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ABSTRACT 

The current study uses Field-Programmable Gate Array (FPGA) hardware to advance smart home 

technology through a self-learning system. The proposed intelligent three-hidden layer system 

outperformed prior systems with 99.21% accuracy using real-world data from the MavPad dataset. The 

research shows that FPGA solutions can do difficult computations in seconds. The study also examines the 

difficulties of maximizing performance with limited resources when incorporating deep learning 

technologies into FPGAs. Despite these challenges, the research shows that FPGA-based solutions improve 

home technology. It promotes the integration of sophisticated learning algorithms into ordinary electronics 

to boost their intelligence.  

Keywords-smart home; FPGA; autonomous system; neural networks; deep learning; optimization techniques; 

scalability; hardware implementation  

I. INTRODUCTION  

Home control has been revolutionized by recent 
advancements in FPGA and AI learning technologies. Deep 
Learning (DL) has attracted the interest of both industry and 
academia. DL is a method to enable computers to mimic 
human thought processes and it is employed to predict human 
behavior in smart homes connected by the Internet of Things 
(IoT). The predictive power of DL is enhanced by its ability to 
concurrently analyze multiple datasets. To ensure its 
effectiveness and speed, particularly in real-time applications, it 
was tested using actual data. 

To meet smart home demands, FPGAs outperform 
traditional processors by dynamically adapting their hardware 
for DL models, offering reduced latency, better energy 
efficiency, and real-time processing capabilities [1]. 
Implementing DL on FPGAs is challenging, requiring expertise 
in both software and hardware. However, the benefits—like 
enabling advanced smart home applications such as adaptive 
energy management and personalized security—are 
undeniable. In [2], the authors conducted a detailed survey on 
autonomous smart machines, covering applications, 
development, and methodologies. In [3, 4], an FPGA-based DL 
accelerator was proposed, categorizing contemporary 
accelerators and reviewing state-of-the-art techniques to 
enhance hardware implementations. Combining FPGA 
technology with DL significantly enhances image analysis 
speed and efficiency. In [5-7], authors improved MEC 
decision-making, accelerated deep neural networks with 
FPGAs, and leveraged 5G for safer urban driving. RNNs and 
CNNs are applied in smart homes [3, 8-19], with FPGAs 
further optimizing DL models for these environments [20-27]. 
Direct applications of DL in smart home devices are detailed in 
[28-30]. Challenges in neural networks are addressed in our 
work by developing an FPGA-based system to enhance DL in 
smart homes. Key motivations include: 

 Need for Intelligent Systems: There is a rising demand for 
smart homes that can autonomously adapt and make 
decisions. 

 Hardware Acceleration: FPGAs excel at fast, multi-task 
processing and are ideal for accelerating DL with limited 
resources. 

 Hardware Optimization: Closing the performance gap of 
DL models on hardware, particularly for smart home tech. 

 Expanding Applications: Exploring FPGA-based DL's 
potential in energy management, security, and edge 
computing. 

Our work advances the literature by optimizing DL on 
FPGA hardware for smart homes and beyond. Key 
contributions include: 

 Innovative Hardware Implementation: The practical use of 
DL on FPGA for smart home systems is demonstrated. 

 Optimization Techniques: Specific optimizations for 
efficient FPGA mapping are applied, achieving high 
performance. 

 Comparative Analysis: Significant speed and efficiency 
gains over traditional software-based solutions are 
highlighted. 

 Versatile Application Potential: The adaptability for 
broader applications like energy management and 
personalized security is showcased. 

II. RESEARCH METHODOLOGY 

A. Proposed Design 

The architecture design for the proposed smart home 
system begins with eight subsystems, each connected to 
identical sensors and actuators through specific agents. These 
agents facilitate communication, data filtering, and security 
between subsystems and the central Intelligent Agent (IA), the 
Steward. The local IA is responsible for partner interfaces, 
communication, learning behaviors, executing actions, security, 
and data storage. The design emphasizes a prediction system 
managed locally by the IA, eliminating the need for third-party 
cloud services. The IA uses DL and Machine Learning (ML) 
algorithms to predict and execute actions based on node data. 
This approach addresses challenges posed by cloud computing 
in real-time systems.  

