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ABSTRACT 

Melanoma skin cancer is a global public health threat due to its increasing rates and the possibility of 

severe outcomes if not adequately addressed. Melanoma is caused by ultraviolet radiation and, among its 

two stages, malignant is more dangerous than benign. The diagnosis of melanoma is typically based on 

visual inspection and manual methods carried out by experienced physicians. However, this method is 

usually slow and has a high probability of error. Deep-learning-based models can offer better and low-cost 

treatments for people with melanoma. This study aimed to develop a deep-learning model to classify 

melanoma skin cancer in its early stages. This study presents a modified deep-learning model, named 

DeepMelaNet, to correctly classify skin cancer images as benign or malignant. The proposed classifier 

achieved an accuracy of 93.40%, a precision of 98%, a recall of 94%, and an F1 score of 93% on a dataset 

of 10,000 melanoma skin cancer images, offering a practical solution that can help healthcare professionals 

in early skin cancer prediction. 

Keywords-melanoma; malignant; benign; deep learning; DeepMelaNet; early detection; skin cancer   
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I. INTRODUCTION  

The skin is the largest and most vital organ, covering the 
entire body. Cancer is a condition in which certain cells in the 
body grow uncontrollably and spread to other parts of it [1]. 
According to the World Health Organization (WHO), cancer is 
one of the leading health concerns in the world [2]. Among 
cancers, melanoma is particularly harmful and ranks ninth 
among the most common [3]. Ultraviolet (UV) light from the 
sun damages the DNA of unprotected skin, leading to 
mutations that cause uncontrolled cell growth and cancer [4]. 
There are two types of melanoma cancer: Malignant is 
dangerous because it can spread to other parts of the body, 
leading to metastasis, and benign. If melanoma skin cancer is 
diagnosed in its early stages, there is a high chance of recovery 
through minor surgery [5]. Dermoscopy is considered a popular 
imaging technique for examining the skin's surface but is 
partially effective because of its heavy reliance on the 
practitioner's visual acuity. 

To provide more effective and smart treatments, deep-
learning approaches [6-9] have recently been applied to detect 
melanoma skin cancer. For example, in [10], a deep-learning 
approach was applied to classify melanoma skin cancer, 
demonstrating significant advances in accuracy and efficiency. 
In [11], a multi-layered Convolutional Neural Network (CNN) 
with advanced regularization achieved 93.58% accuracy but 
suggested trimming for further improvement. In [12], a 
modified U-net network was employed for segmentation, 
attaining 98.3% accuracy. However, this study used a small 
dataset that was not enough to generalize and make robust 
decisions. In [13], various image preprocessing techniques 
were used, such as level-encoder function, image-size 
interpolation, normalization, data-reduction, and data 
augmentation, along with the ReLU function in a Deep-CNN 
model to enhance its performance. This study suggested that 
future efforts should focus on the CNN architecture 
reformation, recent augmentation techniques, and the 
development of smartphone applications for this model. In 
[14], an enhanced deep CNN was used to detect melanoma 
cancer. This approach used a three-layer network consisting of 
two 2D convolutional layers with 3×3 convolutions, 
outperforming other models. This study suggested merging 
multiple datasets and training the algorithm in a broader set of 
images. In [15], ESR-GAN was used for image generation and 
segmentation to improve accuracy with small datasets. This 
study used a modified ResNet50 deep-learning model for 
classification on a small dataset. In [16], a novel deep learning 
model within a transfer learning framework for melanoma skin 
cancer classification was proposed. This method involved 
obtaining optical skin images and preprocessing them by 
resizing, normalizing, extracting ROI, and augmenting with 
random transformations. This model achieved an accuracy of 
97% and a loss of 0.09 for the optical dataset. Table I shows a 
summary of some other related studies. 

According to these studies, deep-learning models 
demonstrated superior performance in cancer detection. 
However, limitations such as small or imbalanced datasets and 
limited classification techniques hindered their overall 
effectiveness. This study aimed to develop a highly accurate 

deep-learning model for melanoma skin cancer classification 
and test it on a large dataset of 10,000 images. 

