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ABSTRACT 

Kidney cancer comes in various forms. Renal Cell Carcinoma (RCC) is the most severe and common kind 

of kidney cancer. Earlier diagnosis of kidney cancer has enormous advantages in implementing preventive 

measures to reduce its effects and death rates and overcome the tumor. Manually detecting Whole Slide 

Images (WSI) of renal tissues is a basic approach to predicting and diagnosing RCC. However, manual 

analysis of RCC is prone to inter-subject variability and is time-consuming. Compared to time-consuming 

and tedious classical diagnostic methods, automatic Deep Learning (DL) detection algorithms can improve 

test accuracy and reduce diagnostic time, radiologist workload, and costs. The study presents a 

Computational Intelligence with a Deep Learning Decision Support System for Kidney Cancer (CIDL-

DSSKC) technique on renal images. The CIDL-DSSKC model analyzes renal images to identify and 

classify kidney cancer. The proposed method uses Median and Wiener filters for image preprocessing and 

the Xception model to derive a useful set of feature vectors. In addition, the Flower Pollination Algorithm 

(FPA) is employed to optimally choose parameters for the Xception method. The �-Variational 

Autoencoder (�-VAE) approach is employed for the identification and classification of kidney cancer. The 

proposed model was used in a renal image dataset that contained many images, achieving more than 98% 

accuracy and 97% precision, recall, and F score. 

Keywords-computational intelligence; nature-inspired algorithm; deep learning; decision support system; 

kidney cancer 
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I. INTRODUCTION  

Kidney cancer occurs mainly in men than in women [1]. 
Renal Cell Carcinoma (RCC) is an aggressive and common 
kind of kidney cancer in patients, especially adults. Annually, 
approximately 300,000 people are affected around the world, 
and it is responsible for more than 100,000 deaths [2]. RCCs 
grow in the lining of the proximal kidney tubule, whereas 
tumor cells grow over time and can be deployed over other 
organs. Usually, the symptoms of RCC are hidden and not 
easily diagnosed. Numerous problems obstruct the 
classification of RCC subtypes, such as the lack of an 
enormous dataset with accurately localized annotations [3]. In 
addition, there is a simple data imbalance because clear cell 
subtypes include variations in the appearance of similar 
subtypes at multiple resolution levels in most medical cases 
and the coherence of RCC cells in various subtypes is also 
challenging [4]. Current RCC classification frameworks 
depend on valuable annotations of pathology digital images [5]. 

Various computational methods have been proposed to 
address such challenges in analyzing HPI for diagnostic 
purposes in multiple tumors [6]. This analysis has been based 
conventionally on applying classification algorithms that 
process handcrafted image-derived features, such as cell shape, 
pixel, and size intensity distribution, monitored in selected 
image patches or full images [7]. With the increasing volume 
of histology datasets and the wide acceptance of whole-image 
high-content imaging, Deep Learning (DL) approaches can be 
applied [8-11]. Unlike the previous generation of Machine 
Learning (ML) techniques, DL approaches are based on 
Convolutional Neural Networks (CNNs) processing raw 
intensity images and automatically learning to extract 
prediction features [12-16]. The potential and accuracy of DL 
models in analyzing HPI for prognostic and diagnostic 
purposes have been exposed in many research fields [17]. 
Therefore, DL could play a prominent role in the era of 
precision medicine and digital pathology. 

This study proposes a Computational Intelligence with a 
Deep Learning Decision Support System for Kidney Cancer 
(CIDL-DSSKC) detection on renal histopathology images. The 
proposed CIDL-DSSKC uses median and Wiener filters for 
image preprocessing and the Xception model to derive a useful 
set of feature vectors. In addition, the Flower Pollination 
Algorithm (FPA) is leveraged to choose parameters for the 
Xception method. The �-Variational Autoencoder (�-VAE) 
approach is employed to detect and recognize kidney cancer. 

