODS 

Reference Dataset  Approach and techniques Accuracy 

[26] 
CHEST X-RAY 

scans 
CNN and HOG 95.36% 

[27] 
392 CHEST X-

rays (50% positive, 
50% negative 

Pre-processing CNN, Adam 
optimizer with learning rate 

0.001. 
94.44% 

[28] 
COVID-19 

datasets 
CNN with Keras Image 

Generator 
94.56% 

[29] ImageNet dataset Deep learning pipeline model 95% 

[30] x-ray 
Particle swarm optimization 

PSO + Neural Network (NN) 
96% 

[31] x-ray 
ResNet feature extraction 
networks to construct the 

ResUNet++ network 
96.36% 

[32] x-ray CNN 97% 
Proposed 
method 

x-ray 
QIGA Feature Selection 

Process 
98.81 

 

VI. CONCLUSION AND FUTURE WORKS 

This study presented a groundbreaking method for selecting 
features using limited data samples. By integrating the GA and 
the superposition principle, and utilizing the capabilities of 
KNN and DL in the field of MIC, the study achieved 
considerable gains in classification accuracy in less time 
compared to traditional methods. The application of quantum 
principles, in particular the unpredictability of quantum 
chromosomes represented by qubits, has made it possible to 
investigate a solution space that is significantly more extensive. 
The dynamic design of models through the evolutionary 
mechanism in QIGA enables the optimization process to adapt 
to varying probabilities produced from the qubit overlay via the 
quantum rotation gate. This is in contrast to traditional 
methods. The results demonstrated that QIGA was better in 
terms of classification accuracy and required less computation 
time compared to previous models optimized by GA. 
Evaluation of the QIGA model using four types of medical 
images, including COVID-19, lung opacity, normal, and viral 
pneumonia cases, produced encouraging findings. Future 
research endeavors should focus on scalability and 
generalization. It would be extremely important to investigate 
the scalability of QIGA to handle larger datasets as well as its 
generalization to different classifications. When applied to real-
world circumstances, having a solid understanding of the 
strengths and limitations of QIGA can provide extremely 
helpful insights into its applicability. 
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