TABLE I.  SUMMARY OF RELATED STUDIES 

Ref. Method Limitation Accuracy 

[17] ANN, CNN, KNN 
Limited scope of classification 
techniques and lack of detailed 
guidance on technique selection 

91% 

[18] SVM, MobileNetV2 
Imbalanced dataset, not classified 

accurately 
85% 

[19] CNN with SMTP 
Classifies melanoma cancer stages 

solely based on tumor thickness 
N/A 

[20] Transfer learning 
Limited to binary skin cancer 

classification 
90.96% 

[21] 
Mask RCNN, 
ResNet152 

Dataset variety and limited to 
melanoma detection 

90.4% 

[22] 
CNN, VGG19, 
ResNet50, and 

SqueezeNe 

Limited model evaluation and 
questions about generalization 

80% 

[23] SVM, KNN, and DT 
Limited to binary skin cancer 

classification and lack of 
preprocessing exploration 

88.02% 

 
This study introduces a robust deep-learning model, named 

DeepMelaNet, designed to detect early-stage melanoma skin 
cancer. The initial phase involved preprocessing the melanoma 
skin cancer dataset to train the model under standardized 
conditions. The performance of the proposed model was 
evaluated using accuracy, precision, recall, F1-score, and 
confusion matrices, ensuring its effectiveness and reliability for 
clinical applications. Additionally, a comparative analysis with 
existing melanoma detection methods was carried out to 
determine the performance of the proposed model and identify 
potential areas for improvement. The key contributions of this 
research are as follows: 

 The design of a robust Deep Neural Network (DNN) model 
architecture. This study introduces DeepMelaNet, a new 
DNN model specifically engineered to improve the 
diagnostic accuracy of melanoma skin cancer detection. 

 Demonstrates an advanced DNN algorithm for precise 
melanoma skin cancer classification in the early stages.  

 Compares the proposed model's performance with recent 
models to confirm its effectiveness, demonstrating its 
practicality and superiority over existing dermatological 
diagnostic methods. 

II. METHODOLOGY  

A. Dataset 

This study utilized the Melanoma Skin Cancer Dataset, 
which comprises 10,000 images [24]. This dataset includes two 
stages of melanoma skin cancer: malignant and benign. By 
employing this dataset, this study obtains an advantage from a 
substantial amount of data, therefore improving the accuracy 
and dependability of the model's results. Moreover, the 
dataset's focus on melanoma underscores the potential impact 
and significance of this study in the realm of medical imaging 
and diagnostics. Table II provides a dataset description. 
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TABLE II.  DATASET OVERVIEW 

Class Training Validation Test 

Benign 5000 500 500 
Malignant 4605 500 500 

Total 9605 1000 1000 

 

 
Fig. 1.  Block diagram of the proposed method. 

B. Experimental Setup 

The experimental framework was established on Kaggle, a 
renowned cloud-based platform that provides computational 
resources tailored for data science and machine learning 
initiatives. This study used Kaggle's T4 GPU instances, 
powered by NVIDIA's Tesla T4 GPUs, to balance 
computational efficiency with performance, catering to the 
deep learning requirements. The software environment was 
orchestrated around PyTorch, an open-source machine learning 
library favored for its flexibility and dynamic computation 
capabilities, essential for developing deep learning models such 
as EfficientNet. The specific version of PyTorch used was 
2.2.1, which ensured full compatibility with the model 
requirements. Auxiliary libraries such as NumPy, for handling 
numerical operations, and Matplotlib, for visualization 
purposes, were also integral to the experimental setup. 

C. Data Preprocessing 

Several preprocessing techniques were applied to increase 
the dataset quality and prepare it for the proposed model. The 
dataset was split into training and validation sets using 
PyTorch's ImageFolder class. This division ensures that the 
model learns on a representative subset of the data and is tested 
on unseen data to evaluate its generalizability. Data 
augmentation methods were used on the training set, which 
included applying random rotations of up to 20° and randomly 
flipping images horizontally and vertically with a probability of 
30% for each image. These changes add artificial variances in 

the training data, assisting the model in learning robust features 
and boosting its capacity to generalize to unseen images. The 
images in both the training and validation sets were shrunk to a 
fixed size of 112×112 pixels using antialiasing for better 
quality, and a center crop of the same size was extracted. The 
images were then transformed into tensors and normalized 
using the mean and standard deviation values particular to 
ImageNet. Finally, PyTorch's DataLoaders were used to 
efficiently load the training and validation data in batches 
throughout the training process. The batch size was chosen to 
balance training speed and memory utilization. Training data 
were shuffled in each epoch to ensure that the model was 
exposed to a random sequence of images, preventing it from 
storing the order of the data and further boosting its capacity to 
generalize. These preprocessing steps provide practical model 
training and dependable research outcomes. Figure 2 illustrates 
the preprocessing techniques applied. 