II. RELATED WORKS 

In [18], a DL technique was proposed that mechanically 
divided the complicated nuclei in histological images, applying 
a potential encoding and decoding structure with an SCPP-Net 
separable convolutional pyramid-pooling network. The SCPP 
unit focused on two main characteristics: at first, it raised the 
receptive domain by changing four dilation rates, kept the 
kernel size set, and then reduced trained parameters through 
depthwise convolution. In [19], a method was introduced to 
inspect the impact of Transfer Learning (TL) on Computed 
Tomography (CT) scans in detecting malignant and benign 
renal cancers. This study also introduced patient-level 

approaches to enhance classification accuracy. The 
InceptionV3 model, pre-trained on the ImageNet dataset, was 
cross-trained for the classification task. In [20], a DNN method 
was presented to precisely classify digitized biopsy and 
surgical resection images into five classes: chromophobe RCC, 
clear cell RCC, renal oncocytoma, and papillary RCC. 

In [21], a new DL structure was devised and evaluated in 
discriminating papillary and clear cell RCCs. This DL structure 
consisted of 3 CNNs. Whole-slide kidney images were 
classified as patches with three sizes, whereas all networks 
processed particular patch sizes. In [22], a multimodal DL 
model (MMDLM) was proposed for ccRCC diagnosis. In [23], 
an end-to-end DL method was presented to diagnose the five 
most important histological subtypes of renal cancers, 
including both malignant and benign cancers in multiphase 
CTs. In [24], a new structure (Kidney-SegNet) was developed, 
combining the efficacy of related encoder and decoder 
structures with spatial pyramid pooling and including effective 
dimension-wise convolutions. In [25], a new DL-based 
technique was proposed to enhance the computation efficacy of 
histological image classification. This approach worked at both 
the slide and the tissue level, eliminating the need for complex 
patch-level labeling. 

III. MATERIALS AND METHODS 

This study presents the CIDL-DSSKC to identify and detect 
kidney cancer in renal images. This approach encompasses 
many subprocesses, such as image preprocessing, Xception 
feature selection, FPA-based parameter tuning, and �-VAE 
based classification. Figure 1 demonstrates the entire flow of 
CIDL-DSSKC. 

A. Data Used 

The CIDL-DSSKC was tested in the CT Kidney dataset 
[26], which contains 4000 samples in four classes. 

B. Image Preprocessing 

Image preprocessing was carried out to optimize image 
quality. In general, degraded images, prone to noise, are 
restored by proper techniques such as filtering [27]. 

���, �� = 	��, ��∗���, �� + ��, ��   (1) 

ℎ��, �� = �����, ���    (2) 

where  ���, ��  indicates the output degraded image,  ���, �� 
denotes the degradation function, 	��, �� refers to the acquired 
image, ∗  shows the convolution, ��, ��  signifies noise, 
namely Gaussian noise, and ℎ��, ��  denotes the concluding 
output image. The degraded image was inputted into the noise 
reduction filters, namely the Median (MF) and Wiener (WF) 
filters, to obtain denoised gamma images. A noise reduction 
filter with a nonlinear spatial domain is frequently applied to 
obtain denoised images.  

The procedure to improve image quality is given in the 
following: At first, the mask matrix of  × � size is fixed for 
the reduction of spatial noise. In contrast to the mask pixel 
value for the noisy images, respective to the mask pixel 
dimensions, the mask matrix is used to recalculate the newest 
pixel value. The median filter modifies all the pixel values to 
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the median pixel value respectively to the mask matrix at the 
central pixel value. The WF includes the average pixel and 
variance values in the  × � size, and is given as follows: 

� = �
�� ∑ ��,�∈� �, ��   (3) 

�� = �
�� ∑ ���,�∈� �, �� − !�   (4) 

where ��, ��  represents all the pixels in the area ",  ! 
indicates the mean, �� denotes the variance of Gaussian noise, 

and  × � denotes the size of the neighborhood region " in the 
mask. The WF is expressed to the newest pixel that is 
characterized by #$�, �� using the estimated value 

#$�, �� = ! + %&'(&

%& ∙ ���, �� − !�  (5) 

where *� denotes the noise variance setting of the mask matrix 
for the WF applications. 