B. Experimental Design 

The MavPad dataset, which records interactions between a 
person and its home environment across a kitchen, bathroom, 
bedroom, and living room, was analyzed. The dataset includes 
data from 127 nodes, comprising 86 sensors and 41 actuators, 
over a period of seven weeks. Each day has data files detailing 
the date, time, state, level, zone number, and source. After 
noise removal, we pre-processed the data using MATLAB, 
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consolidating all 49 days into a single file (OP.mat). This file 
contains over 4 million rows of data. AI techniques were then 
applied to predict the user's next action based on environmental 
parameters. 

We factorize a twofold perception vector for every sensor 
as Xt = (x1t, x2t,..., x86t). Actuators are meant with Yt ∈ 1,..., Q for 
every one of the Q potential states, which portray the state of 
every actuator at a given time t. We chose to look at client 
action in the house latrine zone to more readily comprehend the 
adequacy of the network procedure we used in our 
examinations. 

Two distinct sensor configurations were used to anticipate 
the partner's next move. Each of the seven sensors present in 
the restroom is utilized in the main model. All 86 sensors are 
used in every ecological zone in the following scenario. A 
binary actuator operates in bathroom B5 during regular use. 
Actuator B5 is used to control the light above the mirror. We 
used the first month of the examination, consisting of 28 days, 
as the preparation dataset and the fifth week as the test dataset. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

Artificial Neural Networks (ANNs) offer benefits like self-
organization, adaptability, and real-time output, but they also 
face challenges, such as requiring significant resources for DL 
and facing the risk of overfitting with insufficient data [31-35]. 
Advances in GPUs, parallel architectures, and data availability 
have enhanced ANNs' capabilities. The architecture, including 
the number of layers and neuron density, affects computation 
speed and accuracy. We empirically determined the optimal 
network depth, neuron count, and training window size to 
achieve the best classification performance with the available 
resources. 

IV. SIMULATION RESULTS 

In the beginning, we just used one hidden layer. Then, the 
ideal representation was found empirically by increasing the 
number of neurons in the hidden layer. The network's depth 
was increased by adding a second layer. In order to get the 
optimal representation, we fixed the number of neurons in the 
first layer and increased the number in the second layer. Again, 
we used a similar method for the third layer to optimize the 
number of nodes in our network. Drop-out layers were used to 
mitigate the over-fitting problem. A half-layer drop-out was 
introduced to each pair of fully connected levels. Removing 
some of a network's nodes avoided excessive parameter 
updating during training. This drop-out method could aid in 
lessening the impact of overfitting. In our experiments, we 
employed two kinds of zones: local and global. While the 
worldwide zone predicts the B5 actuator using all 86 
environmental sensors, the local zone requires only seven input 
sensors. Tables I and II display the experiment findings. 

TABLE I.  MULTI-FACET ANN ACCURACY AND 
PREDICTION TIME RESULTS UTILIZING LOCAL ZONE 

SENSORS 

No. of hidden layers Accuracy t (s) 

1 0.9589 0.249 
2 0.9917 0.391 
3 0.9921 0.770 

Table I and Figure 1 show the accuracy and forecast time of 
a multi-faceted ANN utilizing local zone sensors versus the 
number of secret layers. The table shows that accuracy 
improves proportionately to the ANN's complexity or the 
number of hidden layers added. This shows that more complex 
ANN topologies can produce more accurate predictions by 
better capturing the complex relationships and patterns found in 
the input data. Notably, this improved accuracy is accompanied 
by a longer prediction time. So, selecting the number of hidden 
layers to use is finding a middle ground between those two, 
accuracy and calculation time. 

 

 
Fig. 1.  Multi-facet ANN's accuracy and forecast time results utilizing local 
zone sensors.  

TABLE II.  ESTIMATED TIME AND ACCURACY OF THE 
ANNS WHEN EMPLOYING GLOBAL ZONE SENSORS. 