 

 
Fig. 2.  Overview of the preprocessing steps. 

D. Proposed DeepMelaNet Architecture 

The DeepMelaNet architecture was developed from 
EfficientNet, incorporating several modifications to optimize 
the memory access costs. One of the key modifications is the 
utilization of a reduced expansion ratio for MBConv. Smaller 
expansion ratios are preferred, as they tend to incur fewer 
memory access costs. Additionally, the DeepMelaNet 
architecture favors smaller (3×3) kernel sizes. However, to 
compensate for the resulting decrease in the receptive field 
caused by the smaller kernel size, extra layers are added to the 
network. EfficientNet is a robust CNN architecture that has 
been pre-trained on a large-scale image dataset (ImageNet). By 
modifying a pre-trained model, DeepMelaNet can harness the 
significant features learned from the images in the dataset. 
These features are then fine-tuned specifically for the task of 
skin cancer classification. Figure 3 illustrates the proposed 
DeepMelaNet model architecture. 

1) Fused-MB Conv2 

The initial block consists of a convolutional layer with a 
3×3 filter, batch normalization, and SiLU activation, 
represented as "ConV (3×3), BN, SiLU". This block produces 
an output of 32 channels with a spatial dimension of 128. The 
second block consists of a convolutional layer with an 1×1 
filter and batch normalization, denoted "ConV (1×1), BN". 
This layer delivers an output of 128 channels with a spatial 
dimension of 64. 
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2) Fused-MB Conv3 

The first process consists of a 3×3 convolution with batch 
normalization and SiLU activation, resulting in 64 channels of 
size 256 each. The second operation is a 3×3 convolution with 
batch normalization, which increases the number of channels to 
256 while keeping the size at 64. 

3) Fused-MB Conv4 

This layer consists of a 3×3 convolution operation with 
normalization batches and SiLU activation, which generates a 
64×256 output. Then, it is followed by an 1×1 convolution 
operation with batch normalization, resulting in a 256×96 
output. 

4) Fused-MB Conv5 

The layer consists of a 3×3 convolution operation with 
batch normalization and SiLU activation function, resulting in 
an output size of 96×384. This is followed by an 1×1 
convolution operation with batch normalization, resulting in an 
output size of 384×96. 

5) Fused-MB Conv6 

This layer begins with an 1×1 convolution operation 
followed by batch normalization and SiLU activation, resulting 
in a size of 96×384. It then proceeds with a 3×3 convolution 
operation with batch normalization, resulting in a size of 
384×384. Next, it incorporates a Squeeze Excitation block with 
a sigmoid activation function, which modifies the channel 
depth to 24 and then restores it to 384. Finally, it concludes 
with an 1×1 convolution operation with batch normalization, 
resulting in a size of 384×192. 

6) Fused-MB Conv7 

This layer starts with an 1×1 convolution operation, 
including batch normalization and SiLU activation. This 
operation produces an output of size 192×768. Next, a 3×3 
convolution operation with batch normalization is applied, 
resulting in an output of 768×768. Following this, a Squeeze 
Excitation block is used, which involves reducing the number 
of channels to 48 and then expanding them back to 768. 
Finally, it performs an 1×1 convolution operation with batch 
normalization, resulting in an output size of 768×192. 

7) Fused-MB Conv8 

The "Fused-MB Conv8" layer begins with an 1×1 
convolution operation that includes batch normalization and 
SiLU activation. This operation produces an output of size 
192×1152. Next, a 3×3 convolution operation with batch 
normalization is performed, resulting in an output of 
1152×1152. A Squeeze Excitation block is then applied, which 
adjusts the number of channels to 48 and then back to 1152 
using a sigmoid activation function. Finally, an 1×1 
convolution operation with batch normalization is performed, 
resulting in an output of size 1152×224. 