 

 
Fig. 1.  The overall flow of the CIDL-DSSKC method. 

C. Feature Extraction: Optimal Xception Model 

The Xception model is used to produce effectual feature 
vectors. Xception, an amended version of InceptionV3, is a 
depthwise separable convolution (Conv) based DNN model 
[28]. All input streams are processed utilizing one convolution 
filter during a Conv procedure called depthwise Conv. A kind 
of Conv, named pointwise Conv, exploits a 1×1 kernel that 
repeats over all points. The kernel depth corresponds to the 
number of channels in the source images. A pointwise Conv 
was merged with depthwise Conv to generate a depthwise 
Conv layer. 

After the depthwise Conv, pointwise Conv takes place in 
the original depthwise separable Conv layer, and then, a 
depthwise Conv layer takes place in the improved depthwise 
Conv. The Xception module utilizes an adapted separable 
Conv. The separable Conv is the modified depthwise separable 
Conv with a remaining connection from the middle flow. The 
data passes through the input flow, then through the middle 
flow, and finally through the exit flow. Average pooling with 
4×4 size and dense and flattening layers are added to classify 
the image. 

This study uses FPA to choose the parameters of the 
Xception approach,  which is based on the pollination behavior 
of flowering plants [29]. The key points of this technique are: 

 Concept 1: Local search (local pollination) can be described 
by the abiotic and self-pollination in wildlife. 

 Concept 2: Global search (global pollination) is represented 
by biotic and cross‐pollination, which depends on Lévy 
flight. 

 Concept 3: The reproduction probability assumes that the 
potential solution (flower stability) is equivalent to the 
similarity of the two flowers. 

 Concept 4: Global and local pollination can be affected by 
any external reason. Thus, the balance among global and 
local pollinations can controlled by the switching 
probability + ∈ �0, 1�. 
Consider a search space / = {1�, 1�, … , 1�}  of potential 

solutions so that 14 ∈ ℜ�  FPA to resolve the subsequent 
challenges: 

1∗ =  argm:;</{	�1�}   (6) 
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where 	�∙� refers to the objective function. In general, the FPA 
working process consists of 5 stages, as follows. 

1) Step 1: Parameter Description 

FPA includes subsequent parameters: 

 �  implies the population size (count of flowers or 
solutions). 

 1=>;?  signifies the present optimum solution. 

 @ shows the size of the step. 

 + denotes the switching probability that resolves if global or 
local pollination is subsequently FPA. 

2) Step 2: Population Initialization 

Initialize the decision variable � ∈ A in the random range. 
One method A  is represented as a #: ‐dimension matrix, 
A ∈ ℜ�×�: 

BCD =
⎣
⎢
⎢
⎡ ��� ��� … �H�

��� ��� … �H�

⋮ ⋮ … ⋮
��J ��J … �HJ⎦

⎥
⎥
⎤
   (7) 

where �4,N ∈ O@N, �NP  so that @N  and �N  refer to the lower and 

upper bounds of the Q?R  search space, correspondingly. Each 
potential solution (flower) is initialized using 

�4,N = @N + S�N − @NT × U   (8) 

where U represents a scalar random number within [0,1]. Based 
on the FF value, the generated solution is stored in A  in 
ascending sequence ���� ≤ 	���� ≤ ⋯ ≤ 	����. In addition, 
the global optimum flower 1=>;?  is initialized by 1=>;? = ��. 
3) Step3: Present Flower Population Intensification 

As mentioned, + determines whether the pollinator follows 
global or local pollination. 

 Local Search (Abiotic): this pollination occurs without a 
pollinator, thus the broadcast of pollen relies on the wind 
and diffusion. The local pollination and flower constancy at 
X time step is characterized by  

14
?Y� = 14

? + ZS1N
? − 1[?T   (9) 

The basis is to mimic the constancy of flowers from the 
local neighborhood. According to statistical data, 1N

? and 1\
?  

either come from identical species or are selected from the 
FPA population. 