No. of hidden layers Accuracy t (sec) 

1 0.9021 7.1027 
2 0.9540 10.1084 
3 0.9615 14.7064 

 

 
Fig. 2.  Multilayer ANNs with global zone sensors are more accurate and 
better at forecasting time. 

Table II and Figure 2 provide insights into the effectiveness 
of a layered network system when collecting data on a global 
scale. The results clearly demonstrate that as the number of 
layers increases, the system's predictive accuracy improves. 
Regarding the time required for predictions and their accuracy, 
it becomes apparent that adding more hidden layers results in 
longer processing times. This again indicates a trade-off that 
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needs careful consideration. In some situations, a model that 
takes longer to produce more accurate results might be 
acceptable, but in scenarios where speed is crucial, this may not 
be feasible. Therefore, it is essential to weigh the importance of 
speed versus accuracy based on the specific requirements. In 
cases where quick responses are necessary, opting for a simpler 
model, even with slightly reduced accuracy, might be the better 
choice and when precision is the top priority, a more complex 
model could be appropriate. The decision ultimately depends 
on the intended use of the model, particularly in applications 
involving global data sensing. 

A. Hardware Implementation 

Table III shows how much hardware is used and compares 
it to other classes of FPGA implementations. The table 
compares four FPGA platforms: Virtex-4 LX40, XC5VSX50T, 
XC7Z010T, and XC3S500E. It looks at essential features like 
DSP48Es/multipliers, Slice Look-Up Tables (LUTs), Slice 
Registers, slack in Combinational Paths (CPS), and slack in CP 
with both setup and hold (CPPSL). The XC5VSX50T FPGA 
needs the most resources since it has 8245 Slice LUTs and 
2445 Slice Registers. This means it is good at doing complex 
math and logical tasks. However, because it can do so much, it 
also uses more power, as shown by its high CPS (538 M) and 
CPPSL (11.8 M) values. 

TABLE III.  FPGA ANN RESOURCE USE AND COMPARISONS 
TO OTHER FPGA IMPLEMENTATIONS 

Platform 
Slice 

LUTs 

Slice 

registers 

DSP48Es/ 

multipliers 
CPS CPPSL 

XC5VSX50T 8245 2445 72 538 M 11.8 M 
Virtex-4 
LX40 

4548 None 10 1.4 M 2.09 M 

XC7Z010T 4234 3065 30 74.5 M 12.5 M 
Proposed 

XC3S500E 
4140 3064 22 483.5 M 33.4 M 

 

When looking at different FPGA systems, each one has its 
advantages. The XC7Z010T is well-rounded, making it useful 
for many things. The Virtex-4 LX40 works better for easier 
jobs that don't require too much strength. The XC5VSX50T is 
suggested for robust capacity. Lastly, the presented XC3S500E 
is an excellent middle-ground option. Depending on the 
application requirements, this paper simplifies information 
decision-making for selecting the best FPGA platform. Table 
IV shows the specifics of sensor prediction times in different 
places and network setups. 

TABLE IV.  PREDICTION TIME RESULTS FOR HARDWARE-
BASED MULTILAYER ANNS USING SENSORS IN THE 

LOCAL AND GLOBAL ZONES 

Zone Name No. of hidden layers t (sec) 

Local zone sensors 
1 0.095 
2 0.203 
3 0.489 

Global zone sensors 
1 0.333 
2 0.662 
3 1.845 

 

A comprehensive summary of the prediction time findings 
for a hardware-based multilayer neural network that 
differentiates between local and global sensor usage is provided 

in Table IV. The table shows how well the network does at 
different levels of complexity and with various sensors. As we 
add more hidden layers to the sensors in the local area, the time 
it takes to make predictions increases. Specifically, it takes 
about 0.095 seconds to make a prediction with one hidden 
layer. With two layers, it takes longer, about 0.203 seconds. 
And with three layers, it takes even longer, about 0.489 
seconds. This shows that networks need more time and power 
to process information when they get more complex. 

 
Fig. 3.  Prediction time results for hardware-based multilayer ANNs using 
sensors in the local and global zones. 