8) Fused-MB Conv9 

This sequence begins with a 1×1 convolution that includes 
batch normalization and SiLU activation. This produces an 

output of size 224×1344. It then proceeds with a 3×3 
convolution that includes batch normalization, resulting in an 
output of size 1344×1344. The sequence also incorporates a 
Squeeze Excitation block, which uses a sigmoid activation to 
modulate the channels. This compression reduces the size to 56 
and then expands it back to 1344. Finally, the sequence 
concludes with an 1×1 convolution that includes batch 
normalization, resulting in a final output size of 1344×224. 

9) Fused-MB Conv10 

This layer starts an 1×1 convolution combined with batch 
normalization and SiLU activation. This produces an output 
with dimensions of 224×1344. The layer then transitions to a 
3×3 convolution with batch normalization, resulting in an 
output of 1344×1344. A Squeeze Excitation mechanism is 
incorporated, which employs a sigmoid function to refine the 
channel dynamics. This mechanism narrows the channels to 56 
and then expands them back to 1344. Finally, the layer 
concludes with a 1×1 convolution with batch normalization, 
resulting in a final output of 1344×384. 

10) Fused-MB Conv11 

The first step of this layer is an 1×1 convolution with batch 
normalization and SiLU activation, producing an output of 
384×2304. Then, a 3×3 convolution with batch normalization 
produces an output of 2304×2304. Finally, a Squeeze 
Excitation block with sigmoid activation adjusts the channel 
dimensions to 96, then back up to 2304, and finally, an 1×1 
convolution with batch normalization produces a 2304×384 
output. 

11) Fused-MB Conv12 

The first step in this layer is a 1×1 convolution with batch 
normalization and SiLU activation, which yields a 384×2304 
output. Next, a 3×3 convolution with batch normalization 
produces an output of 2304×2304. Finally, a Squeeze 
Excitation block with sigmoid activation modulates the channel 
depth to 96 and then re-expands to 2304. Finally, an 1×1 
convolution with batch normalization culminates in a 
2304×640 final output. 

12) Fused-MB Conv13 

Beginning with a 1×1 convolution with batch normalization 
and SiLU activation, the "Fused-MB Conv13" layer generates 
an output of 640×3840. Next, a 3×3 convolution with batch 
normalization is applied, resulting in an output of 3840×3840. 
Next, a Squeeze Excitation block with sigmoid activation is 
used, manipulating the channel values down to 160 and then 
right back up to 3840. Finally, an 1×1 convolution with batch 
normalization is applied, yielding an output of 3840×640. 

13) Fused-MB Conv14 

The final classification layer of the pre-trained model is 
modified to have a single output neuron with sigmoid 
activation. Figure 3 shows the layer architectures. This 
modification adapts the model for binary classification, where 
the output represents the probability that an image belongs to 
the malignant and benign classes. 

 



Engineering, Technology & Applied Science Research Vol. 15, No. 1, 2025, 19627-19635 19631  
 

www.etasr.com Al Huda et al.: DeepMelaNet: Advancing Melanoma Stage Classification in Skin Cancer Diagnosis 

 

 
Fig. 3.  Proposed DeepMelaNet model architecture. 

E. Data Transformation 

During the training data transformations, dataset images 
experience a sequence of alterations. At first, a random rotation 
was performed within a range of -20 to 20 degrees. 
Subsequently, the images can be mirrored horizontally and 
vertically, with a chance of 0.3 for each. The images were then 
enlarged to dimensions of 112×112 using antialiasing, and a 
center crop was implemented to preserve the original size. 
Afterward, the images were initially in the PIL Image format 
and transformed into PyTorch tensors. Finally, the image 
sensor was normalized using the given mean [0.485, 0.456, 
0.406] and standard deviation [0.229, 0.224, 0.225] for each 
RGB channel. 

F. Training And Validation Loop 

Training proceeded in epochs, each denoting a complete 
pass through the dataset. In each epoch, the model learns by 
processing data batches for parameter updates. Loss and 
accuracy metrics are recorded. When the training session is 
completed, the model goes into evaluation mode to assess its 
performance against the validation set and calculate the 
validation metrics. To enhance the performance during training 
and its efficiency, the validation loss helps in obtaining the 
learning rate scheduler adjustments. Algorithm 1 illustrates the 
training and validation loops of the proposed model. 