 Global Search (Biotic): the pollen of flowers can be 
transferred long-distance via pollinators such as bees, bats, 
birds, and so on. This ensures that reproduction and 
pollination are the most suitable. The biotic FPA procedure 
can be represented as 

�4
?Y� = �4

? + ]��=>;? − �4
?�   (10) 

For insects that travel long distances with dissimilar step 
sizes, Lévy flight can be used to effectively imitate their 

characteristics. Thus, the representation of ] > 0 from the 
Levy distribution is expressed as  

] ∼ `a�`� bcHdef
& g

h
�

ijkfl     (11) 

where m�n� represents the gamma function that has larger 
steps �o"1q > 0�. Here, n is fixed at 1.5. 

4) Step 4: FPA Upgrading with Global Optimum Flower  

The optimum flower 1=>;?  is upgraded for all the iterations 
s if 	�14

?� < 	�1=>;?�, ∀: = 1,2, … , �. 

5) Step 5: Stopping condition.  

FPA iterates steps 3 and 4 until the ending criteria, the 
iteration number or the quality of the result, are satisfied. 
Fitness choice is a main problem. An encoder result is used to 
estimate the best solution candidate. Here, the exactness value 
is a major state applied to FF 

B:sw11 =  max �C�    (12) 

C = yz
yzY{z     (13) 

where |C  and BC  imply true and false positive values, 
respectively. 

 

 
Fig. 2.  Structure of VAE. 

D. Image Classification: β-VAE Model 

Finally, the classification of kidney cancer takes place 
utilizing the �-VAE method. VAE is a generative mechanism 
that comprises encoding and decoding parts, aiming to increase 
the marginal probability of the reconstruction output as [30-33] 

@~����D� ≥ ��∼����|���@~�+��D|��� −  

    ��� dU���|D��+���Tg     (14) 

Here, the initial period is the log probability that input D 
produced by the sampled �  in the inferred distribution 
U���|D� . This distribution is considered to follow the 
multivariate standard distribution. Figure 2 illustrates the VAE 
substructure. 

The loss function of VAE comprises a first term that finds 
the reconstructed error among the inputs and outputs and a 
second one that forces the learned distribution U���|D� to be 
the same for the prior distribution +���. 
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ℒ�����,�� = ℒ�>[����, �� + ℒ����, ��  (15) 

The reconstruction loss ℒ�>[��S�, ��, ��T and the KL loss 

ℒ��S�, ��, ��T are evaluated using  

ℒ�>[��S�, ��, ��T = ∑ �D� − D��
��

4��   (16) 

ℒ��S�, ��, ��T = ���SU�TS��|D�‖+ ��� T (17) 

β-VAE has demonstrated good performance using multiple 
disentanglement metrics. This model uses it as a backbone to 
encourage disentanglement. β-VAE is an extension of typical 
VAE that aims to acquire the disentangled representation of the 
encoder variable in an unsupervised way by providing 
additional weight to the �] term than the original VAE, using 
an extra hyperparameter �. 

ℒ�����, �� = ℒ�>[����, �� + �ℒ����, �� (18) 

IV. RESULTS AND DISCUSSION 

The effectiveness of the proposed CIDL-DSSKC method 
was examined on the CT dataset [26], which consists of 4000 
instances with four class labels, as shown in Table I. 

TABLE I.  DATASET DETAILS [26] 

Classes No. of samples 

Normal 1000 
Cyst 1000 

Tumor 1000 
Stone 1000 
Total  4000 

 
Figure 3 shows the confusion matrices of CIDL-DSSKC. 

The results show that the CIDL-DSSKC technique identifies 
the four classes competently. Table II and Figure 4 show the 
results of the CIDL-DSSKC method for an 80:20 Training 
(TRPH)/Testing (TSPH) split. The experimental results 
indicate that the CIDL-DSSKC model attained satisfactory 
results. On 80% TRPH, the CIDL-DSSKC model achieved 
average ����� , +Xw�� , Xw��� , and B;[��>  of 98.33%, 96.65%, 
96.66%, and 96.65%, respectively. On 20% of TRPH, the 
CIDL-DSSKC method achieved average �����, +Xw��, Xw��� , 
and B;[��>  of 97.81%, 95.61%, 95.54%, and 95.56%, 
respectively. 