A similar phenomenon is observed with sensors in the 
broader area. When additional hidden layers are incorporated, 
the prediction time is significantly prolonged. The time 
increases substantially, from 0.333 s with one layer to 0.662 s 
with two layers, and further escalates to 1.845 s with three 
layers. This indicates that as the network complexity increases, 
it becomes more challenging for the hardware to maintain 
performance. The Figures illustrate the necessity of balancing 
the desired accuracy of predictions with the speed and 
efficiency of the network, taking into account the location of 
the sensors. Also, the results show that sensors in the local area 
always make quicker predictions than those from the wider 
region, no matter how complex the network is. This means that 
local sensors might be the smarter choice for things that need to 
happen in real-time because they can work faster with the 
considered equipment. 

B. Discussion 

Some challenges were encountered during our study on the 
use of FPGA to enable smart homes to learn and adapt. As we 
tested these smart systems for real-world applications, we 
gained valuable insights into the difficulties involved in making 
them function effectively. 

 Recapitulation of Limitations and Challenges: We 
encountered several significant obstacles. Implementing the 
smart learning component on the FPGA chip proved 
challenging due to the chip's limited computational power, 
and extending its functionality to the entire house was even 
more difficult. These challenges have the potential to 
reduce the effectiveness or increase the complexity of the 
design. 
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 Influence of Limitations on Experimental Results: 
Experimental results showing significant increases in 
processing speed and prediction accuracy indicate effective 
navigation through these hurdles. Model complexity and 
system scalability were compromised due to FPGA 
computational resource limits. The system's prediction 
precision and efficiency are primarily caused by the 
optimization tactics that fit the DL model to the FPGA's 
restrictions. These results also indicate that scaling issues 
were not entirely resolved, suggesting that future systems 
must bridge the gap between theoretical computations and 
actual implementation in varying smart home scenarios. 

 Addressing Challenges: We devised smart ways, like doing 
many things simultaneously and fine-tuning our approach, 
to deal with the insufficient chip power. Our system's setup 
and these tricks helped us reach a quality that looks good 
for future smart homes. The results that the main issues 
were overcome satisfactorily. 

 Implications for Future Research: A significant step has 
been made with the current research, but some challenges 
remain. More work is needed to address the issues related 
with improving the system's performance in additional 
homes while maintaining speed and accuracy. In the future, 
smarter methods could be explored to ensure smooth 
operation, different types of chips might be integrated, or 
more efficient models could be developed that require less 
power and can scale effectively. 

The experiment in studying how FPGA can be utilized for 
smart home technology through DL has been both rewarding 
and challenging. The tests conducted and the findings obtained, 
despite the encountered problems, provide insights into the 
current status and guide future directions. As efforts to advance 
FPGA applications in smart homes continue, the insights and 
groundwork established here will support future research in this 
promising field. 

V. CONCLUSIONS 

This work pioneered using FPGA technology to construct a 
deep learning-based autonomous smart home system. Our 
thorough calculations and practical evaluations show that 
FPGA platforms may improve smart home intelligence and 
efficiency using sophisticated deep learning techniques. The 
simulation results show that three hidden layers in the neural 
network design for local zone sensors yield 99.21% accuracy. 
This accuracy delivers the durability of our deep learning 
model and the usefulness of FPGA for real-time demanding 
computing workloads. Our investigations showed that the 
FPGA can execute high-performance calculations, with 
prediction durations ranging from 0.095 s for one hidden layer 
to 0.489 s for a three-hidden-layer configuration in local zone 
sensors. Importantly, our findings show the difficulties of 
scaling FPGA-based deep learning systems for smart home 
applications. Our study found that the best results were 
obtained in controlled settings. But, when we tried to apply this 
more widely, we faced some challenges because FPGA 
platforms have limited resources and space. We learned that the 
use of FPGAs improves smart home systems with deep-
learning models. But, it is not all smooth sailing - there are 

significant challenges in making things bigger or using 
resources better that we need to look more into. So, to make 
smarter homes work well with the current technology, we need 
to work better combining deep learning and FPGA technology 
to get past these challenges. 
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