ALGORITHM 1: TRAINING AND VALIDATION LOOP 

WITH PERFORMANCE METRICS 

1:  Input: model, trainLoader, valLoader,  

    optimizer, criterion, scheduler,  

    epochs 

2:  Output: trainLosses, trainAccs,  

    valLosses, valAccs, valPrecisions,  

    valRecalls, valF1s 

3:  Initialize scaler for mixed-precision  

    training 

4:  Initialize metric lists: trainLosses,  

    trainAccs, valLosses, etc. 

5:  for epoch = 1 to epochs do 

6:    Set model to training mode 

7:    Initialize running Loss←0,  

      correct_train←0 

8:    for each input, labels in  

      trainLoader do 

9:      Move inputs, labels to device 

10:     Zero gradients:  

        optimizer.zero_grad() 

11:     With autocast enabled: 

12:     Outputs ← model(inputs) 

13:     loss ← criterion(outputs, labels) 

14:     Backpropagate and update model:  
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        scaler.scale(loss).backward(),  

        scaler.step(optimizer) 

15:     Update running loss and correct  

        predictions 

16:   end for 

17:   Calculate and store trainLoss and  

      trainAcc 

18:   Print training metrics 

19:   Set model to evaluation mode 

20:   Initialize validation metrics 

21:   With gradient disabled: 

22:   for each input, labels in valLoader  

23:     Move inputs, labels to device 

24:     outputs ← model(inputs), compute  

        loss 

25:     Update validation loss and  

        store predictions 

26:   end for 

27:   Calculate and store validation  

      metrics: avgLoss, accuracy,  

      precision, etc. 

28:   Print validation metrics 

29:   Update scheduler based on validation  

      loss 

30: end for 

 

G. Epoch 

This is the number of times the training process undergoes 
the whole training set, and it consists of one or more batches. 
The number of epochs was set to 30. After each epoch, the 
training loss and accuracy are calculated and recorded, and the 
training metrics are reported. The model is subsequently set to 
evaluation mode. With gradient computation disabled, for each 
batch of inputs and labels in the validation loader, the inputs 
and labels are transported to the device, outputs are calculated, 
and the loss is calculated. 

H. Learning Rate 

The learning rate determines the pace at which training 
weights are adjusted. A lower rate results in slower updates to 
the weights, necessitating more epochs for training. 
Conversely, a higher learning rate accelerates model 
convergence but risks leading to less-than-optimal results. 

I. Training Function 

The binary cross-entropy with logit loss function was 
employed, which is appropriate for binary classification 
problems with sigmoid activation. Adam optimizer was used, 
which changes the model weights during training at a learning 
rate of 0.001. A scheduler, especially the ReduceLROnPlateau 
scheduler, was created to change the learning rate during 
training. This scheduler helps avoid overfitting by lowering the 
learning rate if the validation loss stagnates for a set number of 
epochs. The training incorporated an iterative training loop that 
runs for a preset number of epochs. The model is set to train 
mode throughout each epoch and iterates over the training data 
stream in batches. For each batch, the model performs a 
forward pass to compute predictions, calculates the loss using 

the loss function, and performs a reverse pass to compute 
gradients. Finally, the scheduler modifies the learning rate 
depending on the validation loss. This repeated training 
procedure refines the model's capacity to identify between 
benign and malignant skin cancer images, boosting the results' 
dependability. After training, the model's performance was 
assessed on a separate test set not utilized during training or 
validation. This review objectively assesses the model's 
generalization to real-world data. Metrics such as accuracy, 
precision, recall, and F1-score were calculated using the test set 
to evaluate the model classification performance. 

The validation procedure aimed to assess the effectiveness 
of the DeepMelaNet model in classifying medical images as 
"Benign" or "Malignant," indicating the presence of benign or 
malignant skin cancers, respectively. Model weights were 
retrieved from a saved checkpoint, and the model was set to 
evaluation mode to ensure consistent results. Each image was 
classified by the model, and the prediction along with its 
associated probability was recorded. These predictions were 
compared to the actual ground truth class of each image 
(benign or malignant) to assess the model's classification 
accuracy. 

J. Model Evaluation Parameters 

The model was evaluated using accuracy, precision, recall, 
and F1-score [25-28] to validate its performance. 