Figure 5 shows the �����  value of the CIDL-DSSKC 
technique during the training and validation in 80:20 
TRPH/TSPH. The CIDL-DSSKC obtains the highest ����� 
values over increasing epochs. Also, the maximum validation 
�����  over its training value shows that the CIDL-DSSKC 
method learns efficiently in 80:20 TRPH/TSPH. Figure 6 
shows a brief precision/recall analysis of the proposed method, 
showing that it can achieve great precision/recall values on all 
class labels. Figure 7 shows the ROC curve of the CIDL-
DSSKC model for 80:20 TRPH/TSPH, demonstrating 
enhanced ROC values across all classes. 

TABLE II.  RESULTS ON 80:20 TRPH/TSPH  

Classes  Accuy Precn Recal Fscore 

Training Phase (80%) 

Normal 99.19 98.12 98.61 98.37 
Cyst 97.38 95.64 93.71 94.66 

Tumor 97.78 95.57 95.69 95.63 
Stone 98.97 97.28 98.62 97.95 

Average 98.33 96.65 96.66 96.65 
Testing Phase (20%) 

Normal 99.38 98.55 99.03 98.79 
Cyst 96.37 91.90 94.15 93.01 

Tumor 96.50 93.96 90.96 92.43 
Stone 99.00 98.01 98.01 98.01 

Average 97.81 95.61 95.54 95.56 

 
Table III and Figure 8 show the detection results of the 

CIDL-DSSKC for a 70:30 TRPH/TSPH split. In 70% TRPH, 
the CIDL-DSSKC method achieved average ����� , +Xw�� , 
Xw��� , and B;[��>  of 98.41%, 96.85%, 96.82%, and 96.83%, 
respectively. In 30% TRPH, the CIDL-DSSKC system attained 
average ����� , +Xw�� , Xw��� , and B;[��>  of 98.87%, 97.73%, 
97.73%, and 97.73%, respectively. Figure 9 shows the ����� 
results of the CIDL-DSSKC model at the training and 
validation process in a 70:30 TRPH/TSPH split. These results 
indicate that the CIDL-DSSKC method achieved higher ����� 
values over increasing epochs. Also, the maximum validation 
�����  over the respective training values indicates that the 
CIDL-DSSKC learns efficiently at a 70:30 TRPH/TSPH split. 

TABLE III.  RESULTS  ON 70:30 TRPH/TSPH 

Classes Accuy Precn Recal Fscore 

Training Phase (70%) 

Normal 99.29 98.54 98.54 98.54 

Cyst 97.68 95.12 95.79 95.45 

Tumour 98.50 96.56 97.63 97.09 

Stone 98.18 97.17 95.32 96.24 

Average 98.41 96.85 96.82 96.83 

Testing Phase (30%) 

Normal 99.58 99.05 99.36 99.21 

Cyst 98.33 96.21 96.88 96.54 

Tumor 99.00 98.21 97.52 97.86 

Stone 98.58 97.46 97.15 97.31 

Average 98.87 97.73 97.73 97.73 

 
Figure 10 shows the loss analysis of the CIDL-DSSKC at 

training and validation in a 70:30 TRPH/TSPH split, indicating 
that it achieves close values of training and validation loss. The 
proposed CIDL-DSSKC learns effectively in this TRPH/TSPH 
split. Figure 11 shows a precision/recall curve of the proposed 
method in 70:30 TRPH/TSPH, indicating that it attains great 
precision/recall values in all classes. Figure 12 shows a ROC 
analysis of the CIDL-DSSKC method in 70:30 TRPH/TSPH, 
indicating superior ROC values across all classes. 
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Fig. 3.  Confusion matrices of the CIDL-DSSKC method: (a, b) 80:20 TRPH/TSPH, and (c,d) 70:30 TRPH/TSPH 

 
Fig. 4.  Average results of CIDL-DSSKC in 80:20 TRPH/TSPH. 
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Fig. 5.  CIDL-DSSKC accuracy in 80:20 TRPH/TSPH split. 