1) Accuracy 

Accuracy represents the ratio of correctly predicted 
instances to the total instances in the dataset. It is a measure of 
how often the model makes the correct predictions. 
Mathematically, accuracy is given by: 

�������� =
�	 � ��

�	 � �� � 	 � �
    (1) 

2) Precision 

Precision is the ratio of correctly predicted positive 
observations to the total predicted positive observations. It 
quantifies the accuracy of positive predictions. It indicates how 
many of the predicted positive instances are truly positive. 
Mathematically, precision is given by: 

��������� =
�	 

�	� 	
     (2) 

3) Recall 

Recall, also known as sensitivity or actual positive rate, 
measures the ratio of correctly predicted positive observations 
to all actual positive observations. It quantifies the ability of the 
model to find all the relevant cases within a dataset. 
Mathematically, recall is given by: 

������ =
�	 

�	� �
    (3) 

4) F1-score 

F1-score is the harmonic mean of precision and recall, 
providing a balance between them. It is calculated as the 
weighted average of precision and recall, where the F1-score 
reaches its best value at 1 and worst at 0. It is useful when there 
is an uneven class distribution, as it considers both false 
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positives and false negatives. Mathematically, F1-score is 
given by: 

�1 � ����� =
�� ������ � 	 ��!"!#$

������ � 	 ��!"!#$
   (4) 

III. RESULTS AND DISCUSSION 

A. Performance Evaluation Matrix Analysis 

The proposed approach excelled in predictive performance, 
achieving a high accuracy of 93.4%, indicating that the model 
predominantly makes accurate classifications. Moreover, it 
demonstrated a precision of 98%, effectively minimizing false 
positives. The model's recall reached 94%, critical for disease 
detection, where missing positive cases could be detrimental. 
Alongside these metrics, the model attained an F1-score of 
93%, reflecting the model's robustness and reliability. These 
metrics highlight the efficacy of the proposed approach in 
handling complex and sensitive tasks, ensuring comprehensive 
and dependable performance across various scenarios. 

B. Model Performance Graph 

The accuracy graph depicts the accuracy of a classification 
model during its training and validation phases over epochs. 
Figure 4(a) shows the training and testing accuracies through 
epochs. Each accuracy improves rapidly at the beginning of 
training. The training accuracy increased until it plateaued near 
100%, indicating that the model almost perfectly matches the 
training data. In contrast, the testing accuracy initially 
increased but then dropped much earlier and remained constant 
at 92-94%. Training loss reflects the model's learning process 
on the training data while testing loss measures its performance 
on unseen data. Figure 4(b) shows the training and testing 
losses across training epochs. Initially, training loss started high 
but rapidly decreased, indicating swift learning and accurate 
classification of training data. As epochs progress, the training 
loss curve flattens, suggesting that the model has primarily 
stabilized and is not significantly improving on the training 
data. In contrast, testing loss begins high and decreases, albeit 
less sharply than training loss. This indicates that the model is 
learning from the testing data but is less efficient than the 
training data. However, the validation loss begins to increase 
slowly after an initial decline, implying potential overfitting of 
the training data. Overfitting occurs when a model excessively 
learns the training data, including its noise and outliers, 
compromising its performance on new data. 

 

(a) 

 

(b) 

 

Fig. 4.  Model accuracy (a) and loss (b) graphs. 

C. Confusion Matrix Analysis 

Figure 5 shows the confusion matrix of the proposed model 
in identifying melanoma skin cancer. The matrix shows four 
quadrants: the top left (TP) with 477, indicating that 477 
benign cases were correctly identified, the top right (FN) with 
23, showing that 23 malignant cases were misclassified as 
benign, the bottom left (FP) with 47, where 47 benign cases 
were incorrectly labeled as malignant; and the bottom right 
(TN) with 453, meaning 453 malignant cases were correctly 
identified. The high numbers along the diagonal (true positives 
and negatives) suggest the model performs well. However, FN 
and FP indicate room for improvement, mainly because FN in a 
medical context can be very dangerous, as they represent 
missed diagnoses of potentially life-threatening conditions. The 
model balances sensitivity (actual positive rate) and specificity 
(valid negative rate). However, further efforts should be made 
to reduce the number of FN due to the critical nature of cancer 
diagnosis. 

 
Fig. 5.  Confusion matrix of the proposed model. 