 
Fig. 6.  Precision/Recall curve of CIDL-DSSKC in 80:20 TRPH/TSPH. 

 
Fig. 7.  ROC curve of CIDL-DSSKC in 80:20 TRPH/TSPH. 
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Fig. 8.  Average results of CIDL-DSSKC in 70:30 TRPH/TSPH. 

 
Fig. 9.  Accuracy curve of CIDL-DSSKC in 70:30 TRPH/TSPH. 

 
Fig. 10.  Loss curve of CIDL-DSSKC in 70:30 TRPH/TSPH. 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 17177-17187 17185  
 

www.etasr.com Tounsi et al.: Deep Learning Model-based Decision Support System for Kidney Cancer on Renal Images 

 

 
Fig. 11.  Precision/Recall curve of CIDL-DSSKC in 70:30 TRPH/TSPH. 

 
Fig. 12.  ROC curve of CIDL-DSSKC on 70:30 TRPH/TSPH. 

Table IV and Figure 13 compare the experimental results of 
CIDL-DSSKC with other methods [34]. These results show 
that VGG16 and Adaboost demonstrated worse outcomes, the 
CNN-4 model exhibited slightly better results, and the CNN-6, 
CNN-4, Inception v3, and 2D-CNN models offer moderately 
enhanced performance. However, the proposed CIDL-DSSKC 
technique demonstrated better results, with ����� , +Xw�� , 
Xw��� , and B;[��>  of 98.87%, 97.73%, 97.73%, and 97.73%, 
respectively. Therefore, the CIDL-DSSKC can be applied for 
the automated detection of kidney cancer. 

TABLE IV.  COMPARISON WITH OTHER METHODS [34] 

Models Accuracy Precision Recall F-Score 

VGG16 60.00 83.62 73.55 80.11 
ResNet50 96.00 92.80 93.66 94.12 

CNN-6 97.00 91.76 93.91 92.06 
CNN-4 92.00 92.10 93.39 90.81 

InceptionV3 97.00 95.84 94.31 90.91 
AdaBoost 75.00 90.44 94.12 90.49 
2D-CNN 97.00 90.66 90.12 93.88 

CIDL-DSSKC 98.87 97.73 97.73 97.73 

 
Fig. 13.  Comparative results of CIDL-DSSKC with other methods. 
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V. CONCLUSION 

This study presented the CIDL-DSSKC to detect kidney 
cancer in renal images, integrating Median and Wiener filters 
for image preprocessing, the Xception model for feature 
extraction, and β-VAE for classification. The experimental 
results in a CT kidney dataset [26] with 4000 samples in four 
classes (Normal, Cyst, Tumor, and Stone) demonstrated the 
effectiveness of the CIDL-DSSKC, as it achieved an average 
accuracy of 98.33%, precision of 96.65%, recall of 96.66%, 
and F1-score of 96.65% during training in 80% of the dataset. 
In the testing phase, using 20% of the dataset, the system 
achieved average accuracy of 97.81%, precision of 95.61%, 
recall of 95.54%, and F1-score of 95.56%. These results 
indicate that the CIDL-DSSKC l can accurately and efficiently 
detect and classify kidney cancer types, providing radiologists 
with a reliable decision-support tool. The findings of this study 
suggest that the proposed approach not only enhances 
diagnostic accuracy, but also reduces the time and effort 
required for manual analysis, potentially improving patient 
outcomes. Compared to traditional methods, the proposed 
approach offers a more robust and automated solution for the 
detection of kidney cancer. Future research could further 
optimize the model parameters, incorporate larger and more 
diverse datasets, and explore integrating other advanced deep 
learning techniques to improve classification performance. This 
study lays a solid foundation for the development of more 
sophisticated and comprehensive diagnostic tools in the field of 
medical imaging. 
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