D. Discussion 

This study developed a modified deep-learning architecture, 
called DeepMelaNet, to address the crucial task of classifying 
melanoma skin cancer. This method has advanced feature 
extraction and generalization capabilities in image 
classification, making it a pivotal component of this research 
framework. Its scalability and the delicate balance between 
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classification accuracy and computational efficiency made it an 
indispensable tool for this study. The distinctive design of the 
proposed method includes depth-wise separable convolutions, 
facilitating more efficient computation without compromising 
model performance. Its versatility extends beyond performance 
metrics to include considerations of computational resource 
utilization. Its efficient parameters and computation utilization 
allow seamless deployment across diverse computational 
platforms, from resource-constrained edge devices to high-
performance computing clusters. This adaptability underscores 
its suitability for real-world deployment scenarios, where 
computational constraints often dictate the feasibility of model 
implementation. 

The experimental results of the proposed deep learning 
model in classifying images of melanoma skin cancer cells 
were promising. The model was trained using the Kaggle T4 
GPU, with hyperparameter fine-tuning to achieve the best 
results, achieving an accuracy of 93.40%. Training was carried 
out over 30 epochs. In particular, the best validation accuracy 
of 93.40% was achieved in the 24th epoch. The evaluation 
metrics, including accuracy, precision, recall, and F1-score, 
demonstrate the effectiveness of the proposed model in 
detecting melanoma skin cancer. 

E. Comparison with Related Works 

The proposed approach shows superior performance 
compared to recent works in melanoma skin cancer detection. 
Traditional methods such as KNN, SVM, NB, and NN 
achieved accuracies ranging from 88.2% to 90.9%, whereas the 
proposed DeepMelaNet model achieved a significantly higher 
accuracy of 93.40%. Additionally, compared to CNN-based 
approaches, the proposed method surpassed their accuracy of 
91.95% and 90.9%, respectively. While another approach 
utilizing RCC, BCC, and GCC methods requires more accurate 
information for direct comparison, the proposed approach 
outperformed it on the same dataset. Table III shows a detailed 
comparison analysis. 

TABLE III.  COMPARISON WITH RECENT RESEARCH 

Ref. Dataset Method Accuracy (%) 

[15] 
Melanoma Skin Cancer 

Dataset of 10000 Images 
CNN, Modified 

ResNet50 
86 

[29] 
Melanoma Skin Cancer 

Dataset of 10000 Images 
CNN 91.95 

[30] 
Melanoma Skin Cancer 

Dataset of 10000 Images 
RCC, BCC, GCC 88 

[31] 
Melanoma Skin Cancer 

Dataset of 10000 Images 
CNN 90.9 

Proposed 
method 

Melanoma Skin Cancer 
Dataset of 10000 Images 

DeepMelaNet 93.40 

 
DeepMelaNet showed a high accuracy rate of 93.40% and 

strong performance measures such as precision, recall, and F1-
score. Due to its depth-wise convolutions, this model can work 
well on a range of computing systems, from edge devices to 
high-performance clusters. This versatility can help in finding 
and treating diseases earlier and better. 

IV. CONCLUSION AND FUTURE WORK 

This study introduced DeepMelaNet, a robust deep neural 
network tailored for accurate melanoma skin cancer 
classification in its early stages. Using a publicly available 
dataset comprising 10,000 skin images, the model effectively 
discerned crucial details necessary for precise classification. 
This model demonstrated strong performance, achieving 
93.40% accuracy, showcasing its potential as a valuable tool 
for skin cancer classification. DeepMelaNet represents a 
significant advance in the detection of skin diseases, 
particularly in the distinction between malignant and benign 
skin melanomas. 

In the future, the CNN model should be trained and tested 
on more extensive and varied sets of skin cancer images to 
improve generalization. This will ensure that the model learns a 
broader range of features and patterns, making it more robust in 
real-world scenarios. Cross-validation methods can provide a 
more accurate picture of how well the model performs. This is 
done by splitting the dataset into several smaller sets and 
training the model on various combinations of these smaller 
sets. Averaging the results can reduce the effect of data bias 
and make the review more reliable. Better model performance 
can come from different hyperparameter optimization methods. 
Ensemble methods, such as model averaging or stacking, can 
make the model work even better. Putting together predictions 
from several CNN models or different designs can help reduce 
the flaws in each model and produce more accurate results. 
Before the model can be used in clinical settings, it must be 
thoroughly tested following all legal rules. 
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